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Abstract

Background—Maternal inflammation during pregnancy increases risk for offspring psychiatric 

disorders and other adverse long-term health outcomes. The influence of inflammation on the 

developing fetal brain is hypothesized as one potential mechanism, but has not been examined in 

humans.

Correspondence to: Alice M. Graham.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Financial Disclosures
Dr. Graham reported no biomedical financial interests or potential conflicts of interest.
Dr. Rasmussen reported no biomedical financial interests or potential conflicts of interest.
Mr. Rudolph reported no biomedical financial interests or potential conflicts of interest.
Dr. Heim reported no biomedical financial interests or potential conflicts of interest.
Dr. Gilmore reported no biomedical financial interests or potential conflicts of interest.
Dr. Styner reported no biomedical financial interests or potential conflicts of interest.
Dr. Potkin reported no biomedical financial interests or potential conflicts of interest.
Dr. Entringer reported no biomedical financial interests or potential conflicts of interest.
Dr. Wadhwa reported no biomedical financial interests or potential conflicts of interest.
Dr. Fair reported no biomedical financial interests or potential conflicts of interest.
Dr. Buss reported no biomedical financial interests or potential conflicts of interest.

HHS Public Access
Author manuscript
Biol Psychiatry. Author manuscript; available in PMC 2019 January 15.

Published in final edited form as:
Biol Psychiatry. 2018 January 15; 83(2): 109–119. doi:10.1016/j.biopsych.2017.05.027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods—Participants were N=86 adult women recruited in early pregnancy, and their infants 

born after 34-weeks gestation. A biological indicator of maternal inflammation (interleukin-6 

[IL-6]), which has been shown to influence fetal brain development in animal models, was 

quantified serially in early, mid and late pregnancy. Structural and functional brain MRI was 

acquired in neonates shortly after birth. Infants’ amygdalae were individually segmented for 

measures of volume and as seeds for resting state functional connectivity. At 24-months-of-age, 

children completed a snack delay task to assess impulse control.

Results—Higher average maternal IL-6 concentration during pregnancy was prospectively 

associated with larger right amygdala volume and stronger bilateral amygdala connectivity to brain 

regions involved in sensory processing and integration (fusiform, somatosensory cortex, 

thalamus), salience detection (anterior insula), and learning and memory (caudate and 

parahippocampal gyrus). Larger newborn right amygdala volume and stronger left amygdala 

connectivity were in turn associated with lower impulse control at 24-months-of-age, and 

mediated the association between higher maternal IL-6 concentrations and lower impulse control.

Conclusions—These findings provide new evidence in humans linking maternal inflammation 

during pregnancy with newborn brain and emerging behavioral phenotypes relevant for psychiatric 

disorders. A better understanding of intrauterine conditions that influence offspring disease 

susceptibility is warranted to inform targeted early intervention and prevention efforts.

Keywords

Inflammation; pregnancy; neonates; neuroimaging; amygdala; resting state functional connectivity 
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Introduction

Maternal inflammation during pregnancy appears to increase risk for offspring 

neuropsychiatric disorders and adverse physical health outcomes.(1–3) Strong 

epidemiological evidence identifies connections between common conditions associated 

with heightened inflammation during pregnancy, including infection,(4–15) high maternal 

body mass index (BMI)(16–18), maternal psychopathology(19), increased psychosocial 

stress,(20) and elevated risk for offspring developing schizophrenia, autism, attention-deficit 

hyperactivity disorder (ADHD)(21) and other neurological and psychiatric disorders(12). 

Thus, maternal inflammation during pregnancy is a strong candidate for mediating effects of 

diverse conditions on offspring neurodevelopment with implications for long-term health. 

However, to our knowledge, the influence of maternal inflammation during pregnancy on 

developing brain systems implicated in psychiatric disorders has not yet been examined in 

humans.

Animal models support a key role for cytokines, inflammatory signaling proteins, as sensors, 
transducers, and effectors of environmental conditions on the developing embryonic and 

fetal brain. Maternal pro-inflammatory cytokine levels are elevated across a range of diverse 

high-risk conditions (sensors),(20, 22, 23) with accompanying increases in pro-

inflammatory cytokines in placental tissue, amniotic fluid and the fetal brain (transducers).

(24–27) Cytokines are also expressed in the fetal brain as part of typical neurodevelopmental 
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processes,(28) and facilitate cellular survival, proliferation and differentiation, axonal 

growth and synaptogenesis.(29–32) Elevated cytokine levels in the fetal brain (such as in 

response to maternal inflammation) trigger alterations in these aspects of 

neurodevelopment(33–35) (effectors). Interleukin-6 (IL-6), a pro-inflammatory cytokine,

(36) exemplifies this tripartite role. Heightened IL-6 concentrations are evident across 

various maternal gestational conditions (e.g., obesity, psychosocial stress, depression and 

infection) that, in turn, have been shown to increase susceptibility for psychiatric disorders 

in offspring.(15, 20, 37, 38) Administration of IL-6 to pregnant dams mimics effects of 

maternal immune activation on upregulation of genes implicated in autism and 

schizophrenia in fetal brain tissue.(39) Moreover, effects of maternal immune activation on 

inflammation and gene expression in the fetal brain, and subsequent behavioral deficits, are 

eliminated by blocking IL-6 in the pregnant dam(40), or the placenta(41). Thus, examination 

of maternal IL-6 in relation to human fetal brain development represents an important step 

towards elucidating pathways by which maternal inflammation during pregnancy influences 

offspring risk for psychiatric disorders.

The present study seeks to advance understanding in this area by examining associations 

between systemic maternal IL-6 concentrations during pregnancy, newborn amygdala 

volume and functional connectivity, and emerging behavioral phenotypes at 24-months-of-

age. The amygdala is of specific interest due to the relevance for offspring phenotypes 

associated with heightened maternal inflammation during pregnancy in animal models, 

including social deficits, increased emotional and stress reactivity (26, 42–44), heightened 

aggression (45), and decreased appetitive control(46, 47). Moreover, psychiatric disorders 

linked to maternal inflammation during pregnancy (e.g. schizophrenia, autism and ADHD) 

are also characterized by social deficits, and difficulty regulating emotions and behaviors.

(15, 48–50) Alterations in amygdala integrity identified at the onset of these disorders 

suggest a potential causal role in pathogenesis(51, 52). Lastly, evidence that maternal 

inflammation during pregnancy enhances risk for psychiatric disorders by sensitizing 

offspring to adverse postnatal events (e.g. "a second hit"(15, 53)), further implicates stress 

sensitive brain regions, such as the amygdala.

The capacity to control impulses in service of working towards a goal, also referred to as 

inhibitory or effortful control, is foundational for regulating emotions and behaviors.(54–56) 

Impulse control can already be measured reliably during toddlerhood,(57, 58) and predicts 

subsequent behavioral, emotional and health outcomes during childhood(57, 59–61), 

adolescence(62) and adulthood(63). Difficulty regulating emotions and behaviors is a 

common feature across psychiatric disorders linked to maternal inflammation during 

pregnancy. We therefore examine impulse control at 24-months-of-age as an early emerging 

indicator of the balance between children’s reactivity/impulsivity and regulatory capacity.

(64) We test whether aspects of newborn amygdala phenotypes linked to maternal IL-6 

concentrations during pregnancy also relate to children’s impulse control, to examine the 

relevance of alterations in the newborn amygdala for subsequent behavior. Further, we test 

whether maternal IL-6 concentrations during pregnancy relate to children’s impulse control 

via alterations in the newborn amygdala (statistical mediation).
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Methods and Materials

Participants

Mothers and children (N=86 with newborn structural MRI and N=70 with functional MRI 

data) were part of an ongoing, longitudinal study, conducted at the University of California, 

Irvine, for which mothers were recruited during the first trimester of pregnancy. 

Exclusionary criteria were as follows: maternal use of psychotropic medications or systemic 

corticosteroids during pregnancy; infant birth before 34 weeks gestation; and infant 

congenital, genetic, or neurologic disorder. Demographic characteristics are presented in 

Table 1 (N=86). A very small portion of mothers reported a mental health diagnosis at study 

entry (N=2). Behavioral data at 24-months-of-age (M=24.65 months, SD=.757) was 

available for a subset of children (N=52 with structural MRI and N=45 with functional MRI 

data). There were no significant differences in demographics for the full sample versus the 

sample with functional MRI data (N=70), or behavioral data. All procedures were approved 

by the Institutional Review Board at the University of California, Irvine, and written 

informed consent was obtained from all mothers.

Maternal Interleukin 6 (IL-6) concentrations

Maternal antecubital venous blood samples were collected in serum tubes in early, mid and 

late pregnancy (see Table 2). Serum IL-6 concentrations were determined using a 

commercial high sensitivity ELISA (eBioscience). See Supplementary Material for details. 

IL-6 concentrations (reported in Table 2) were significantly correlated across trimesters 

(r’s=0.55 to 0.68, p < .001), and were therefore averaged to form a composite of maternal 

IL-6 during pregnancy. The composite was base 2 logarithm transformed to bring outliers 

closer to the mean and normalize the distribution.

MRI and fMRI Data Acquisition and Processing

Data acquisition—Neuroimaging data was collected at approximately 4 weeks-of-age 

(M=3.79, SD=1.84) during natural sleep on a TIM Trio, Siemens 3.0T scanner. High 

resolution T2- (TR=3200ms, echo time=255ms, resolution=1×1×1mm, 4.18 mins) and T1-

weighted scans (MP-RAGE TR=2400ms, inversion time=1200ms, echo time=3.16ms, flip 

angle=8°, resolution=1×1×1mm, 6.18 mins) were collected. Images for resting state 

functional connectivity MRI (rs-fcMRI) were obtained using a gradient-echo, echoplanar 

imaging (EPI) sequence sensitive to blood oxygen level-dependent (BOLD) contrast 

(TR=2000ms; TE=30ms; FOV=220×220×160mm; flip angle=77°).

MRI and fMRI data preprocessing—Processing followed established procedures for 

neuroimaging with neonates as described in our previous work(65) and detailed in the 

Supplementary Materials. Briefly, brain images were separated from the rest of the head 

tissue, and functional images were preprocessed to reduce artifacts.(66) Atlas transformation 

involved calculation of a single matrix to facilitate registration to a standard infant template 

(0- to 2-month age range; MRI Study of Normal Brain Development)(67, 68), and to the 

Talairach coordinate system(69) (by aligning the infant template to a custom atlas-

transformed(70) target template [711-2B] using a series of affine transforms).(71)
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rs-fcMRI preprocessing—Additional preprocessing steps for rs-fcMRI were conducted 

to account for signal stemming from non-neuronal processes.(72, 73) These steps followed 

established procedures(73–75) including, temporal low-pass filtering (0 f < 0.1 Hz), 

regression of rigid body head motion parameters in 6 directions, regression of whole brain 

signal, regression of average ventricular signal, regression of white matter signal, and 

regression of first order derivative terms for the whole brain, ventricular, and white matter 

signals.(73–75) Volume censoring was employed to reduce effects of motion determined by 

framewise displacement (FD)(76) of .3mm. Remaining mean FD was subsequently 

examined as a potential confound (see Supplementary Materials).

Amygdala regions of interest—Amygdalae were individually segmented using a multi-

modality, multi-template based automatic method combining T1 and T2 weighted high-

resolution images,(77) followed by manual correction in ITK-Snap(78) (see Supplementary 

Materials). Mean volumes were 279.95mm3 (SD=31.59) and 270.55mm3 (SD=31.07) for 

right and left amygdala respectively. For rs-fcMRI analyses, amygdalae were transformed to 

atlas space based on the atlas transform previously computed. For volumetric analyses, 

amygdalae volumes were adjusted for intracranial volume (ICV) to account for differences 

in overall brain size.

Potential Confounds Relevant for Maternal IL-6 and Newborn Brain Outcomes

Potential confounds relevant to maternal inflammation and neurodevelopmental outcomes 

were examined to determine whether any identified associations between maternal IL-6 and 

the newborn amygdala could be better explained by other aspects of the prenatal 

environment. These included maternal pre-pregnancy body mass index (BMI), maternal 

cigarette smoking during pregnancy, obstetric (OB) risk, annual household income, and 

infant sex (see Supplementary Materials).

Impulse Control at 24-months-of-age

Impulse control was measured with the snack delay task.(79, 80) Children were instructed to 

wait until an experimenter rang a bell before eating a desired snack placed on the table in 

front of them. Four trials were conducted with each trial involving a longer wait time (10, 

15, 20 and 30 seconds). Scoring was consistent with the procedure established by Kochanska 

and colleagues,(79, 80) with higher scores indicative of waiting longer to reach for or eat the 

snack (i.e. better impulse control; see Supplementary Materials).

Attachment as an Indicator of the Postnatal Caregiving Environment

In examining the newborn amygdala in relation to impulse control at 24-months-of-age, it is 

important to consider the postnatal caregiving environment, which has been shown to 

influence development of regulatory skills(81–83). Children’s attachment security with their 

primary caregiver is indicative of the quality of caregiving, and the child’s capacity to use 

their caregiver to effectively regulate emotions and explore the environment.(84) Attachment 

was assessed with the well-established Strange Situation Paradigm (SSP)(84, 85) when 

children were 12-months-of-age. SSP administration and coding followed established 

procedures(85, 86) detailed in the Supplementary Materials. Analyses focused on a 
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dichotomous variable indicating secure (51.9%) versus insecure attachment classification 

(48,1%).

Analyses

Left and right amygdalae were examined separately due to evidence for lateralized effects of 

prenatal influences(87) and asymmetry in relation to psychiatric outcomes.(88) Mean 

maternal IL-6served as the independent variable, infant gestational age at birth (GA) and age 

at scan as covariates, and either amygdala volume or whole-brain voxel-wise connectivity as 

the dependent variable in regression models. For the rs-fcMRI analyses, multiple 

comparisons correction for p<0.05 voxel clusters required a threshold of 53 contiguous 

voxels with a Z-value> 2.25 based on Monte Carlo simulation(89)(see Supplementary 

Materials). Post-hoc analyses included mean maternal IL-6, infant GA at birth, age at scan, 

sex, mean remaining FD (for functional connectivity only), and all potential confounds 

entered together in the first step of a multiple regression model with the newborn amygdala 

phenotype as the dependent variable (see Supplementary Materials for further details). In the 

second step of the model, the moderating effect of infant sex was tested(90).

Newborn amygdala phenotypes which remained significantly associated with maternal IL-6 

after considering potential confounds, were examined in relation to impulse control. For 

functional connectivity, we only examined the strongest right and left amygdala connection 

associated with maternal IL-6 (based on Z-value) to reduce the number of statistical tests. 

We included a covariate for attachment status, and tested for interactive effects between the 

newborn amygdala phenotypes and attachment in predicting impulse control. A structural 

equation modeling framework was used to test for mediation by examining the indirect path 

from maternal IL-6 to impulse control via the newborn amygdala phenotype (see 

Supplementary Materials for details).

Results

Amygdala Volume

After adjusting for GA and scan age, higher mean maternal IL-6 was significantly associated 

with larger right amygdala volume (β=.245, p=.016; R2 change=.06; Figure 1). Mean 

maternal IL-6 was not significantly associated with left amygdala volume (β=−.023, p=.

831).

Amygdala Connectivity

Mean maternal IL-6 concentrations were significantly associated with newborn amygdala 

connectivity, with different connectivity patterns evident for the left and right amygdala. For 

the right amygdala, higher IL-6 was associated with stronger positive connectivity to right 

anterior insula (aI), fusiform gyrus/inferior temporal gyrus (ITG), caudate and thalamus. 

Higher mean IL-6 was additionally associated with stronger right amygdala connectivity to 

the left brainstem, and weaker connectivity to left superior occipital gyrus. For the left 

amygdala, higher mean IL-6 was associated with stronger connectivity to the right fusiform/

ITG, parietal/somatosensory cortex, and parahippocampal gyrus (PHG), and weaker 

connectivity to a region encompassing ITG and ventral temporal cortex (Table 3, Figure 2).

Graham et al. Page 6

Biol Psychiatry. Author manuscript; available in PMC 2019 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Post-hoc Analyses of Potential Confounds for Maternal IL-6 Concentrations and Newborn 
Amygdala Associations

Amygdala Volume—The association between mean IL-6 and right amygdala volume 

remained significant (β=.273, p=.015) after adjusting for all of the potential confounds in the 

same model, and was not moderated by infant sex (See Supplementary Table 1). Variation in 

maternal IL-6 concentrations continued to explain approximately 6% of the variance in right 

amygdala volume (R2 change=.059).

Amygdala Connectivity—For all the identified amygdala connections, the effect of IL-6 

remained significant (p < .05) after adjusting for the potential confounds with the exception 

of right amygdala-fusiform gyrus/ITG connectivity. For this connection, the effect of IL-6 

became a trend (β=.208, p=.063), and higher pre-pregnancy BMI significantly predicted 

stronger connectivity (β=.432, p=.000). The associations between IL-6 and the right and left 

amygdala connections were not moderated by infant sex (See Supplementary Table 1).

Relevance of Amygdala Phenotypes for Impulse Control at 24-months-of-age

Amygdala Volume—Larger newborn right amygdala volume was associated with lower 

impulse control at 24 months age (β= −.261, p=.036) in the model including covariates for 

GA at birth (β=.165, p=.217), age at scan (β=.053, p=.709) and attachment security (β=.176, 

p=.228). The associated between right amygdala volume and impulse control was not 

moderated by attachment security (β=.157, p = .426). Adding maternal IL-6 concentrations 

to the model revealed no direct association with impulse control (β=.083, p=.569). However, 

larger newborn right amygdala volume mediated an association between higher maternal 

IL-6, and lower impulse control (indirect effect= −.148 ; 95% CI: −.345, −.005; based on 

5,000 bootstrap samples). Thus, higher systemic maternal IL-6 levels during pregnancy were 

associated with lower impulse control in children, via larger newborn right amygdala 

volume.

Amygdala Connectivity—The strongest right amygdala functional connection associated 

with maternal IL-6, right amygdala-aI connectivity, was not significantly associated with 

impulse control either independently or in interaction with attachment security (p > .10). The 

strongest left amygdala connection associated with IL-6, left amygdala-fusiform gyrus 

connectivity, was significantly associated with impulse control (β= −.406, p=.001) in the 

model including covariates for GA at birth (β=.093, p=.472), age at scan (β=.016, p=.904) 

and attachment security (β=.334, p=.007). Thus stronger connectivity was associated with 

lower impulse control, while a secure attachment was independently associated with better 

impulse control in this model. There was no moderated effect of attachment security (β= −.

022, p = .909). Adding maternal IL-6 to the model again revealed no direct association with 

impulse control (β=.083, p=.569). However, stronger newborn left amygdala-fusiform 

connectivity mediated an association between higher maternal IL-6, and lower impulse 

control (indirect effect= −.245 ; 95% CI: −.490, −.069; based on 5,000 bootstrap samples). 

These analyses thus identified another pathway from higher maternal IL-6 to lower impulse 

control at 24-months-of-age via stronger newborn left amygdala-fusiform connectivity.
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Discussion

A growing body of research has established associations between a maternal inflammatory 

state during pregnancy and increased risk for offspring psychiatric disorders. To the best of 

our knowledge, this study provides the first evidence in humans linking a specific mediator 

of maternal inflammation, elevated maternal serum IL-6 concentrations, with the newborn 

brain. Examining the brain shortly after birth reduces potential confounding influences of 

the postnatal environment, thereby increasing capacity to differentiate pre- from postnatal 

influences on the developing brain. The findings of greater right amygdala volume and 

increased bilateral amygdala connectivity to regions involved in sensory processing and 

integration (fusiform, somatosensory cortex, thalamus), salience detection (insula), and 

learning and memory (caudate and PHG), have potential implications for offspring 

susceptibility for psychiatric disorders. Consistent with this interpretation, the newborn 

amygdala phenotypes mediated an association between higher maternal IL-6 during 

pregnancy and lower impulse control at 24 months-of-age, a behavioral phenotype 

repeatedly linked to difficulties regulating emotions and behaviors at later developmental 

stages.(57, 59–62) This provides support for a pathway from heightened maternal IL-6 

concentrations during pregnancy to an altered balance between offspring impulsivity and 

regulatory capacity through alterations in the developing amygdala.

Previous research shows that both heightened maternal cortisol during pregnancy(91), and 

high levels of stress in the early postnatal environment (92–94) are associated with increased 

amygdala volume in children. The current findings indicate an additional role for 

inflammation in shaping the developing amygdala. This is consistent with previous findings 

linking maternal inflammation during pregnancy with increased risk for offspring 

psychiatric disorders in humans,(12, 15, 53) and amplified stress reactivity and social 

deficits in animal models,(26, 42–44) phenotypes that larger amygdala volumes have been 

shown to underlie. Variation in maternal IL-6 during pregnancy explained approximately 6% 

of the variance in right amygdala volume. While this effect seems modest, it may be 

clinically meaningful, as suggested by the association with lower impulse control at 24-

months-of-age. A modest effect size at this early age is also in line with developmental 

trajectories of altered amygdala growth in relation to psychiatric disorders. For example, 

amygdala enlargement in relation to autism becomes more pronounced over early 

development with a 6% enlargement compared to typically developing controls noted at 3-

years-of-age(51, 95) and a 9–12% enlargement by 4-years-of-age.(51, 96)

Increased functional integration of the newborn amygdala with regions implicated in 

detecting and processing stimuli, determining personal relevance of stimuli, and engaging 

learning and memory systems was also observed in relation to higher maternal IL-6 

concentrations during pregnancy. The connections identified are of interest in the context of 

research in adults focused on stress responsivity and vulnerability to psychiatric disorders. 

The pattern of stronger amygdala-aI(97–99) and amygdala-caudate connectivity(100, 101) 

are in concordance with observations in adults after chronic and acute stress exposure. 

Increased strength of these connections has in turn been associated with higher perception of 

threat,(102) elevated anxiety,(103) and engagement of more rigid learning and memory 

strategies.(100, 101) Increased amygdala connectivity to brain regions involved in sensory 
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processing and integration is of interest in light of deficits in early (pre-attentive) filtering of 

sensory stimuli in psychiatric disorders linked to maternal inflammation during pregnancy.

(15) Such filtering deficits involve a network of regions including the amygdala and 

thalamus.(104, 105) Interestingly, amygdala-fusiform gyrus connectivity has been 

specifically implicated in the core and early emerging face processing deficits in autism.

(106–109)

Larger newborn amygdala volume and increased connectivity were prospectively associated 

with lower impulse control at 2-years-of-age after accounting for variation in the infant-

caregiver relationship. Amygdala activity, functional connectivity and morphology has 

previously been associated with impulse control difficulties, including risk for substance use 

disorders(110–112) and ADHD(113–117) in human adults. These associations are likely 

related to the role of the amygdala in processing salient stimuli(118–120) and anticipating 

rewards(121, 122). The specific association between stronger newborn amygdala-fusiform 

gyrus connectivity and lower impulse control may relate to the role of the amygdala in 

modulating visual processing based on salience and emotional properties of stimuli(123–

126). For example, enhanced amygdala and fusiform gyrus activity has been observed 

during visual presentation of highly salient or craved stimuli in adults(127). From a 

developmental perspective, the visual system, and specifically attentional control of vision, 

is foundational in developing cognition and emotion regulation(128, 129). It is therefore not 

surprising that coordinated functioning of the amygdala to an extrastriate visual region 

would be associated with emerging capacity to regulate response to a desired stimulus.

Whether directly mediated via placental transfer into the fetal compartment(130) or indirect 

effects mediated by placental inflammation,(39, 131) elevated maternal IL-6 concentrations 

can trigger inflammatory processes in the fetal brain, including, increased expression of IL-6 

and other cytokines.(41, 132, 133) These cytokines in the fetal brain activate Janus Kinases 

(JAKs) and associated signal transducers and activators of transcription (STAT).(134, 135) 

Activation of the JAK/STAT pathway regulates the transition from neurogenesis to 

gliogenesis.(136) Stimulation or inhibition of this pathway can lead to earlier or delayed 

onset of gliogenesis(136) and processes guided by glial cells, including neuronal migration, 

axon growth, synapse formation,(137, 138) and myelination.(139) IL-6 and other 

proinflammatory cytokines also influence developing neurotransmitter systems relevant to 

amygdala development, including effects on decreased survival of fetal serotonin neurons in 

the rostral raphe,(34) and increased expression of GABA receptors in the amygdala.(140) 

These effects of cytokines on developing neurons, glia and neurotransmitter systems suggest 

multiple potential mechanisms through which maternal inflammation during pregnancy can 

alter fetal amygdala anatomy and coordinated functioning with implications for ongoing 

behavioral and neurological development.

The findings indicate potential hemispheric differences in vulnerability to intrauterine 

inflammation. Regarding anatomy, vulnerability seemed to be greatest for the right 

amygdala, while the functional connectivity results suggest bilateral consequences of 

intrauterine inflammation, with distinct alterations for the left versus right amygdala. 

Previous work showed that elevated maternal cortisol concentrations during pregnancy were 

specifically associated with right amygdala volume.(91) Findings of larger amygdala volume 
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in association with autism at early developmental stages are also most consistent for the 

right amygdala.(51, 95, 141) With regard to connectivity, the findings for the right amygdala 

involved a slightly more extensive set of brain regions, including amygdala-aI connectivity. 

These lateralized findings are interesting in light of a potentially disproportionate role for the 

right amygdala in contributing to anxiety and processing negatively valenced stimuli,(142–

146) and for right amygdala-aI connectivity in vulnerability to stress-related disorders.(98)

Interestingly, while larger newborn right amygdala volume was associated with lower 

impulse control, right amygdala-aI connectivity was not associated with impulse control. 

This connection may be more relevant for normative and pathological variation in fear(64, 

120, 140). Although impulse control is relevant for fear and anxiety disorders, the 

associations are not straightforward.(148) The sample size of the current study makes it 

difficult to investigate interactive processes between emotionality and impulse control at 

present, but this is an important topic for future work to understand the implications of these 

newborn amygdala phenotypes for subsequent development. It should also be noted that our 

measure of impulse control does not distinguish motivation, reactivity and inhibitory control 

processes, but reflects an estimate of the balance between these components.(64) More 

nuanced investigation of these processes will also be important for advancing understanding 

of how the observed neural phenotypes relate to subsequent risk and protective factors.

Some additional limitations of the study warrant attention. First, while systemic IL-6 

represents an important marker of inflammation, we do not attribute the observed effects to 

the influence of IL-6 alone. Future research would benefit from consideration of different 

markers of inflammation, and identification of the triggers for heightened maternal 

inflammation(20, 22, 149). It will also be important to consider higher risk groups, such as 

mothers with psychiatric diagnoses, who may show distinct profiles of inflammation during 

pregnancy. We also note that while we considered a range of potential confounds, these 

variables are only considered in relation to newborn amygdala phenotypes associated with 

maternal IL-6, and are therefore not unbiased tests of the influence of these other variables 

on the newborn amygdala. This study therefore does not address the more general question 

of how these other aspects of the prenatal environment relate to the newborn amygdala. 

Finally, the present study focused on the amygdala as a starting point due to the behavioral 

phenotypes associated with maternal inflammation during pregnancy. However, given the 

ubiquitous role of cytokines in fetal brain development, identifying associations between 

maternal inflammation and multiple brain systems represents an important target of future 

research.

Despite the limitations, these results provide the first evidence to date in humans for an 

association between intrauterine inflammation, fetal brain development and emerging 

behavior. From a risk perspective, we have considered the extent to which similar amygdala 

phenotypes have been observed in psychiatric disorders. Consistent with this perspective, we 

have shown that these amygdala phenotypes are associated with lower impulse control, 

which has been linked to elevated risk for behavioral and emotional problems during 

childhood. This perspective includes a role for the postnatal environment because the 

connection between maternal inflammation and offspring psychiatric disorders is not 

deterministic,(15) and likely involves increased vulnerability to postnatal stress ("a second 
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hit").(15, 53) An adaptive, evolutionary perspective further suggests potential survival 

advantages of the observed brain phenotypes.(150) Specifically, if heightened maternal 

inflammation during pregnancy signals a more adverse, or dangerous environment, 

heightened vigilance and reactivity conferred by alterations in the amygdala could be 

adaptive depending on the match between the pre- and postnatal environment.(150–152) The 

current findings provide a foundation for ongoing investigation in this area by advancing 

understanding of the role of maternal inflammation in influencing newborn amygdala 

phenotypes and subsequent behavior.
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Figure 1. 
Higher maternal IL-6 concentrations during pregnancy are associated with greater newborn 

right amygdala volume.
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Figure 2. 
Maternal IL-6 concentrations during pregnancy are associated with newborn amygdala 

functional connectivity.

Note. Mean maternal IL-6 concentrations during pregnancy are prospectively associated 

with stronger newborn right (Panel A) and left (Panel B) amygdala connectivity to several 

cortical brain regions including fusiform gyrus. Panel C shows the associations between 

higher maternal IL-6 concentrations and stronger newborn right amygdala connectivity to 

anterior insula (aI), thalamus and caudate. Panel D illustrates the association between higher 

maternal IL-6 concentrations and newborn right amygdala-aI connectivity (identified in the 

voxel-wise analyses and displayed on the brain in Panels A and C).
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Table 1

Sample demographics

Mean (SD)

Maternal Age in 1st Trimester (years) 28.2 (5.48)

Infant Age (weeks)

  Gestational Age at Birth 39.2 (1.47)

  Age at MRI Data Collection 3.79 (1.84)

Percentage

Infant Sex

  Male 59.3

  Female 40.7

Race/Ethnicity

  Caucasian non-Hispanic 37.5

  African American non-Hispanic 2.50

  Asian non-Hispanic 7.50

  Multi-racial non-Hispanic 8.75

  Caucasian Hispanic 35.0

  Asian Hispanic 1.25

  Multi-racial Hispanic 7.50

Highest Level of Maternal Education

  High-School or Test Equivalent 22.1

  Vocational School or Some

College 41.9

  Associates Degree 4.65

  Bachelors or Graduate Level

Degree 31.4

Gross Annual Household Income

  < $15,000 9.75

  $15,000 – 29,999 22.0

  $30,000 – 49,999 24.4

  $50,000 – 100,000 36.6

  > $100,000 7.32
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Table 2

Mean and standard deviation of maternal IL-6 concentrations and gestational age at collection

1st Trimester 2nd Trimester 3rd Trimester

Gestational Age 12.7 (1.71) 20.5 (1.39) 30.4 (1.33)

IL-6 Concentration (pg/ml) 0.79 (0.73) 0.98 (1.06) 1.23 (1.36)
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