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Abstract

Introduction—AKR1C3 is a drug target in hormonal and hormonal independent malignancies 

and acts as a major peripheral 17β-hydroxysteroid dehydrogenase to yield the potent androgens 

testosterone and dihydrotestosterone, and as a prostaglandin (PG) F synthase to produce 

proliferative ligands for the PG FP receptor. AKR1C3 inhibitors may have distinct advantages over 

existing therapeutics for the treatment of castration resistant prostate cancer, breast cancer and 

acute myeloid leukemia.

Area covered—This article reviews the patent literature on AKR1C3 inhibitors using SciFinder 

which identified inhibitors in the following chemical classes: N-phenylsulfonylindoles, N-

(benzimidazoylylcarbonyl)-N-(indoylylcarbonyl)- and N-(pyridinepyrrolyl)- piperidines, N-

benzimidazoles and N-benzindoles, repurposed nonsteroidal antiinflammatory drugs (indole acetic 

acids, N-phenylanthranilates and aryl propionic acids), isoquinolines, and nitrogen and sulfur 

substituted estrenes. The article evaluates inhibitor AKR potency, specificity, efficacy in cell-based 

and xenograft models and clinical utility. The advantage of bifunctional compounds that either 

competitively inhibit AKR1C3 and block its androgen receptor (AR) coactivator function or act as 

AKR1C3 inhibitors and direct acting AR antagonists are discussed.

Expert opinion—A large number of potent and selective inhibitors of AKR1C3 have been 

described however, preclinical optimization, is required before their benefit in human disease can 

be assessed.
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1. Introduction

Aldo-keto reductase (AKR) 1C3 (type 5 17β-hydroxysteroid dehydrogenase; prostaglandin 

[PG] F2α synthase; and dihydrodiol dehydrogenase X) belongs to the AKR superfamily of 

proteins [1–4]. AKR1C3 is a drug target due to its involvement in intratumoral androgen 

biosynthesis in prostate and breast cancer. In breast cancer, AKR1C3 is a principal source of 

testosterone (T), the substrate for aromatase. The ability of AKR1C3 to regulate ligand 

access to the androgen receptor (AR) and estrogen receptor (ER) in a tumor-specific fashion 

makes it a superior drug target than either AR or ER antagonists [5–8]. By acting as a 

PGF2α synthase [9,10], it also deprives peroxisome proliferator activating receptor 

γ(PPARγ) of its putative ligand Δ15-PGJ2 and generates ligands for the PG FP receptor to 

stimulate the mitogen activated protein kinase cascade to promote cell proliferation [11,12]. 

AKR1C3 inhibitors thus offer promise for the treatment of hormonal and hormonal-

independent malignancies [11,12].

AKR1C3 inhibitors have been used in clinical trials of castration-resistant prostate cancer 

(CPRC) [13] and acute myeloid leukemia (AML) [14]. CRPC is the fatal form of prostate 

cancer. This disease remains androgen dependent despite castrate levels of circulating T. 

Androgen dependency remains since the tumor undergoes adaptive responses to sustain AR 

signaling. One mechanism involves adaptive intratumoral androgen biosynthesis and a 

second mechanism involves changes in the AR itself [15,16]. Intratumoral androgen 

biosynthesis is targeted by P45017A1 (17α-hydroxylase/17,20-lyase) inhibitors to prevent 

the conversion of pregnenolone to dehydroepiandrosterone (DHEA) in the adrenal and hence 

deprive the tumor of its source of androgens. Abiraterone acetate (Abi) 1 is the P45017A1 

inhibitor in clinical use and is approved by the US FDA [17–19]. The second mechanism, 

involving AR, is targeted with the super AR antagonist enzalutamide (ENZ) 2 [20]. To 

surmount the CNS side effects seen with this drug, a second-generation compound AN-509 

(Apalutamide) 3 has been developed (Figure 1) [21]. These antagonists not only bind to the 

AR but prevent its nuclear translocation and binding to chromatin. Both Abi and ENZ 

increase median survival time in CRPC patients by only 3–4 months before drug resistance 

occurs [17–19,22,23]. Thus, a critical clinical unmet need is for better agents. While 

multiple mechanisms can contribute to drug resistance, both Abi and ENZ resistance can be 

surmounted in xenograft models using the AKR1C3 inhibitor indomethacin [24,25] first 

identified by Byrns et al. [26].

AKR1C3 is overexpressed in prostate cancer as part of the adaptive response to androgen 

deprivation therapy (ADT). AKR1C3 is overexpressed in cell lines deprived of androgens 

[27,28], in prostate cancer xenografts in castrate mice [24,25,28] and in CRPC patients [29–

31]. AKR1C3 is involved in all pathways to T and 5α-dihydrotestosterone (DHT) in the 

prostate due its 17-ketosteroid reductase activity; it reduces 4-androstene-3,17-dione to T 

(by the canonical pathway) [32]; it reduces 5α-andros-tane-3,17-dione to DHT (by the 

alternative pathway) [33]; it reduces androsterone to 5α-androstane-3α,17β-diol (3α-diol) 

which is then oxidized by 17BHSD6 to DHT (by the backdoor pathway) [34–36]; and it 

reduces DHEA to 5-androstene-3β,17β-diol which is converted by 3HSDB1 to T. AKR1C3 

inhibitors would block all pathways to T and DHT within the tumor and could surmount 

drug resistance to Abi and ENZ (Figure 2).
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AKR1C3 is also overexpressed in ductal carcinoma in situ of the breast [37]; its 

overexpression is correlated with the expression of ERα [38], and with breast cancer relapse 

[39]. By acting as a peripheral 17β-hydroxysteroid dehydrogenase that converts 4-

androstene-3,17-dione to T, AKR1C3 becomes a peripheral source of T so that aromatase 

can synthesize 17β-estradiol in the breast [6]. Thus, AKR1C3 inhibitors have a place in the 

treatment of ERα positive breast cancer and offer an advantage over aromatase inhibitors 

that would block estrogen biosynthesis systemically.

AKR1C3 inhibitors have been exploited in AML to alter PG signaling. In combination with 

PPARγ agonists, e.g. bezafibrate (BZF), the AKR1C3 inhibitor 6-medroxyprogesterone 

acetate (6MPA) 4 gave a superior response than was achieved by either agent alone [15]. In 

this treatment, BZF could stimulate PPARγ signaling and 6MPA would block the formation 

of PGs of the F series that would bind to the FP receptor (Figure 3). This is the first clinical 

example of the use of AKR1C3 inhibitors in a nonhormone-dependent malignancy.

The development of AKR1C3 inhibitors that are potent and selective is challenging since it 

is highly related to AKR1C1, AKR1C2, and AKR1C4 that share more than 86% sequence 

identity and their inhibition in the context of prostate cancer would be deleterious. For 

example, AKR1C1 converts DHT to 5α-androstane-3β,17β-diol (3β-diol) a proapoptotic 

ligand for ERβ and its inhibition should be avoided [40]. Similarly, AKR1C2 inactivates 

DHT by forming 3α-diol and its inhibition should be avoided [41,42]. By contrast, AKR1C4 

is liver specific and is required for the synthesis of bile-acids and its inhibition would lead to 

bile-acid deficiency [43]. Despite this challenge, both academic and industrial groups have 

filed patents on AKR1C3 inhibitors (Table 1).

2. Chemistry

Potent and selective AKR1C3 inhibitors that are based on non-steroidal, steroidal, and 

natural product scaffolds have been disclosed. Compounds reported but not claimed in 

patent applications include the N-benzoylanthranilates 5 [44], the 2,3-arylpropenic acids 6–9 
[45], and the natural products stylopne 10 (an isoquinoline alkaloid) [46] and 2′-

hydroxyflavone 11 [47]. Compound 5 was synthesized by coupling 3-hydroxybenzoate with 

4-bromoaniline and the 2,3-diarylpropenic acids were synthesized by a Perkin reaction 

between substituted benzal-dehydes and functionalized aryl acetic acids in base (Figure 1).

The synthesis of the lead agent SN33638 12, a potent and selective inhibitor of AKR1C3 

(IC50 = 13 nM), is based on an N-phenylsulfonyl-piperidine [48]. SN336381 is also related 

to the N-phenylsulfonyl indoles 13, developed by Astellas and claimed in patent 

W02007100066 (Table 1). Building on this lead, a series of N-(benzimidazolyl)-, N-

(indolyl)-, and N-(-pyridinelpyroylyl)-carbonyl piperidines 14–16 were claimed in 

JP201202018, W02010101127, and W02010101128, respectively, by Astellas. The N-

(indolyl)-carbonyl piperdines include ASP9521 15, which was taken through to a Phase 

1/11b clinical trial [14,49]. A related series of N-benzimidazole or N-indole benzoic acids 

17, 18 were claimed in W02009014150, WO2010087319 (Figure 4).
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A screen of existing drugs identified nonsteroidal antiinflammatory drugs (NSAIDs) as 

selective inhibitors of different AKR1C isoforms [26]. Compounds of interest include 

indomethacin 19 which was selective for AKR1C3; the N-phenylanthranilates (e.g. 

meclofenamic acid 23) were pan-AKR1C inhibitors; and aryl pro-pionic acids (e.g. 

naproxen 25) displayed equal AKR1C2 and AKR1C3 selectivity and potency. This led to the 

repurposing of these NSAIDs for AKR1C3 inhibition while eliminating inhibition of the 

COX-isoforms (PGH synthase I and II). Patent WO2012122208 was issued for N-

phenylaminobenzoates represented by 24 and patent WO2013059245 was issued for indo-

methacin analogs, represented by 20–22 [50,51]. This was subsequently followed by patent 

W02017070448 for β-naphthylacetic acids (R-naproxen analogs), 26 [52]. In each case, the 

NSAID analogs were subjected to medicinal chemistry optimization to remove structural 

features required for inhibition of COX-1 and COX-2 while inhibition of AKR1C3 was 

retained. Indomethacin gave rise to three classes of analogs: Class I analogs (retain the core 

structure of indomethacin, 20); Class II analogs (are des-methyl indomethacin compounds in 

which the 2′-methyl group has been removed, 21); and Class III analogs (are 3′-alkyl 

derivatives where the acetic acid side chain has been substituted with an alkyl group and the 

carboxylic acid side chain has been moved to the 2′-position 22 or the 3′ and 2′ positions 

are cyclized to yield a cyclic carboxylic acid or sulfonamide) [53,54].

Indomethacin analogs with conserved 5′-methoxy groups and p-chlorobenzoyl groups at the 

indole N1 position were synthesized by the method of Yamamoto [55,56]. The key reagent 

for the underlying Fischer indolization is 4-chloro-N-(4-methoxyphenyl)-benzohydrazide 

hydrochloride. Target compounds containing a 3′-propionic acid group or a 2′-des methyl-

group were readily obtained from the benzohydrazide hydrochloride by using either a slight 

excess of 5-oxohexanoic acid (here, R1 = Me, n = 2) or 4-oxobutanoic acid (R1 = H, n = 1) 

in acetic acid, respectively, to give, 20–21. Use of 4-oxohexanoic acid (R1 = Me, n = 1) 

quantitatively yielded the reverse 2′-pro-pionic acid/3′-alkyl indole derivative, 22 [57] 

(Figure 4). Following the issuance of patent WO2013059245 for these indomethacin 

analogs, a patent claiming the use of indomethacin for CRPC was filed, WO2015065919.

For the N-phenylaminobenzoates, simple coupling chemistry involving a Buchwald–

Hartwig C–N coupling reaction followed by saponification of the formed methyl ester 

produced an extensive library of compounds that are claimed in patent WO2012122208 and 

US 20140107085 [50,51]. Compounds in which the arrangement of the amine and 

carboxylic acid was changed from ortho-to meta- position followed by introduction of a 

para- electron withdrawing group on the B-ring gave compounds of mid-nanomolar potency 

and selectivity for AKR1C3 (Figure 4).

For the aryl propionic acids 25, β-naphthylacetic acids in which the stereochemistry at the 

alkyl substituent at the alpha carbon was changed from S- to R- were sufficient to abolish 

COX-1 and COX-2 inhibition but retain AKR1C3 inhibition; compounds such as 26 are 

disclosed in WO2017070448 (Figure 4) [52].

Bifunctional AKR1C3 nonsteroidal inhibitors have also been disclosed (Figure 4). 

Isoquinolines represented by the lead compound GTX-560 27 not only act as competitive 

inhibitors of AKR1C3 but also block its AR coactivator function which was previously 
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unknown [58]. The isoquinolines were claimed in patents WO2013142390 and 

WO2014039820A1 filed by GTx-Therapeutics. BMT4-15828, which is a N-

naphthylaminobenzoate, is covered by the patent on the N-phenylaminobenzoates and acts 

as a bifunctional AKR1C3 competitive inhibitor and direct acting AR antagonist [59].

Attempts have been made to develop steroidal-based inhibitors for AKR1C3 as it reduces 

17-ketosteroids. Extensive nitrogen and sulfur-substituted estrenes with the core structure 30 
have been claimed by Bayer in four patents WO201345407, WO2014009274, 

WO2014128108, and WO02016037956 (Figure 5). The key features of these steroids are the 

presence of either an amide, amine, or sulfone at the C3 position of the steroid coupled with 

the presence of either a nitrogen heterocycle or a trifluorosulfone at the C17 position.

Natural products such as baccharin analogs 29 (from the Brazilian propolis) have also be 

claimed as AKR1C3 inhibitors, and these derivatives contain a phenolic cinammic acid 

substituted with an isopropyl group and a phenylpropionic ester [60,61]. However, these 

compounds are likely to hydrolyze in vivo to the corresponding alcohol and acid.

3. Structure–activity relationships

Thirty-five crystal structures of AKR1C3·NADP+·inhibitor complexes exist in the PDB. 

Inspection of these structures shows that if the inhibitor contains a carboxylic acid, it can 

often form hydrogen bonds with the catalytic tetrad members Tyr55 and His117. Other 

portions of the inhibitor can occupy one of several subpockets (SP), e.g. SP1 Ser118, 

Asn167, Phe306, Phe311, and Tyr319 (e.g. occupied by the B-ring of N-

phenylaminobenzoates). The SP2 sub-pocket refers to Ser129, W227, and F311 (e.g. 

occupied by the side-chain of PGs), and the SP3 sub-pocket which contains Y24, E192, 

S217, S221, Q222, Y305, and F306 [62]. While the presence of these sub-pockets can be 

rationalized to determine binding mode and can be used as the basis of docking studies, 

some important caveats exist as illustrated by the binding of indomethacin. Two different 

binding poses for indomethacin exist in the AKR1C3·NADP+·indomethacin depending on 

pH. In the AKR1C3·NADP+·indomethacin complex at pH 6.0 (PDB ID 1S2A), where 

indomethacin is fully protonated, the carboxylate is anchored by Q222 and Y24 in SP3, the 

bridge carbonyl forms a hydrogen bond with Tyr55 through an intervening water molecule, 

and there is no occupancy of SP1. However, in the AKR1C3·NADP+·indomethacin complex 

at pH 7.5 (PDB ID 3UG8), where indomethacin is deprotonated, the drug rotates so that the 

carboxylic acid now forms a hydrogen bond with Tyr55, the SP1 pocket is now occupied by 

the p-chlorobenzoyl ring, and there is interaction between W227 with the methoxyindole in 

the SP2 pocket (Figure 6) [54]. These structures illustrate the difficulty in performing 

structure-based inhibitor design for AKR1C3.

4. Biology and action

Tiered screening has been conducted to support patent claims. Tier 1 screening includes in 
vitro inhibition assays on recombinant AKR1C3 to claim compounds with mid-nanomolar 

affinity. Counterscreens have been performed in many instances versus either AKR1C1 or 

AKR1C2, to claim compounds that are 40–500-fold selective for the target (see Table 1). 
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Many compounds have cleared this screen, but often only IC50 values are reported and the 

pattern of inhibition is not given. Since AKR1C3 catalyzes an ordered bi-bi mechanism, in 

the reduction direction, two inhibitor complexes can form e.g. E·NADPH·I (competitive 

complex) and E·NADP+·I (uncompetitive complex) [26]. Thus, depending on the mode of 

inhibition, the IC50 values may not be directly comparable.

Tier 2 screening for repurposed NSAIDs includes a subsequent counter screen against all the 

human AKRs, and a counter screen against COX-1 and COX-2. This level of screening was 

conducted for patents WO2012122208 and US 20140107085 and patents WO2013059245 

and US 20160303082. In other patents, specificity was assessed by demonstrating the 

inability of leads to inhibit HSD17B3, the major androgenic 17β-HSD found in the testis 

and a member of the short-chain dehydrogenase/reductase superfamily [63].

Tier 3 screening includes cell-based assays to determine whether compounds inhibit the 

conversion of 4-andros-tene-3,17-dione to T in LNCaP-AKR1C3 cells or another prostate 

cancer cell model in which AKR1C3 is overexpressed. Often HEK-293 cells expressing 

AKR1C3 have been used as a substitute. These screens determine whether the inhibitor has 

cell bioavailability and retains potency. Claimed compounds have been shown to be effective 

in these models, albeit with some loss of potency. Cell-based assays using AR-reporter gene 

assays and AR-ligand binding assays have also been performed to determine whether 

compounds act as AR-antagonists or inhibit the co-activator function of AKR1C3, as is the 

case for GTx-560 [58]. The AR coactivator domain of AKR1C3 was located to amino-acid 

residues 171–237 by deletion mutagenesis [58], which is distal to the enzyme active site. 

This region contains a coactivator peptide consensus peptide LXXLL (LEMIL). This 

suggests that some small molecule competitive inhibitors may have an allosteric effect that 

radiates to distal portions of the protein to affect AKR1C3–AR interaction. Interestingly, 

indomethacin does not have this property [58].

Tier 4 screening determines whether AKR1C3 inhibitors are effective in vivo and cause a 

reduction in tumor volume or tumor incidence in either xenograft or patient-derived 

xenografts of prostate cancer. ASP9521 and indomethacin have been shown to inhibit tumor 

growth in xenografts ex-vivo and in vivo, respectively [24,25,49]. Similar results have been 

obtained with GTx-560 [58].

Some attention to the xenograft model is required. Demonstration of reduced tumor 

incidence and volume in SCID mice transplanted with prostate cancer tumors is not a model 

of CRPC. CRPC can be modeled if the recipient mouse is castrated after the transplant and 

the tumor then regrows under castrate conditions. This model has been rarely used. No 

experiments have been performed with AKR1C3 inhibitors in patient-derived xenografts. 

Nevertheless, proof-of-principle xenograft data indicate that AKR1C3 inhibitors are 

effective antitumor agents in animal models [24,25,49].

Based on preclinical data, ASP9521 15 was advanced to a Phase I/IIb clinical trial by 

Astellas. ASP9521 was found to be well tolerated but without efficacy [14]. In this small 

trial, 7/13 patients completed the regimen. Serum levels of ASP9521 reached levels that 

would be sufficient to inhibit AKR1C3. However, decreases in serum PSA and serum steroid 
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hormone levels were not achieved. However, inclusion criteria did not screen for AKR1C3 

expression and the authors concluded that drug failure may have been due to the exclusion 

of patients who had been on prior ADT, which is known to upregulate AKR1C3.

The steroid-based estrenes with substitutions at C3 and C17 have been shown to be potent 

competitive inhibitors in vitro using recombinant AKR1C3 and in HEK-293 cells over-

expressing AKR1C3. However, counter screens against other human AKRs have not been 

reported. The presence of the nitrogen heterocycle at C17 is reminiscent of the heterocycle 

found in Abi and raises issues as to whether they inhibit P45017A1 or other steroid 

metabolizing P450 isoforms.

5. Expert opinion

As AKR1C3 is a major peripheral 17β-HSD required for the synthesis of T and DHT, 

inhibitors of the enzyme may have a place for treating endocrinological disorders associated 

with androgen excess in males and females, e.g. prostate cancer, benign prostatic 

hyperplasia, alopecia, pattern baldness, hirsutism, polycystic ovarian syndrome, etc. As T 

synthesized locally is also a substrate for aromatase, AKR1C3 inhibition may also be 

desirable in breast cancer, endometriosis, and endometrial cancer. However, the major focus 

has been on prostate cancer.

The majority of AKR1C3 inhibitors claimed are mono-functional agents and act 

downstream from Abi. Since they do not inhibit P45017A1, they do not have to be 

coadministered with prednisone to prevent adrenal insufficiency. The monofunctional 

AKR1C3 inhibitors would be superior to other P45017A1 inhibitors (orterenol and 

galeterone) since they target an enzyme involved in intratumoral androgen biosynthesis that 

is overexpressed upon ADT. Even though P45017A1 inhibitors decrease serum DHEA-SO4 

and DHEA by more than 90%, the amount of DHEA-SO4 that remains leaves a substantial 

reservoir for intra-crine androgen biosynthesis by AKR1C3 [64,65]. Mechanisms of drug 

resistance to P45017A1 inhibitors also include HSD3B1 allelic variants that stabilize the 

enzyme responsible for the conversion of DHEA to 4-androstene-3,17-dione [66]. The 

properties of AKR1C3 inhibitors versus other agents that target the AR axis in prostate 

cancer are presented in Table 2.

AKR1C3 is overexpressed in prostate cancer cells, in xenografts, and in tumors of patients 

that over undergone ADT [24,25,28–31,67]. But it is likely that the use of these mono-

functional AKR1C3 inhibitors will require precision medicine to ensure that the target is 

expressed in the patient. Interestingly, steroid 5α-reductase inhibitors e.g. finasteride and 

dutasteride are not approved by the FDA for the treatment of prostate cancer since these may 

cause the appearance of a more aggressive disease (Table 2).

Few compounds claimed in the patents have undergone a complete counter screen and for 

many, DMPK studies have yet to be performed limiting their effective use in animal 

xenograft and human studies. Here, the repurposed NSAIDs hold promise since they are 

anticipated to retain the properties of the parent drug from which they were derived [5,68].

Penning Page 7

Expert Opin Ther Pat. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Monofunctional AKR1C3 inhibitors are ultimately predicted to fail in the clinic due to the 

issue of drug resistance. However, they could be added to existing regimens, e.g. Abi or 

ENZ with the prospect of achieving a synergistic effect and more durable drug response. A 

starting point would be to add indomethacin to patients who progress on Abi or ENZ. Both 

Abi and ENZ resistance are likely to involve the overexpression of AKR1C3 as a component 

of drug resistance [24,25].

Mechanisms of drug resistance include AR gene amplification [69], the selection of AR 

mutants that make it ligand promiscuous [70,71], and the appearance of AR splice variants 

(AR-SV) that have lost their ligand binding domain and are constitutively active [72–74].

The bifunctional AKR1C3 inhibitors, e.g. GTX-560 27, offers promise since it blocks the 

coactivator function of AKR1C3 on full-length AR (Table 2). Whether AKR1C3 can act as a 

coactivator of AR-SVs is unknown. The other bifunctional agent claimed is BMT4-158 28, 

which acts as a competitive inhibitor of AKR1C3 and as a direct acting AR antagonist, 

suggesting that single agents that target intra-tumoral androgen biosynthesis and AR 

signaling can be developed. Whether these single agents would be superior to a combination 

treatment of Abi plus prednisone plus ENZ remains to be determined.
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Article highlights

• AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F2α 
synthase) is a drug target for hormonal and hormonal independent 

malignancies

• Nonsteroidal inhibitors, repurposed NSAIDs and steroid based inhibitors have 

been claimed in multiple patent applications

• Extensive steroidal-based inhibitors based on C3 and C17 substituted estrenes 

have been developed

• AKR1C3 inhibitors have progressed to clinical trials for castration resistant 

prostate cancer and acute myeloid leukemia with mixed success

• The majority of inhibitors require optimization for testing in animals and 

humans

This box summarizes key points contained in the article.
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Figure 1. 
Drugs in common use for the treatment of CRPC and some representative AKR1C3 

inhibitors not covered by patents.
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Figure 2. 
Role of AKR1C3 in androgen biosynthesis in human prostate. The conversion of C21 

steroids pregnenolone and progesterone to the corresponding C19 steroids 

dehydroepiandrosterone (DHEA) and 4-androstene-3,17-dione is catalyzed by CYP17 

(P45017A1); and the preferred route is from pregnenolone. The evidence for intratumoral 

biosynthesis of C19 steroids from C21 steroids is scant and the reactions occur 

predominately in the adrenal. The conversion of progesterone to desoxycorticosterone is 

adrenal specific and is a side effect of abiraterone acetate treatment leading to 

mineralocorticoid excess. HSD3B1, 3β-hydroxysteroid dehydrogenase type 1, SRD5A, 

steroid 5α-reductase type 1 and type 2. Reproduced with permission from Adeniji AO, 

Twenter BM, Byrns MC, Jin, Y, et al. Development of potent and selective inhibitors of 

aldo-keto reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase) based on N-phenyl-

aminobenzoates and their structure-activity relationships. J Med Chem 2012;55:2311–23 

Copyright American Chemical Society.
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Figure 3. 
Role of AKR1C3 in prostaglandin signaling. AKR1C3 catalyzes the conversion of 

prostaglandin (PG) H2 and PGD2 to PGF2α and 11β-PGF2α respectively (PGF2α synthase 

activity). PGF2α and 11β-PGF2α are ligands for the prostaglandin FP receptor which leads 

to activation of mitogen activated protein kinase (MAPK) and cell proliferation, as well as 

activation of NFkB. AKR1C3 prevents the conversion of PGD2 to 15dPGJ2 a peroxisome 

proliferator activating receptor γ(PPARγ) agonist and inhibitor of NFkB signaling where the 

former leads to cell-differentiation and inhibition of cell growth. Reproduced with 

permission form Byrns MC and Penning TM. Type 5 17β-hydroxysteroid dehydrogenase/

prostaglandin F synthase (AKR1C3): Role in breast cancer and inhibition by nonsteroidal 

anti-inflammatory drugs. Chem Biol Inter 2009: 178: 221–7 Copyright Elsevier.

Penning Page 16

Expert Opin Ther Pat. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
AKR1C3 nonsteroidal inhibitors under patent.
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Figure 5. 
AKR1C3 steroidal inhibitors under patent.
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Figure 6. 
Two different binding poses for indomethacin in the AKR1C3.NADP+ complex. 

AKR1C3.NADP+.Indomethacin complex (yellow) at pH 6.0 (PDB ID 1S2A) and 

AKR1C3.NADP+.Indomethacin complex (red) at pH 7.5 (PDB ID 3UG8). Full color 

available online.
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