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Abstract

With over 1,900 variants reported in the cystic fibrosis transmembrane conductance regulator 

(CFTR), enhanced understanding of cystic fibrosis (CF) genotype-phenotype correlation 

represents an important and expanding area of research. The potentiator Ivacaftor has proven an 

effective treatment for a subset of individuals carrying missense variants, particularly those that 

impact CFTR gating. Therapeutic efforts have recently focused on correcting the basic defect 

resulting from the common F508del variant, as well as many less frequent missense alleles. 

Modest enhancement of F508del-CFTR function has been achieved by combining Ivacaftor with 

Lumacaftor, a compound that aids maturational processing of misfolded CFTR. Continued 

development of in silico and in vitro models will facilitate CFTR variant characterization and drug 
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testing, thereby elucidating heterogeneity in the molecular pathogenesis, phenotype, and 

modulator responsiveness of CF.

INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disorder with nearly 90,000 reported cases 

worldwide, and highest incidence occurs among white individuals of Northern European 

descent. The disease results from loss-of-function of the CF transmembrane conductance 

regulator (CFTR), a chloride and bicarbonate channel expressed at the apical surface of 

exocrine secretory epithelia. In the absence of functional CFTR, hyperviscous luminal 

secretions accumulate within respiratory, pancreatic, gastrointestinal and reproductive 

systems, ultimately leading to chronic inflammation, severe tissue damage, and multi-organ 

destruction [1].

The CFTR gene was mapped in 1989, allowing extensive study and characterization of the 

biochemistry and functional role of CFTR protein. More than 1,900 variants within CFTR 
have been observed to date, many of which have been shown to elicit one or more defects of 

steps comprising biogenesis, ion transport, or plasma membrane (PM) turnover [2,3,4]. 

CFTR variants have traditionally been grouped into six classes based on features associated 

with molecular pathogenesis: class I – defective protein synthesis (e.g. premature 

termination codons); class II – aberrant protein maturation and premature degradation (e.g. 

‘processing’ defects); class III – abnormal channel regulation (e.g. ‘gating’ defects); class IV 

– improper formation of the channel pore (e.g. ‘conductance’ defects); class V – decreased 

levels of protein synthesis (e.g. splicing defects); and class VI – accelerated internalization 

or faulty recycling from the PM (e.g. ‘turnover’ defects) [2,3,4; www.cftr2.org] (Fig. 1).

Although these subcategories provide a valuable means of profiling the panoply of CFTR 

abnormalities, molecular complexity of individual CFTR variants has become increasingly 

evident. CFTR defects exist across a spectrum of severity at the molecular level, which 

correlate with a range of clinical presentations. For example, mild variants result in male 

infertility and deleterious variants result in chronic lung infection with mucus obstruction 

and progressive deterioration, whereas the most severe variants often lead to pancreatic 

and/or hepatic insufficiency. The challenge, therefore, is to understand mechanisms 

underlying various CFTR variants and develop precision medicine approaches tailored to all 

forms of the disease. This review will focus on missense variants (i.e. amino acid 

substitutions), which represent the largest category of CFTR defects (~40%) [1]. We will 

discuss strategies that have proven successful for rescuing CFTR function, methods for 

predicting therapeutic responsiveness, challenges faced with the current design of clinical 

trials, and cutting-edge tools utilized to develop more efficient interventions.

SUCCESS STORY FOR p.G551D

The first CFTR-targeted compound resulted from a revolutionary partnership between the 

U.S. CF Foundation and the pharmaceutical industry. Using high-throughput, cell-based 

fluorescence membrane potential assays in recombinant Fischer rat thyroid (FRT) cells, the 

small molecule VX-770 (Ivacaftor, Kalydeco™) was discovered as a robust potentiator of 
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gating activity in the CFTR class III variant, p.G551D. Ivacaftor was shown to improve 

multiple measures of clinical utility in patients carrying at least one G551D-CFTR allele, 

including: (1) enhanced forced expiratory volume in one second (FEV1), (2) increased body 

mass index (BMI), (3) fewer respiratory infections, (4) decreased hospitalizations, and (5) 

reduced sweat chloride levels [5,6]. The effectiveness of this drug was made possible by the 

strong understanding of the molecular mechanisms underlying the G551D variant. Advances 

in our understanding of the genetics underlying CF, at the level of individual sequence 

variants as well as modifier genes, will lead to development of effective therapies for more 

individuals of different genotypes [1].

The Food and Drug Administration (FDA) approved Ivacaftor in 2012 as a pharmacologic 

treatment for CF patients 12 years and older who carry at least one copy of the p.G551D 

variant. In the years following, trials conducted in younger patients with p.G551D (i.e. 6–12 

years old), suggested that starting Ivacaftor at an earlier age may slow or even prevent lung 

disease progression [7]. Today, children two years and older carrying certain CFTR gating 

variants [2,3,4] are approved to receive the drug, and longevity studies among all ages 

indicate clinical benefits can be maintained for years [6,8,9].

IVACAFTOR SPECTRUM OF ACTIVITY

Based on the compelling response of G551D-CFTR achieved with Ivacaftor, additional 

studies were undertaken to determine whether this compound could rescue other CFTR 

molecular phenotypes similar to p.G551D (i.e. class III or IV defects, including p.R117H, 

p.G178R, p.S549N, p.S549R, p.G551S, p.G1244E, p.G1349D, p.S1251N, and p.S1255P). In 
vitro analysis conducted on this cohort of gating/conductance variants revealed the 

compound greatly augmented resident channel activity [10], and subsequent clinical trial 

results showed significant improvement in FEV1, BMI, and sweat chloride levels [11,12]. As 

a consequence, Ivacaftor was FDA-approved in 2014 for individuals two years and older 

carrying R117H-CFTR, and the following year, gained approval for the eight other variants 

listed above.

While this strategy has proven highly successful for a number of CFTR variants, similar 

approaches may not be sufficient to identify therapeutic interventions for all missense 

mutations. Many CF variants exist at extremely low frequencies in the patient population, 

presenting a significant challenge to clinical evaluation. Informative human trials may 

require large numbers of subjects and controls, and are impractical for rare variants 

occurring in only 2 or 3 individuals worldwide. In general, ultra-orphan diseases such as CF 

may require alternative strategies for establishing clinical efficacy [13].

IMPROVED UNDERSTANDING OF CFTR VARIANT COMPLEXITY

To bring molecular-based therapy and precision medicine to CF patients of all genotypes, 

two significant hurdles must be overcome: (1) the large number of variants known to exist in 

CFTR, and (2) the low frequency at which many of these occur. Of the 796 missense 

variants reported in the CF mutation database [www.genet.sickkids.on.ca/app], 81 have been 

functionally described, and 57 of those have been classified as disease-causing 
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[www.cftr2.org]. The primary goal of the CFTR2 project is to characterize and determine 

disease liability for all mutant CFTR alleles [14].

Distinguishing CF disease phenotypes through use of traditional categories has proven 

beneficial for studying individual CFTR variants (Fig. 1). However, variants that affect 

several processes require a more complex classification protocol involving multiple 

categories, each of which might require a separate class of compound [15]. Missense 

variants frequently fall into the aforementioned group. In silico tools such as molecular 

modeling and dynamics simulations [16] can help predict functional consequences of 

missense variants, but are far from comprehensive.

Sequencing of the entire CFTR coding region has become nearly commonplace due to 

substantial reduction in cost [17]. The increasing number of individuals sequenced by 

whole-exome, whole-genome, and carrier screening, has dramatically enhanced the volume 

of sequence data derived from CF patients, asymptomatic carriers, and the general 

population. As with other genetic diseases [18], this has led to significant increases in the 

number of CFTR variants identified, necessitating more sophisticated methods for variant 

interpretation. Sequence analysis of all CFTR exons has augmented discovery of complex 

alleles, which contain multiple variants in cis. Complex alleles may behave differently than 

those with single variants in terms of function and/or drug response. This can lead to 

incorrect labeling of a variant as disease-causing until segregation analysis and/or functional 

studies exclude deleterious effects, as occurred with p.I148T [19]. Consequently, it may 

become imperative to identify all variants within CFTR when considering appropriate 

therapy for a particular CF patient. The establishment of large general databanks for genetic 

variants (ClinVar, ExAC, etc.), as well as expertly curated databases (e.g. CFTR2), provides 

important tools for differentiating detrimental versus benign variants based on population 

frequency [20].

CHALLENGES EVALUATING THERAPEUTIC RESPONSIVENESS

As the number of reported rare CFTR variants increases, model systems will become 

significantly more valuable for experimental evaluation of underlying molecular defects. The 

ability of cell-based platforms to generate robust, reliable data in an efficient manner will 

determine the rate at which new therapies can be delivered to patients. Investigations using 

an immortalized cell line (FRT) contributed to the FDA-approval process for Ivacaftor 

[10,21] and Orkambi™ (combination of Ivacaftor with the corrector Lumacaftor) [22], and 

have been useful for interpreting variant phenotypes studied thus far [23].

In vitro systems can be utilized to identify additional variants that respond well to Ivacaftor 

alone or with Lumacaftor. For example, p.P67L is a rare variant for which clinical trials are 

less likely to occur, since there are ~240 patients worldwide [www.cftr2.org] who carry this 

defect. Notably, studies conducted in FRT cells have shown p.P67L responds robustly to 

both compounds, reaching nearly wild-type levels of CFTR activity [24], suggesting that 

patients would benefit from these drugs. Conversely, the p.N1303K variant is 8 times more 

common (reported in over 2,000 individuals), but it is unresponsive to VX-770 or VX-809 in 

FRT cells [23] and primary airway epithelia [25]. Although sufficient numbers of patients 
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may be available for a robust clinical study, preclinical evidence strongly suggests against 

clinical improvement in this setting.

Of the missense variants reported to CFTR2 still requiring clinical classification, more than 

500 have been noted in 10 individuals or fewer worldwide (personal communication, Karen 

S. Raraigh, Johns Hopkins). The rarity of these patients precludes routine collection of 

primary cells for functional and drug studies. Thus, in vitro studies are expected to be 

primary generators of preliminary data for classification and analysis of the variants. 

Development of cell-based systems that more closely approximate primary human airway 

cells provides an opportunity to study rare CFTR defects and their response to FDA-

approved compounds in a near-native context [26]. Novel strategies must also be employed 

to perform clinical efficacy trials in individuals with ultra-rare variants, and “N-of-1” or “N-

of-a-few” are among methods currently under consideration [27].

In vitro experiments, in silico predictions, and pre-clinical testing are distinct branches of 

research employed for characterizing individual variants and predicting response to 

pharmacological agents. As CFTR missense variants under study are increasingly rare and 

functionally complex, strengthening the quality and quantity of evidence generated by these 

strategies will be paramount.

RECENT ADVANCES IN MODEL SYSTEMS

Characterization of disease-associated CFTR variants, including assessment of therapeutic 

responsiveness, has been performed in cell-based models for decades. Many immortalized 

mammalian cell lines have proven essential for distinguishing specific features of CFTR 

biogenesis, as well as mechanisms invoked by investigational compounds [10,28]. Recently, 

primary human nasal or bronchial epithelia [25,29] and induced pluripotent stem cells 

[30,31,32] have emerged as strong predictive tools. Organoids generated from patients 

represent another topical area of progress with the potential to predict individual response to 

a therapeutic strategy (i.e. precision medicine), but the validity of this postulate remains to 

be determined [33,34]. Additionally, six animal models expressing a variety of CFTR 
variants are now available (e.g. zebrafish, mouse, rat, rabbit, ferret, pig), although each has 

limitations regarding ease of use or degree to which human disease is recapitulated [35,36]. 

Finally, yeast phenomic screening has emerged as a means for discovery of gene-gene 

interaction networks and other features of CFTR class II and III variants [37,38,39], 

including identification and targeting of novel CFTR modulators in patient-derived epithelia 

[40].

FUTURE DIRECTIONS RELEVANT TO CF THERAPEUTICS

Based on the success of Ivacaftor, pharmaceutical companies have begun developing other 

small molecules that partially restore CFTR function, the most advanced of which are 

second generation correctors that improve intracellular processing and cell surface activity 

of class II variants (P Grootenhuis et al, abstract 188, 30th North American Cystic Fibrosis 

Conference, Orlanda FL, October 2016), i.e. to levels above those achieved by the 

combination of Ivacaftor and Lumacaftor. There are at least 20 clinical trials underway that 
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utilize such pharmacological interventions, with examples of phase II and III studies 

currently under enrollment shown in Fig. 2 [www.clinicaltrials.gov].

The overarching goal of translational CF science is to develop therapeutic strategies that will 

benefit all individuals with CF, irrespective of genotype. Basic and clinical investigations are 

in progress to explore feasibility of innovative genetic and genomic medicine technologies, 

including transfer of nucleic acids by airway stem/progenitor cells [41,42], zinc finger 

nuclease-or CRISPR/Cas9-edited human pluripotent stem cells [30,31,32], and nanoparticles 

[43,44,45], as well as protein replacement via mRNA transfer [46]. Recently, enhanced 

adenoviral and lentiviral vectors were used to show functional CFTR gene delivery to 

airways of the CF porcine model [47,48], and the first lentivirus-based clinical trial is 

scheduled for 2017 [49].

CONCLUSIONS

Therapeutic benefit for individuals with CF harboring missense variants can be achieved by 

improving function of existing, partially-processed CFTR protein. As such, missense alleles 

represent “low hanging fruit” for small molecule intervention. Variants that result in 

complete loss of CFTR protein share a potential therapeutic mechanism, in that they require 

insertion and expression of an entirely new or repaired CFTR allele. This is no small task, as 

gene transfer therapy has been in development for CF and other monogenic diseases since 

the 1990s. While the medical genetics community awaits technological progress to allow for 

sufficient CFTR gene delivery, effective therapy for most individuals with CF carrying 

missense variants is expected much sooner.
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HIGHLIGHTS

• CFTR missense alleles exhibit diverse mechanisms of dysfunction.

• Compounds targeting specific classes of CFTR defects have been variably 

successful.

• Methods and models utilized for studying CFTR variants are continually 

improving.

• Characterizing each CFTR variant will facilitate approaches to precision 

medicine.

• Genetic tools under development may lead to future treatments for all forms 

of CF.
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Figure 1. Classification scheme and cellular localization of CFTR variants
Class I and V defects result in diminished protein production, whereas class II and VI yield 

reduced stability of CFTR. In addition, class III and IV variants inhibit channel function or 

activity of cell surface associated CFTR. Molecular-based therapeutic strategies target each 

of these categories and include the following: (1) ‘synthesizers’, which rescue CFTR protein 

production (e.g. suppression of premature truncation codons, or PTCs), (2) ‘correctors’, 

which augment maturation and decelerate turnover of CFTR (e.g. VX-809, VX-661, 

VX-152, VX-440, CTP-656, Miglustat, Riociguat), and (3) ‘potentiators’, which increase 

open channel probability and/or gating potential of apically localized CFTR (e.g. VX-770).
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Figure 2. Current and upcoming CFTR modulator clinical trials
Examples of phase II or III clinical trials under enrollment in the United States and Europe 

are listed (see also www.clinicaltrials.gov). Various strategies outlined above intend to test 

safety, tolerability, and efficacy of CFTR modulators administered as monotherapy (e.g. 

Miglustat), combination therapy with two agents (e.g. VX-661 + VX-770), or combination 

therapy with three agents (e.g. VX-152 + VX-661 + VX-770). In the majority of cases, 
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eligible patients must be homozygous or heterozygous for the most prevalent CFTR variant, 

F508del, or carry a gating or partial function defect.
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