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Abstract

Purpose—To investigate the associations between baseline and post-treatment circulating tumor 

cell (CTC) gene expression and outcome of patients enrolled in four NCCTG metastatic breast 

cancer (MBC) trials where specimens were shipped (at 4°C) from community-based sites to a 

reference laboratory (Mayo Clinic-Rochester, MN).

Experimental Design—Blood was collected at treating sites from MBC patients before 

(baseline), during, and at end of treatment with erlotinib+gemcitabine (N0234), sorafenib 

(N0336), irinotecan+cetuximab (N0436), or paclitaxel-poliglumex+capecitabine (N0437). CTCs 

were enriched from 10 mls of EDTA blood using CD45-depletion, 24-30 hours post-blood 

collection. Reverse transcription/quantitative PCR was used to determine cytokeratin-19 (CK19) 

and mammaglobin (MGB1) mRNA levels in CTCs from up to 13 (N0234), 16 (N0336), 18 

(N0436), and 39 (N0437) patients. The gene expressions were normalized to β2-microglobulin and 

calibrated to healthy blood using the 2−ΔΔCq algorithm; positivity was defined as ≥2.
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Results—CK19+mRNA cells were detected in 56%–75% and MGB1+mRNA cells in 23%–38% 

of 86 patients at baseline. CK19+mRNA cells were detected in 30%–67% and MGB1+mRNA 

cells in 14%–64% of 110 post-baseline serial samples. The presence of baseline CK19+mRNA 

cells (p=0.01) but not MGB1+mRNA cells (p=0.14) was significantly associated with shorter 

overall survival. A decrease in MGB1+mRNA levels (baseline-week 8) appeared to be associated 

with clinical response (p=0.05).

Conclusions—CTC gene expression analysis performed by a reference laboratory is feasible 

when blood is collected from treating sites and processed 24-30 hours post-collection. The 

presence of baseline CK19+mRNA CTCs was associated with poor prognosis; a decrease in 

MGB1+mRNA CTCs may help predict response to therapy of MBC patients.
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INTRODUCTION

Breast tumors shed malignant epithelial cells into the circulation, which can cause disease 

relapse. As metastasis is the main cause of death in patients with solid tumors, accurately 

detecting and characterizing these circulating tumor cells (CTCs) can positively impact the 

management of breast cancer patients with metastatic disease (1, 2). The clinical utility of 

CTCs in breast cancer has shown promise in predicting risk, tailoring treatment, response 

monitoring, and developing novel therapies (3–5). The CellSearch™ Assay (Veridex, 

Warren NJ) is an immunofluorescent-based cell imaging system for enumerating CTCs (6, 

7) and is FDA-approved for metastatic breast cancer (MBC) patient prognosis and treatment 

monitoring. The presence and persistence of ≥five CTCs/7.5ml blood in MBC patients 

before and after treatment predicted for poor clinical outcome and treatment failure (6–9), 

has been shown to be a superior surrogate endpoint than current radiology imaging (10), and 

is, perhaps, superior to standard measurements of tumor burden (11).

In addition to CTC enumeration, gene expression analysis of CTCs is becoming increasingly 

important in determining breast cancer patient prognosis and treatment response and 

understanding metastatic biology. The high multiplexing capabilities associated with reverse 

transcription/real-time, quantitative PCR (RT-qPCR) allows for CTCs to be characterized 

both molecularly and biologically. Specific profiles of CTCs may result in a more effective 

evaluation of the clinical significance of CTCs in risk prediction and treatment monitoring 

(12). The AdnaTest BreastCancerSelect (AdnaGen AG, Langenhagen, Germany) is a 

multiplex PCR test that detects human epidermal growth factor receptor-2 (HER2), mucin 1 

(MUC1) and epithelial glycoprotein (GA733-2) transcripts (13). This test has shown clinical 

significance of CTCs in breast cancer patients (14), but is not FDA-approved and was not 

available in the United States at the time of our analyses. Other multiple marker assays that 

include cytokeratin-19 (CK19), mammaglobin (MGB1), and HER2 are being developed to 

effectively detect CTCs with promising clinical significance (i.e., predicts outcome and 

treatment response of patients) in early and late stage disease (15–20). Thus, characterizing 

CTCs in breast cancer patients may result in an important clinical tool to aid in staging, 
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predicting prognosis, and in designing more personalized therapeutic regimens for these 

patients (12).

Characterization of CTCs is attractive because blood collection is a minimally invasive 

procedure and blood can be shipped from the community laboratory to the research center. 

However, the timing between blood collection and processing may be critical for certain 

analytes. Special blood collection tubes with proprietary preservatives or special 

phlebotomy/handling requirements are necessary for the CellSearch Assay and the Adna 

tests. For gene expression analyses of CTCs, EDTA tubes are typically used and in most 

reported studies, the blood has been processed and CTCs isolated within 2-4 hours after 

collection at the same institution of blood collection. This makes it difficult to translate a 

gene expression-based CTC test to local/treating sites, many of which do not have access to 

the required instrumentation for RT-qPCR. As such, the blood needs to be shipped overnight 

to a reference laboratory. Therefore, we examined whether gene expression in CTCs can still 

predict outcome and treatment response of breast cancer patients when CTCs are isolated 

from EDTA blood 24-30 hours post-collection at a reference laboratory. We determined the 

mRNA levels of CK19 and MGB1 in CTCs from MBC patients enrolled in community-

based, North Central Cancer Treatment Group (NCCTG) clinical trials and investigated 

associations between baseline and post-treatment gene expression and patient outcome.

METHODS

Patients and Specimens

Patients registered to four phase II NCCTG MBC treatment trials, N0234 (N=59 eligible 

patients), N0336 (N=20 eligible patients), N0436 (N=19 eligible patients), and N0437 

(N=48 eligible patients) (http:ClinicalTrials.gov) (Supplemental Table 1 and Supplemental 

Figure 1) were eligible for this CTC study. The CTC correlative studies associated with the 

clinical trials were embedded in the clinical trial protocols, which were approved by 

participating Institutional Review Boards. The clinical trials accrued patients between 2003 

and 2007, and the blood samples were collected prospectively for CTC analyses, which were 

performed blinded to the clinical trials endpoints.

Usable blood samples from up to 13 (N0234), 16 (N0336), 18 (N0436), and 39 (N0437) 

patients were obtained at baseline (day 1 of cycle 1, before start of therapy), during (day 1 of 

cycle 3; eight weeks), and at the treatment end, typically at disease progression. Although 

we did not pre-specify the number of patients for this CTC correlative study, blood samples 

for CTC analysis were not collected on all patients enrolled in the clinical trials. Compliance 

by the local treating hospitals and clinics of blood sample collection for CTC analysis was 

low (22%) for the first study (N0234) in which CTC analysis was implemented in 2002. 

Appropriate site training improved compliance to 80% for N0336 initiated in 2003 and 85% 

for N0436 and N0437 initiated in 2004. A patient flow diagram describing the number of 

patients and blood samples (baseline and serial) for CTC analysis is provided in 

Supplemental Figure 1. Comparisons of the clinicopathological characteristics between 

cohort and non-cohort patients with baseline and week 8 samples are provided in 

Supplemental Tables 2 and 3. More non-cohort patients appeared to have ≥3 metastatic sites 

compared to cohort patients (p = 0.01; Supplemental Table 2).
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Blood samples (~10 mls) for CTC gene expression analysis were collected in EDTA tubes 

and were drawn in conjunction but after routine clinical/hematological blood draws to 

minimize skin epithelial cell contamination. Blood samples were collected at the local 

treating hospitals and clinics, stored at 4°C, and were shipped, on ice packs (4°C), overnight 

to the NCCTG research base, Mayo Clinic, Rochester, MN.

Between 24 and 30 hours post-blood collection, CTCs were isolated from blood samples 

using the RosetteSep Human CD45 Depletion Cocktail followed by density centrifugation 

over Ficoll-Paque according to the manufacturers’ instructions (StemCell Technologies Inc, 

Vancouver, BC). Density centrifugation over Ficoll-Paque is necessary for the appropriate 

separation of rosetted red and white blood cells from the mononuclear cells of interest. The 

enriched peripheral blood mononuclear cell (PBMNC) layer was isolated and washed thrice 

with phosphate-buffered saline/2% fetal-bovine serum (PBS/2%FBS). The PBMNC pellet 

was resuspended with lysis binding buffer and the cell homogenate was stored frozen at 

−80°C until processed for mRNA isolation.

mRNA Isolation, Reverse Transcription, and Second-strand Synthesis—The 

procedures for mRNA isolation and cDNA synthesis have been previously described (15). In 

brief, mRNA was isolated from the cell lysate using the mRNA Direct kit and Dynabeads 

Oligo (dT)25 according to the manufacturers’ instructions (Dynal, Invitrogen, Carlsbad, CA). 

A solid phase cDNA library was generated using AMV reverse transcriptase and oligo (dt)25 

priming and stored at 4°C. Gene-specific cDNA second strand synthesis was performed 

using gene-specific forward primers as previously described (15).

Quantitative Real-time PCR (qPCR)—CK-19, MGB1, and β2-microglobulin (B2M) 

mRNA levels were quantified using qPCR and hydrolysis probes chemistries using a BioRad 

iCycler IQ (Hercules, CA). The primers and probes for CK-19 (NM_002276.3) were 

designed using Universal Probe Library from Roche Applied Science (Indianapolis, IN). 

The forward (5′-GTCATGGCCGAGCAGAAC) and reverse (3′- 
CCGGTTCAATTCTTCAGTCC) primers were obtained from Integrated DNA Technologies 

(Coralville, Iowa). The probe (GGATGCTG) was obtained from Roche Applied Science. 

The primers and probe for MGB1 (HSU33147) were designed using Primer Express from 

Applied Biosystems Inc. (Palo Alto, CA). The forward (5′- 
AGAACTGCAGGGTATGGTGAGAA) and reverse (3′- 
ACATGTATAGCAGGTTTCAACAATTGT) primers and the probe- ([6-

FAM]CCAACTACGGATTGCTGCAAACCACA[BHQ1a-6FAM) were obtained from 

Integrated DNA Technologies. The primers and probe for B2M (NM_004048) were 

designed using Beacon Designer from PREMIER Biosoft International (Palo Alto, CA). The 

forward (5′-CATTCCTGAAGCTGACAGCATTC) and reverse (3′-
CAGAAAGAGAGAGTAGCGCGAG) primers and the probe ([6-FAM] TGTCTCGCT 

CCGTGGCCTTAGCTG [BHQ1a-6FAM]) were obtained from Integrated DNA 

Technologies. Specific oligonucleotides representing the respective amplicons were obtained 

from Integrated DNA Technologies and were used to construct standard curves for the 

analytes. The oligonucleotides were serially diluted in Tris-EDTA (TE) buffer and eight to 

nine working concentrations (in multiples of 10) between 10 transcript copies/5μl and 108 
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transcript copies/5μl for CK19 and MGB1 and between 10 transcript copies/5μl and 109 

transcript copies/5μl for B2M were assayed in duplicate. The average ± standard deviation 

intra-run and inter-run (13 runs total for the 4 clinical trials) percent coefficient of variation 

(%CV) for CK19 across the oligonucleotide transcript levels were 1.58 ± 0.40% and 10.5 

± 4.64%, respectively. The average intra-run and inter-run %CV for MGB1 across the 

oligonucleotide transcript levels were 1.28 ± 0.96% and 8.21 ± 3.59%, respectively. The 

average (± standard deviation) intra-run and inter-run %CV for B2M across the 

oligonucleotide transcript levels were 0.82 ± 0.38% and 11.3 ± 6.61%, respectively. These 

%CVs are within the Food and Drug Administration (FDA) guidelines that recommend 

%CV values of less than 15% for analytical assay precision and at least two-thirds of the 

oligonucleotide transcript levels (standards) have %CV less than 15% (21).

Appropriate negative (e.g., water and known amount of mRNA from the MDA MB-361 cell 

line that contains the marker of interest reverse transcribed without AMV reverse 

transcriptase) and positive (e.g., specific amplicon oligonucleotides and known amount of 

mRNA from the MDA MB-361 cell line reverse transcribed with AMV reverse 

transcriptase) controls were included in each qPCR assay. In accordance to the Minimum 

Information for Publication of Quantitative PCR Experiments (MIQE) guidelines (22), the 

specific oligonucleotide standard curves were used to optimize amplification efficiency and 

to ensure that reaction efficiencies are comparable between genes of interest and the 

reference gene. In addition, blood samples obtained from healthy individuals were 

identically processed and were analyzed in each RT-qPCR run. The analytic detection limit 

of our model assay system is 1 in 106 cells (15), and using oligonucleotide standard curves, 

we can routinely detect at least 3 transcript copies per reaction. All patient samples were run 

in triplicate, and a sample had to have at least two Cq values < 40 to be evaluable for the 

respective transcript. Samples with at least two Cq values of 40 were considered non-

detectable. The average Cq value was used as the quantitative value, and the average %CVs 

(± standard deviation) of the detectable samples were 1.66 ± 0.12, 0.97 ± 0.07, and 0.48 

± 0.02 for CK19, MGB1, and B2M, respectively, across the four studies.

The target messages in the CTC samples were determined using a relative quantification 

method (22–24). The relative quantification, 2−ΔΔCq algorithm, is the fold expression relative 

to a calibrator (i.e., blood from healthy individuals; “normal blood”) and normalized to a 

reference gene (B2M). For the CK19 calibrator, of 62 blood samples tested from healthy 

individuals, CK19 Cq<35 was observed in 11% of samples. For the MGB1 calibrator, of 56 

samples tested from healthy individuals, MGB1 Cq<35 was observed in less than 2% of 

samples. The average calibrator ΔCq value was obtained from these samples and individual 

ΔCqs of the calibrator were within 2 standard deviations of the average calibrator ΔCq value. 

Samples were classified as positive for a particular gene if the 2−ΔΔCq was ≥ 2.0 (i.e., 100% 

or greater than what is found in healthy blood). Samples with non-detectable target messages 

(Cq = 40) were assigned a 2−ΔΔCq value of 0.

Statistical Analysis—The primary endpoints of this analysis were to evaluate the impact 

of baseline and follow-up changes of CK19mRNA+ and MGB1mRNA+ CTCs on 

progression free survival (PFS) and overall survival (OS) of MBC patients enrolled in four 

NCCTG phase II treatment trials. This study followed REMARK guidelines (25). Wilcoxon 
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Rank Sum tests were used to assess changes in CK19 and MGB1 gene expression values 

between baseline and week 8 and end of treatment between responders and non-responders. 

Wilcoxon Signed Rank tests were used to assess changes in CK19 and MGB1 gene 

expression levels between baseline and week 8 and treatment end. Chi-Square tests were 

used to determine whether CK19 and MGB1 gene expression values differed between 

studies. Non-stratified Cox Regression models and Kaplan-Meier curves were used to 

determine associations between PFS and OS and CK19mRNA and MGB1mRNA positivity. 

Multivariate modeling methods included backward elimination, stepwise and assessing all 

potential subset models based on score criterion. The Kaplan-Meier method was used to 

estimate overall (OS) and progression-free survival (PFS). Median follow-up was 2.3 years. 

For each clinical trial, clinical response rates as defined by RECIST v1.0 criteria (26) among 

patients included in this study are listed in Supplemental Table 1.

RESULTS

Distribution of CK-19 and MGB1 relative gene expression levels

Table 1 shows that 38% and 67% of patients had CK19+mRNA and MGB1mRNA levels 

<2.0, respectively, at baseline. Of the 53 patients with CK19 2−ΔΔCq ≥2 at baseline, the 

relative gene expression level ranged between 2.1 and16,286 (mean: 569 median: 54) 

(Supplemental Table 4). Of the 28 patients with MGB1 2−ΔΔCq ≥2 at baseline, the relative 

gene expression level ranged between 2.3 and 5806 (mean: 354 median: 14) (Supplemental 

Table 5).

Incidence of CK-19mRNA+ and MGB1mRNA+ CTCs

CK-19mRNA+ CTCs (at 2−ΔΔCq ≥ 2) were detected in 55-75%, 44-60%, and 30-67% 

patients at baseline, during, and end treatment/progression, respectively (Table 1, 

Supplemental Figure 2A). MGB1mRNA+ CTCs were detected in 23-38%, 22-64%, and 

14-60% patients at baseline, during, and treatment end, respectively (Table 1, Supplemental 

Figure 2B). No significant differences were observed between the timepoints across the four 

studies. At baseline, the incidence of CK19mRNA+ CTCs (62%; 95% CI: 51-72%) was 

higher than the incidence of MGB1mRNA+ CTCs (33%; 95% CI: 23-42%). Of the 28 

MGB1+mRNA samples, 23 (82%) were also CK19mRNA+ (Supplemental Table 6), and of 

the 53 CK19+mRNA samples, 23 (43%) were also MGB1mRNA+. At baseline, 

CK19+mRNA and MGB1+mRNA incidence was significantly correlated (Supplemental 

Table 6; p=0.007) and the relative gene expression levels between CK-19 and MGB1 were 

weakly correlated (Spearman r2= 0.23; p=0.03).

Correlation between CTC positivity and clinico-pathological characteristics

The presence of CK-19mRNA+ CTCs (2−ΔΔCq ≥ 2) at baseline correlated with hormone 

receptor positivity, >3 metastatic sites, and non-ductal histology but was not correlated with 

nodal status (Table 2). The presence of MGB1mRNA+ CTCs (2−ΔΔCq ≥ 2) at baseline 

correlated with hormone receptor positivity (Table 2).
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Association between baseline CTC positivity and patient survival

Univariate analysis showed that histologic grade and performance status (PS) were 

independent significant predictors of PFS (Table 3). The hazard ratio (HR) for PFS was 1.37 

(95%CI: 0.87-2.18; p=0.18) for patients with CK19mRNA+ CTCs (2−ΔΔCq ≥ 2) at baseline 

(Table 3, Figure 1A). Progression-free survival for patients with and without MGB1mRNA+ 

CTCs were similar, and there was no significant association between baseline MGB1mRNA

+ positivity and PFS (Figure 1B). A comparison across four subgroups based on baseline 

CTC gene expression positivity (e.g., CK19mRNA−/MGB1mRNA−; CK19mRNA−/

MGB1mRNA+; CK19mRNA+/MGB1mRNA−; CK19mRNA+/MGB1mRNA+) 

demonstrated no significant differences in PFS (Supplemental Table 8).

Univariate analyses demonstrated that histologic grade, number of metastatic sites, and 

CK19mRNA+ CTCs were independent predictors for OS (Table 3). Patients with 

CK19mRNA+ CTCs had a significantly worse OS than patients without CK19mRNA+ 

CTCs at baseline (Figure 1C). The HR for patients with CK19+mRNA CTCs was 2.05 

(95%CI:1.16–3.62) (Figure 1D). The HRs for patients with CK19+mRNA and 

MGB1mRNA+ CTCs and CK19+mRNA or MGB1mRNA+ CTCs were 1.85 (95%CI:

1.07-3.20; p=0.03) and 1.91 (95%CI:1.04-3.51; p=0.04), respectively (Figure 1E). In a 

multivariate analysis, the histologic grade and number of metastatic sites were not 

significant covariates in the prognostic utility of CK19mRNA+ CTCs on OS. CK19mRNA+ 

(p=0.001) and estrogen receptor negativity (p=0.007) were the only predictors of worse OS 

in the final multivariate model (Supplemental Table 7).

An analysis assessing the association of baseline CTC gene expression positivity with 

overall survival demonstrated that patients with CK19mRNA+/MGB1mRNA- CTCs had a 

non-significant HR of 1.77 (p=0.10) and patients with CK19mRNA+/MGB1mRNA+ had a 

significant HR of 2.44 (p=0.01) when compared to patients with CK19mRNA-/

MGB1mRNA- (Supplemental Table 9).

Association between baseline and week 8 CTC positivity change and patient OS

Patients who remained positive (2−ΔΔCq ≥ 2) between baseline and week 8 for CK19mRNA+ 

(HR: 2.67, p=0.05) or MGB1mRNA+ (HR: 2.13, p=0.09) CTCs appeared to have a worse 

OS compared to patients who remained negative (2−ΔΔCq < 2) for CK19mRNA or 

MGB1mRNA CTCs, respectively (Table 4). Similarly, the 35 patients who were positive for 

CK19mRNA CTCs at baseline irrespective of status at 8 weeks had a worse OS outcome 

than patients who were negative at baseline irrespective of status at 8 weeks (HR=2.7; 

p=0.01). The patients who were positive for MGB1mRNA CTCs at baseline irrespective of 

status at 8 weeks tend to have a worse OS outcome than patients who were negative at 

baseline irrespective of status at 8 weeks (HR=1.91; p=0.07).

Association between CTC Positivity and Patient Response

No significant correlations were observed between treatment response and CK19mRNA+ 

CTCs at any timepoint (data not shown). At week 8, 41% (17/42) of patients without 

MGB1mRNA+ CTCs had a response compared to 19% (4/21) of patients with 

MGB1mRNA+ CTCs (p=0.09). At treatment end, 38% (12/32) of patients without 
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MGB1mRNA+ CTCs had a response compared to 7% (1/15) of patients with MGB1mRNA

+ CTCs (p=0.03). Table 5 shows that the decrease in MGB1 mRNA levels appeared to be 

larger for patients who had a treatment response compared to those who did not have 

treatment response at week 8 (p=0.05). However, it appears that MGB1 mRNA levels 

increased between baseline and treatment end in patients with a treatment response (p=0.09). 

There were no significant associations between changes in CK19+mRNA levels and 

treatment response (data not shown).

DISCUSSION

The detection of CTCs has been shown to predict for poor clinical outcome and treatment 

failure in MBC patients (6, 7). The biologic characteristics (e.g., protein and mRNA 

expression) of CTCs may further improve predicting risk, monitoring response, and tailoring 

treatment strategies for individual patients with breast cancer (4, 5, 12). As CTC molecular 

characterization is becoming more relevant in personalized disease management of breast 

cancer patients, it would be beneficial to develop a gene expression-based test in which a 

commonly used blood collection tube (e.g., EDTA) can be easily utilized by local sites and 

the blood easily shipped to a reference laboratory and reliably tested for molecular analysis. 

This would potentially increase the accessibility of these types of tests to many patients, 

particularly in the United States. Therefore, we determined the feasibility of analyzing CK19 

and MGB1 gene expression in CTCs when isolated from EDTA blood at a central laboratory 

24-30 hours post-collection in context of outcome of patients enrolled in NCCTG 

community-based treatment trials.

We observed that CK19+mRNA was detected overall in 62% of MBC patients at baseline, a 

slightly higher incidence than the ~50% incidence of patients with ≥5 CTCs typically 

observed using the FDA-approved CellSearch Assay (6) and 52% incidence using the 

AdnaTest BreastCancer (27). In two individual studies (N0436 and N0437) with several 

patients treated in the first-line setting, we did observe similar incidences of baseline CTC 

positivity (55-56%) compared to literature findings. MGB1+mRNA has been detected in 

33-39% of patients (28, 29), which is within the 20%–40% range of baseline incidence we 

observed using our immunodepletion/RT-qPCR method. A recent comparison analysis of the 

CellSearch Assay, Adna Test Breast Cancer Select/Detect, and CK-19/MGB1 RT-qPCR 

assay detected CTCs in 36%, 22%, and 26% (CK19)/54% (MGB1), respectively, in MBC 

patients (30). Our increased sensitivity of CK-19+ CTCs compared to previous results may 

be due to different patient populations (first versus second/third/fourth line), cell enrichment 

and RNA extraction techniques, oligonucleotide primers, and PCR approaches (standard 

versus real-time) used throughout the various studies. These technical differences for gene 

expression-based tests emphasize the importance of implementing standardize approaches to 

isolate and characterize CTCs, similar to what has been proposed to analyze disseminated 

tumor cells in the bone marrow (31).

The MGB1+mRNA incidence was lower than the incidence of CK19mRNA+ detection. 

Although the majority (87%) of the MGB1mRNA+ samples were also CK19mRNA+, 43% 

of CK19mRNA+ samples were MGB1mRNA+ and CK19 and MGB1 transcript levels were 

only weakly correlated. We previously observed a significant correlation between CK19 and 
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MGB1 expression in patients with primary breast cancer (15). The presence of CK19mRNA

+ CTCs at baseline was correlated with hormone receptor positivity, non-ductal histology, 

>3 metastatic sites, but not with nodal status, and the presence of baseline MGB1mRNA+ 

CTCs was strongly associated with hormone receptor positivity. It is interesting that 

significant correlations between CTC gene expression (particularly for MGB1) and hormone 

receptor positivity were observed. Elevated MGB1 expression has been associated with 

clinical and biological features defining a less aggressive tumor phenotype in breast tumors 

(32) including steroid-receptor positive breast tumors (33). This may help explain why 

baseline MGB1 gene expression did not predict for reduced PFS or OS in our study. Our 

results are consistent with previous findings that demonstrated a positive association 

between the presence of CTCs as detected by laser scanning cytometry and RT-qPCR and 

distant metastases (34–36). Although earlier results suggest that the incidence of CTCs is 

higher for node-positive than node-negative patients (34, 36, 37), the lack of correlation 

between CTCs and nodal status has been previously observed and indicates that two distinct 

routes exist for breast cancer metastases (38–40). Our incidence results and clinico-

pathologic correlations are consistent with previous findings indicating that our 

immunodepletion coupled with RT-qPCR approach produces reliable gene expression 

analysis of CTCs.

Importantly, we observed that the presence of CK19mRNA+ CTCs is associated with shorter 

OS and thus, correlates with poor prognosis. We also observed a potential trend towards a 

predictive significance of MGB1mRNA+ CTCs in that the decrease in MGB1+ transcript 

levels between baseline and 8 weeks appeared to correlate with patient response to 

treatment. Similarly, MGB1 transcripts have been recently shown to reflect the effect of 

therapy on adjuvant breast cancer patients (41). As MGB1 is more highly breast specific 

compared to CK19, which is used as a general epithelial marker, MGB1 may be a more 

appropriate measure of treatment response (e.g., tumor shrinkage) for breast cancer 

compared to CK19 (CK19 gene expression also could be confounded by its loss through 

epithelial-mesenchymal transition). However, increased response rates may not always result 

in improved PFS or OS (42). In our study, the baseline or the change in MGB1 gene 

expression did not significantly predict for patient PFS or OS. Additionally, the detection 

rate of CK19+ or MGB1+ transcripts in blood samples was not shown to be associated with 

tumor progression in MBC patients (30). It is also interesting that a trend (p=0.09) was 

observed between increased MGB1 mRNA levels (between baseline and treatment end) and 

treatment response. Our initial hypothesis was that a decrease in CTC gene expression 

would predict that a patient would respond to treatment. We did observe this for MGB1 at 

the first follow-up at 8 weeks but potentially the opposite was observed at treatment end. A 

possible explanation could be that initially, the treatment is rapidly clearing the tumor cells 

from the circulation and by treatment end the tumor is shrinking, releasing cells into the 

circulation at a greater rate than the cells being cleared from the circulation giving the 

appearance that an increase in CTC MGB1 gene expression at treatment end may be 

indicative of treatment response. However, it is important to note that the change in MGB1 

gene expression between baseline and treatment end was non-significant and could be due to 

the limited sample size and various treatment regimens used between the different clinical 

trials.
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Our findings, however, are consistent with previous results that demonstrated an association 

between the presence of CK19+ CTCs and poor prognosis (16, 27, 43, 44) and demonstrate 

the validity of the immunodepletion/RT-qPCR method used in this study. In addition, it 

appears that patients who tested negative for CK19+CTCs at baseline, irrespective of 

changing to positive at follow-up timepoints, tend to have a better outcome than patients 

who tested positive for CK19+CTCs at baseline irrespective of changing to negative at 

follow-up timepoints. This is in slight contrast to the CellSearch data that demonstrated that 

patients who changed from negative (< 5 CTCs/7.5ml blood) to positive (≥ 5 CTCs/7.5ml 

blood) had worse outcome than those patients who changed from positive to negative and 

the outcome of those patients who turned positive was similar to those patients who 

remained positive for CTCs (6).

Concern does exist regarding the decreased gene expression levels observed in room 

temperature EDTA blood samples six hours post-collection (45). The blood samples in our 

studies were stored at 4°C and shipped on ice packs. This cold temperature may slow RNA 

degradation as our developmental work using blood from healthy individuals spiked with 

1,000 cells/ml blood of MDA-MB-361 cells and stored at 4°C suggests that mRNA levels 

are decreased to a lesser extent when blood was maintained at 4°C (average Cq increase of 

1.63 and 1.21 for CK19 and MGB1, respectively, as observed in our hands) versus a Cq 

increase of 2 to 4 when EDTA blood was kept at room temperature for 24 hours (45). A Cq 

increase of 6.29 and 5.14, for CK19 and MGB1, respectively, was observed when blood was 

collected in a CellSave tube maintained at room temperature (Supplemental Figure 3). 

Although RNA degradation occurs, small transcripts are still detectable by real-time PCR, a 

technique that is tailored to amplify small amplicon sizes. In addition, large and small tumor 

cell fragments and tumor microparticles have been observed in blood from colon cancer 

patients using the CellSearch Assay, and these small fragments were still associated with 

poor clinical outcome of the patients (46). In addition, EpCam antigenicity was still present 

three days after blood collection (47). Thus, it appears that RNA may be coming from tumor 

cell fragments that are still clinically significant and select cells remain viable for several 

days after collection. Lastly, our quantification method couples immunodepletion cell 

enrichment with RT-qPCR for which the gene expression results are calibrated to the gene 

expression observed in healthy blood that is identically processed (i.e., processed 24 hours 

post-collection) as the samples obtained from patients enrolled in NCCTG clinical trials. 

The negative selection has been shown to reduce background signals of HER2 and CK19 in 

hematopoietic cell populations to improve the specificity of RT-qPCR (48). We used normal 

blood as a calibrator in our quantification method to further decrease and normalize the 

influence of marker gene expression potentially found in hematopoietic cells as we did 

observe relatively elevated CK19 gene expression (e.g., Cq < 35) in 11% of normal blood 

samples. Molecular characterization of a single CTC by a multiplex real-time PCR also has 

been demonstrated in large quantities of contaminating leukocytes (49).

As the comparison of established assay findings with clinical outcome will define the 

clinically relevant threshold, clinical assays are only useful when the results can be 

accurately correlated with clinical outcome of cancer patients and reflect the nature of the 

disease (12). In our study, we demonstrated for the first time the prognostic significance of 

CTC gene expression analysis when blood has been processed 24-30 hours post-collection 
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in context of NCCTG MBC clinical trials, suggesting that our findings are very promising 

for establishing gene expression-based CTC assays for clinical utility as prognostic/

diagnostic tests in a community clinic setting. This will enable a broader application of CTC 

gene expression analyses/studies in clinical trials and different practice settings. As this 

study examined a limited number of patients with different treatment regimens and lines of 

therapy, our results should be interpreted as hypothesis-generating.

Additional CTC gene expression analyses are ongoing in other NCCTG treatment trials 

including early (neo-adjuvant and adjuvant settings) and metastatic breast cancer and 

advanced lung cancer trials (50) to validate the feasibility of CTC gene expression testing in 

a community-based setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

Previous findings using circulating tumor cells (CTCs) that are isolated at the same 

location of collection (and typically within four hours of collection) have demonstrated 

that the presence of CK19+mRNA cells is a poor prognostic indicator for advanced 

breast cancer patients. However, it is difficult to translate a gene expression-based CTC 

test to local/community-based treating hospitals and clinics because many do not have the 

required instrumentation for reverse transcription/quantitative PCR (RT-qPCR) analysis. 

As such, the blood needs to be shipped overnight to a reference laboratory. Therefore, we 

examined whether gene expression in CTCs can still predict for outcome and treatment 

response for patients with metastatic breast cancer (MBC) when blood is collected from 

local/treating sites (stored at 4°C) and CTCs are isolated from EDTA blood 24-30 hours 

post-collection at a reference laboratory. We observed that the presence of baseline 

CK19+mRNA CTCs was associated with traditional poor prognostic indicators (≥ 3 

metastatic sites and higher grade), a trend towards shorter progression-free survival, and 

significantly shorter overall survival, independent of number of metastatic sites and 

grade. We also observed that a decrease in MGB1+mRNA CTCs may help predict 

response to therapy of MBC patients. Our data confirms literature findings and indicate 

for the first time that CK19 gene expression analysis in CTCs performed by a reference 

laboratory still predicts for outcome of advanced breast cancer patients when blood is 

collected from local sites and processed 24-30 hours post-collection in the context of the 

North Central Cancer Treatment Group (NCCTG) treatment trials. This will allow for a 

wider application of CTC gene expression monitoring in clinical trials and different 

practice settings. Validation studies are ongoing to confirm these findings.
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Figure 1. 
Baseline CTC Positivity and Patient Survival. A. CK19mRNA+ and Progression-free 

Survival. B. MGB1mRNA+ and Progression-free Survival C. CK19mRNA+ and Overall 

Survival. D. MGB1mRNA+ and Overall Survival. E. CK19mRNA+ and MGB1mRNA+ and 

Overall Survival.
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Table 1

Distribution of CK19 and MGB1 Relative Gene Expression Levels

CK-19 (2−ΔΔCq)
Baseline (N=86)
N (%)

Week 8 (N=63)
N (%)

Treatment End (N=47)
N (%)

Negative 33 (38) 31 (49) 22 (47)

 0   25 (29)   24 (38)   19 (40)

 0.01-1.0     3 (3)     4 (6)     1 (2)

 1.01-1.99     5 (6)     3 (5)     2 (4)

Positive 53 (62) 32 (51) 25 (53)

 2.0-9.99   15 (17)   10 (16)   9 (19)

 >10.0   38 (44)   22 (35)   16 (34)

MGB1 (2−ΔΔCq)

Negative 58 (67) 42 (67) 32 (68)

 0   51 (59)   36 (57)   29 (62)

 0.01-1.0     5 (6)     5 (8)     3 (6)

 1.01-1.99     2 (2)     1 (2)     0 (0)

Positive 28 (33) 21 (33) 15 (32)

 2.0-9.99   8 (9)   8 (13)   5 (11)

 >10.0   20 (23)   13 (21)   10 (21)
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Table 2

Correlation between CTC Baseline Positivity and Clinicopathological Characteristics.

Characteristic CK19 Baseline
(N=86)

MGB1 Baseline
(N=86)

N (%) ≥ 2 p-value* N (%) ≥ 2 p-value

Nodal Status 0.82 0.65

 Node Negative 27/43 (63) 13/43 (30)

 Node Positive 26/43 (61) 15/43 (35)

Histologic Tumor Grade (Elston/SBR) (N=69) 0.71 (N=69) 0.48

 Well/Intermediate 12/20 (60) 7/20 (35)

 Poor 27/49 (55) 13/49 (27)

Surgery (N=70) 0.19 (N=70) 0.12

 Breast Conserving 16/22 (73) 5/22 (23)

 Mastectomy 27/48 (56) 20/48 (42)

ER/PR Status: 0.03 0.009

 ER or PgR Positive 32/44 (73) 20/44 (46)

 Other 21/42 (50) 8/42 (19)

# of Metastatic Sites 0.009 0.90

 < 3 25/50 (50) 16/50 (32)

 ≥ 3 28/36 (78) 12/36 (33)

Histology (N=57) 0.004 (N=57) 0.12

 Ductal 23/48 (48) 14/48 (29)

 Other 9/9 (100) 5/9 (56)

Performance Status 0.15 0.66

 0 27/49 (55) 15/49 (31)

 1,2 26/37 (70) 13/37 (35)

Menopausal Status 0.38 0.35

 Pre or <50 yrs 13/24 (54) 6/24 (25)

 Post or ≥ 50 yrs 40/62 (65) 22/62 (36)

Age Group 0.61** 0.72**

 < 40 6/10 (60) 4/10 (40)

 40-49 10/17 (59) 5/17 (29)

 50-59 19/31 (61) 11/31 (36)

 60-60 14/23 (61) 6/23 (26)

 70+ 4/5 (80) 2/5 (40)

*
: χ2;

**
: Mantel-Haesnzel; SBR:Scarff-Bloom-Richardson; ER: estrogen receptor; PgR: progesterone receptor
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Table 3

Univariate Analysis for DFS and OS

Covariate HR 95% CI p-value

DFS

 Age 1.00 0.98-1.02 1.0

 ER (neg vs pos) 1.48 0.94-2.32 0.09

 PgR (neg vs pos) 1.27 0.80-2.02 0.32

 Histologic Tumor Grade Elston/SBR (poor vs well/intermediate) 1.89 1.05-3.40 0.03

 Node (pos vs neg) 0.89 0.57-1.38 0.59

 Menopausal Stat (<50 vs ≥50 yrs) 1.12 0.68-1.85 0.65

 Histology (other vs ductal) 0.86 0.40-1.83 0.69

 Performance Status (1,2 vs 0) 1.61 1.03-2.51 0.04

 #Metastatic Sits (≥3 vs <3) 1.15 0.73-1.81 0.54

 CK19 (≥ 2.0 vs < 2.0) 1.37 0.87-2.18 0.18

 MGB1 (≥ 2.0 vs <2.0) 1.05 0.65-1.69 0.84

OS

 Age 1.00 0.98-1.03 0.87

 ER (neg vs pos) 1.52 0.90-2.55 0.11

 PgR (neg vs pos) 1.52 0.89-2.61 0.12

 Histologic Tumor Grade Elston/SBR (poor vs well/intermediate) 2.28 1.08-4.85 0.03

 Node (pos vs neg) 1.12 0.67-1.88 0.66

 Menopausal Stat (<50 vs ≥50 yrs) 1.23 0.67-2.17 0.47

 Histology (other vs ductal) 1.48 0.61-3.61 0.38

 Performance Status (1,2 vs 0) 1.13 0.67-1.91 0.64

 #Metastatic Sits (≥3 vs <3) 2.00 1.18-3.41 0.01

 CK19mRNA(≥ 2.0 vs < 2.0) 2.05 1.16-3.62 0.01

 MGB1mRNA (≥ 2.0 vs <2.0) 1.49 0.88-2.52 0.14

SBR: Scarff-Bloom-Richardson; ER: estrogen receptor; PgR: progesterone receptor
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