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The transcriptional program associated with herpesvirus latency and
the viral genes regulating entry into and exit from latency are poorly
understood and controversial. Here, we developed and validated a
targeted enrichment platform and conducted large-scale transcrip-
tome analyses of human cytomegalovirus (HCMV) infection. We used
both an experimental hematopoietic cell model of latency and cells
from naturally infected, healthy human subjects (clinical) to define
the breadth of viral genes expressed. The viral transcriptome derived
from experimental infection was highly correlated with that from
clinical infection, validating our experimental latency model. These
transcriptomes revealed a broader profile of gene expression during
infection in hematopoietic cells than previously appreciated. Further,
using recombinant viruses that establish a nonreactivating, latent-
like or a replicative infection in CD34+ hematopoietic progenitor cells,
we defined classes of low to moderately expressed genes that are
differentially regulated in latent vs. replicative states of infection.
Most of these genes have yet to be studied in depth. By contrast,
genes that were highly expressed, were expressed similarly in both
latent and replicative infection. From these findings, a model emerges
whereby low or moderately expressed genes may have the great-
est impact on regulating the switch between viral latency and rep-
lication. The core set of viral genes expressed in natural infection
and differentially regulated depending on the pattern of infection
provides insight into the HCMV transcriptome associated with la-
tency in the host and a resource for investigating virus–host inter-
actions underlying persistence.

cytomegalovirus | herpesvirus | transcriptome | latency |
kernel density estimation

All herpesviruses persist, in part, through the establishment of
a latent infection. A central gap in our knowledge of her-

pesvirus biology is the extent of viral gene expression that occurs
during latency. Human cytomegalovirus (HCMV), a member of
the β-herpesvirus family, has the largest genome of any known
human virus, at approximately 230-kbp in size (1–3) and encodes
at least 170, and potentially as many as 754 unique ORFs (4). HCMV
establishes latency in hematopoietic progenitor cells (HPCs) and
myeloid lineage cells (5, 6). The latent state permits life-long
persistence of the viral genome marked by sporadic bouts of
reactivation, which allows for periods of typically subclinical virus
shedding (7). In contrast to productive infection, viral genomes
are maintained at low levels and viral gene expression is thought
to be restricted during the latent infection and is rarely detected
in the latent host. Therefore, how the programs of viral gene
expression differ in various cell types or states of persistence in
the host remains elusive (5, 6, 8). Understanding the cytomegalo-
virus transcriptome as part of the molecular basis of persistence
in the healthy host is an important step toward developing strategies
to control viral latency and reactivation. Reactivation of HCMV in
the absence of adequate T-cell immunity results in life-threatening
disease in solid organ and stem cell transplant recipients (9, 10), and

HCMV is the leading infectious cause of congenital birth defects
(11, 12).
Until recently, HCMV transcriptome analysis was predomi-

nantly restricted to productively infected fibroblasts due to technical
challenges posed by HCMV infection and persistence (13, 14). The
strict species restriction of HCMV has constrained latency studies
to primary human cell models in CD34+ hematopoietic progenitor
cells (HPCs) or CD14+ monocytes infected in vitro, where viral tran-
scripts account for an exceptionally minor proportion of the RNA
pool (15–20). Further, in the human host, it is estimated that only
1 in 104 to 105 mononuclear cells harbor viral genomes in healthy
latently infected individuals (21), posing significant challenges for
the bona fide detection of viral transcripts amid the overwhelming
host transcriptome. To address these challenges, we developed a
targeted enrichment platform to capture low-abundance viral tran-
scripts from CD34+ HPCs infected in vitro and from peripheral
blood mononuclear cells (PBMCs) isolated from asymptomatically
infected individuals (clinical). These studies validate our enrichment
platform and define the gene expression across the HCMV genome
in CD34+ HPCs infected in vitro and in naturally infected PBMCs.

Significance

Herpesviruses have an extraordinarily complex relationship
with their host, persisting for the lifetime of the host by way of
a latent infection. Reactivation of replication is associated with
significant disease risk, particularly in immunocompromised
individuals. We characterize in depth transcriptional profiles of
human cytomegalovirus latency. We show that a broad and
concordant viral transcriptome is found in both an experi-
mental model of latency and in asymptomatically infected
individuals. We further define genes that are differentially
regulated during latent and replicative states: candidates for
key regulators controlling the switch between latency and
reactivation. This work will help understand the persistence of
complex DNA viruses and provides a path toward developing
antiviral strategies to control herpesvirus entry into and exit
from latency.
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Further, to explore the regulation of HCMV gene expression in
the context of latency, we compared viral gene expression in
CD34+ HPCs during infection with recombinant viruses that either
(i) replicated and did not establish latency or (ii) maintained the
viral genome but could not reactivate (22, 23). While highly
expressed genes were highly expressed in all contexts of infection,
genes differentially regulated in the context of latent and replica-
tive states of infection in CD34+ HPCs were expressed at low to
moderate levels. As many of the genes identified as expressed or
regulated in these contexts do not have well-ascribed functions,
they represent an important class of genes for studies aimed at
understanding the regulation of latent vs. replicative states of
infection.

Results
Robust and Reproducible Enrichment of HCMV Libraries from Infection
of CD34+ HPCs. To obtain deep sequencing for rare HCMV se-
quence reads in CD34+ HPCs latently infected in vitro, we de-
veloped targeted probes (SureSelect, Agilent) to capture and enrich
HCMV sequences from complex human samples for strand-specific
RNA sequencing. This approach was used previously to enrich viral
genomes from clinical/human libraries (24, 25). The enrichment
probes were tiled along the HCMV TB40/E genome, excluding
the internal repeat long (IRL) and terminal repeat long (TRL)
regions and the viral long noncoding RNAs (4.9 kb, 2.7 kb, and
1.2 kb), which are expressed at high levels during infection in
multiple contexts (13, 26, 27). Any sequences sharing identity to
the human genome were also masked (excluded). We first ex-
amined the extent of the enrichment by comparing the ratio of
virus-to-human reads (V/H) mapped in samples from TB40/E
wild-type (WT)-infected CD34+ HPCs without [nonselected (NS)]
vs. with [SureSelect enriched (SS)] enrichment. The V/H ratio
accounts for both enrichment efficiency of virus reads and de-
pletion efficiency of human reads in a SS sample. The V/H ratio
increased 8,225-fold at 2 days postinfection (dpi) and 6,350-fold at
6 dpi in SS relative to NS (Fig. 1A). To confirm that samples did
not acquire laboratory contamination during processing of NS
samples, mock-infected samples were sequenced and the mean
V/H ratio was 0.000089 (SI Appendix, Fig. S1A, NS, mock). The low
availability of viral reads in NS CD34+ HPC libraries, despite all
cells being infected, demonstrates the challenge of reconstructing
HCMV transcriptomes, especially from clinical samples which
harbor virus in a small proportion of cells. Notably, SureSelect
enrichment increased viral reads to 81.92% (2 dpi) and 74.35%
(6 dpi) of the total quality reads in the two samples (SI Appendix,
Dataset S1), such that virus becomes a predominant species in the
virus–host metatranscriptome.
To identify possible sequence bias introduced by SS enrich-

ment, we used Cufflinks-based quantification of viral gene expression,
fragments per kilobase of transcript per million mapped reads
(FPKM) (28) to correlate NS and SS samples in Fig. 1A (Upper
and Lower). Linear regression indicated a high correlation between
SS and NS samples at both 2 and 6 dpi (2 dpi: slope of 1.03 and
R2 = 0.96; 6 dpi: slope of 1.01 and R2 = 0.93) (Fig. 1B). Despite
the difference in viral genome coverage, only four genes (UL12,
UL90, UL8, and US8) were detected at 6 dpi in the SS library but
not the NS library. These may be genes expressed at levels not
detected without enrichment or may indicate an enrichment bias.
Collectively, these data indicate that the SS platform offers an
efficient and reproducible enrichment without introducing sub-
stantial bias.
In addition to our analysis of in vitro infection of CD34+ HPCs

with the TB40/E WT, we included two recombinant viruses con-
taining disruptions in the ULb′ genes, UL135 and UL138. These
genes have an antagonistic relationship that is important to reg-
ulating the transition between latent and reactivated states (22,
23, 29, 30) (SI Appendix, Fig. S1B). UL138 is suppressive to viral
replication and recombinant viruses lacking UL138 (ΔUL138) fail

to establish a latent infection and instead productively replicate in
CD34+ HPCs in the absence of a reactivation stimulus (22, 29, 30).
In contrast, UL135 overcomes UL138-mediated suppression for
reactivation (23). Recombinant viruses lacking UL135 (ΔUL135)
maintain viral genomes but fail to reactivate. These recombinant
viruses represent powerful tools to distinguish the viral transcriptomes
associated with latent-like vs. replicative states in CD34+ HPCs.
Of note, these mutant viruses were generated by the substitution
of stop codons for 5′ translational start codons to abrogate protein
synthesis without disrupting the transcript.
We then calculated the Euclidean distance of viral gene ex-

pression with DESeq2 (31) between WT, ΔUL135, and ΔUL138
infection at 2 and 6 dpi to validate the enrichment for all samples.

A

B

C

Fig. 1. Enrichment of HCMV libraries is an efficient and unbiased method for
defining the transcriptome in samples where transcript abundance is low. CD34+

HPCs were infected with WT, ΔUL135, or ΔUL138 [multiplicity of infection
(MOI) = 2] and cDNA libraries were prepared at 2 and 6 dpi with or without
SureSelect enrichment and sequencing. (A) Pie charts illustrate the differences in
the proportions of HCMV (red) and human (green) reads mapped between NS
and SS samples from CD34+ HPCs infected with WT HCMV. The ratio of virus-to-
human reads (V/H) is shown for each sample. For numbers of viral and human
reads refer to SI Appendix, Dataset S1. (B) Gene abundance (FPKM) comparisons
between NS and SS samples in A. Pearson’s correlation coefficient is shown.
Level of confidence intervals for predictions of a linear model is 0.95. Genes
absent in one sample are labeled. FPKM, fragments per kilobase of transcript
per million mapped reads. (C) Heatmap displaying hierarchical clustering of the
sample-to-sample distance matrix. NS (gray) and SS (black) libraries for six bio-
logical samples: WT, ΔUL135, and ΔUL138, each at 2 and 6 dpi, are included.
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The heatmap shows that each SS biological sample was most closely
related to its NS counterpart (Fig. 1C), independent of sequencing
depth. Furthermore, the transcriptome of ΔUL135 infection was
closely related to that of WT infection, but more different from
ΔUL138 infection at both 2 and 6 dpi. At 6 dpi, greater diversity
between the different viral transcriptomes was observed com-
pared with 2 dpi.

Functional Antagonism Between UL135 and UL138 Reflected by
Differential Expression of Low and Moderately Expressed Viral Genes
in CD34+ HPCs. We applied several independent methods to as-
sess the viral transcriptional program in WT and ΔUL135- and
ΔUL138-infected CD34+ HPCs to further differentiate patterns of
infection. Principal component analysis (PCA) revealed high sim-
ilarity between WT and ΔUL135- and ΔUL138-mutant virus infec-
tions at 2 dpi; however, by 6 dpi when latency is being established,
WT and ΔUL135 clustered tightly but ΔUL138 was segregated
with respect to the first two principal components (PCs) (Fig. 2A).
The difference between WT or ΔUL135 and ΔUL138 infections at
6 dpi was associated with PC2, accounting for 14% of the total vari-
ance (see SI Appendix, Fig. S1C for the scree plot and SI Appendix,
Fig. S1D for the score plot of PC2 vs. PC3). The top 30 genes
contributing to PC2 are listed (Fig. 2A, and see SI Appendix, Fig.
S1E for the loadings). These data reflect a progressive transcrip-
tional difference between the two patterns of infection (latent-like
vs. replicative) associated with these viruses and is consistent with
the opposing functions of UL135 and UL138 (23). Differential
gene expression analysis between the two mutant viruses further
indicated that differences in gene expression increased significantly
from 2 to 6 dpi (P = 1.945 × 10−14, Fisher’s exact test). At 6 dpi,
eight genes, UL12, UL37, UL47, UL88, UL91, UL96, UL146, and
UL147, were considerably up-regulated in ΔUL135 while four genes,
RL1, UL19, UL131A, and US33, were considerably up-regulated
in ΔUL138 [more than fourfold change and false discovery rate
(FDR) < 0.05, Fig. 2B]. Not surprisingly, 83% of these genes con-
tribute to the variance of PC2.
To further classify viral genes as concordantly or antagonisti-

cally expressed in ΔUL135 and ΔUL138 infections, we established
a model examining 2D differential expression of viral genes in
ΔUL135 andΔUL138 infections each relative toWT. Genes antago-
nistically regulated are in quadrant Q2 or Q4, whereas genes con-
cordantly regulated are in Q1 or Q3 (schematically illustrated in
Fig. 2C). For example, Q2 genes are up-regulated in ΔUL138 in-
fection and down-regulated in ΔUL135 infection. Analysis of signifi-
cantly regulated genes (FDR < 0.05) using log2 fold change (FC) as
a function of gene counts, revealed that over time postinfection the
number of antagonistically (Q2/Q4), but not concordantly (Q1/Q3)
regulated genes significantly increased (P < 0.005, Fisher’s exact
test) (Fig. 2D). The differential expression of individual viral genes is
shown in Fig. 2E at 6 dpi (see SI Appendix, Fig. S2 A and B for a log2
FC vs. log2 mean expression (MA) plot of each comparison and SI
Appendix, Fig. S2C for 2 dpi). The correlation (Q1/Q3) and anti-
correlation (Q2/Q4) of differential expression of all genes between
the two comparisons are shown in SI Appendix, Fig. S2D. These data
support a model whereby these antagonistically regulated genes
(Q2/Q4) may contribute to the switch between latent and replicative
states and reject the null hypothesis in Fig. 2C.
Given that infection of independent human CD34+ HPC donors

resulted in high viral transcriptome variability between the bio-
logical replicates, we used kernel density estimation to investigate
the viral gene expression in WT, ΔUL135, and ΔUL138 infections
across two additional human donors (biological replicates). Kernel
density estimation makes no assumption regarding distribution of
the data, which allows for the unbiased classification of expression
levels across samples (32). In Fig. 3A, six curves in each panel for
WT, ΔUL135, andΔUL138 infections at 2 and 6 dpi are shown for
NS and SS samples from donor 1 (yellow), NS samples from donor
2 (green), and SS samples from donor 3 (orange). Strikingly, the

six curves across different donors and virus infections were tightly
aligned except for two distinct “waves,” one at low and the other at
moderate expression levels (Fig. 3A). Examining different band-
width settings in kernel density estimates validates that the wave
1 and wave 2 patterns are independent of this key parameter (SI
Appendix, Fig. S3A). Using our data, 24 random samples generated
showed tight overlap with one another, almost as a single curve,
confirming the heterogeneity of gene expression within wave 1 and
wave 2 between the real samples (SI Appendix, Fig. S3B). To
quantify wave 1 and wave 2 variation in gene expression of two
mutant viruses across biological replicates, we calculated genewise
dispersion estimates in DESeq2 (31) for the genes whose expression
fell within wave 1 or wave 2 across all available ΔUL135_6dpi and
ΔUL138_6dpi transcriptomes. We found that the dispersion of
wave 1 genes was significantly higher than that of wave 2 genes
(Fig. 3B, P = 3.322 × 10−11, Wilcoxon rank sum test), indicating
that antagonism between mutant virus infections was induced by
two regulatory patterns. This was supported by the notion that
the natural dimensionality of gene expression is determined not
by individual genes, but by genes coregulated within transcriptional
modules (33).
To provide a robust profile of genes differentially expressed be-

tween ΔUL135 and ΔUL138 at 6 dpi across all donors, we aligned
these two regulatory modules (13 wave 1 genes plus 52 wave 2 genes)
to those that were differentially expressed between ΔUL135 and
ΔUL138 infections each relative to WT (donor 1 data, see Fig. 2E).
Thirty regulatory genes (8 in wave 1 and 22 in wave 2) were common
between the two-distinct metrics [kernel/dispersion workflow vs.
differential expression (DE)] using two partially overlapping
datasets (Fig. 3C). The distribution of these 30 genes across the
four quadrants is shown in Fig. 3D. The distribution of these 30
genes based on the metrics of dispersion vs. fold change is shown
in SI Appendix, Fig. S4 and their functional annotation is shown
in Tables S1 and S2. These combined methods identified genes in
the two mutant virus infections that were differentially expressed
across multiple cell donors (biological replicates).

Low Heterogeneity in the Viral Transcriptomes of ΔUL135- and ΔUL138-
Infected Fibroblasts. To further distinguish viral transcriptomes
associated with infection in hematopoietic cells, we applied the
same analysis pipeline to the dataset of fibroblast infection, a model
of productive replication. We sequenced 12 samples infected with
WT, ΔUL135, or ΔUL138 at 12, 24, 48, and 72 hpi. For brevity,
12 and 48 hpi results are shown in the main text and additional time
points are in SI Appendix. In contrast to infection in CD34+ HPCs
(SI Appendix, Fig. S1A), the ratio of virus-to-human reads increased
over time during infection in fibroblasts (SI Appendix, Fig. S5A),
indicative of a productive infection. The proportion of viral reads
was similar between our samples (SI Appendix, Dataset S1) and
those previously reported for fibroblast infection (34). By PCA,
none of the six samples clustered and the greatest separation was
based on time postinfection associated with PC1 (Fig. 4A and SI
Appendix, Fig. S5B). This is in contrast to infection in CD34+ HPCs,
where samples clustered at 2 dpi, and ΔUL138 separated from WT
and ΔUL135 over time (Fig. 2A).
We next explored how viral gene expression might be differ-

entially regulated in fibroblasts during ΔUL135 and ΔUL138 in-
fection relative to WT. Analysis of log2 fold change as a function
of gene counts revealed that the majority of genes were concor-
dantly regulated (Q1/Q3) (Fig. 4B; see SI Appendix, Fig. S5C for
24 and 72 hpi). The maximal antagonistic expression was observed
at 12 hpi with five genes (UL135, UL136, US12, US17, and US21)
in Q2 (Fig. 4 B and C); however, these genes do not reach a twofold
change (Fig. 4C, red rectangles in each panel). MA plots across the
four time points comparing the mutant viruses or each mutant virus
to WT show that expression of only a few genes was significantly
different (P < 0.05, SI Appendix, Fig. S6). This is again in contrast to
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the antagonistic relationship between ΔUL135 and ΔUL138 that
increases over time in CD34+ HPCs (Fig. 2D).

Kernel density estimation for the distribution of viral gene
expression in fibroblasts revealed that the heterogeneity between

A B

C
E

D

Fig. 2. Viral gene expression is differentially regulated in CD34+ HPCs infected with UL135- and UL138-mutant viruses. (A) PCA for infected CD34+ HPC samples (Fig. 1C)
revealed two mutant viruses partitioning over time from 2 to 6 dpi. The green arrow represents a trajectory to the latent state of WT and ΔUL135 (green oval), while the
blue arrow represents a trajectory to the replicative state of ΔUL138 (blue oval). This separation is associated with PC2 and the genes with the 30 highest absolute loadings
are listed. (B) MA plot comparing twomutant viruses at 2 and 6 dpi. Genes are colored red if the FDR is<0.05, and they increase significantly (P = 1.945 ×10−14, Fisher’s exact
test) from 2 to 6 dpi. Geneswithmore than fourfold change are indicated. An asteriskmarks genes that are among the PC2 top loading genes inA. (C) Schematic illustration
of a model of differential gene expression regulating the switch between latency and reactivation in CD34+ HPCs using two mutant viruses, ΔUL135 and ΔUL138. Two-
dimensional differential expression for the fold change betweenΔUL135 andWT is on the x axis and the fold change betweenΔUL138 andWT is on the y axis. This analysis
identifies subsets of genes that are concordantly (Q1/Q3) or antagonistically (Q2/Q4, highlighted by magenta) regulated in ΔUL135 and ΔUL138 transcriptomes. We hy-
pothesize that the switch between latent and reactivation states requires a significant number of antagonistically regulated viral genes. (D) Quadrant-specific expression
pattern using ribbon plot of fold change vs. significant gene counts. A significant increase (P < 0.005, Fisher’s exact test) of genes in Q2/Q4 (magenta), but not in Q1/Q3, at
6 dpi indicates null hypothesis is rejected. (E) Corresponding significant genes residing in quadrants Q2/Q4 or Q1/Q3 at 6 dpi. Red dashed rectangle highlights the twofold
change. Green and blue dot size is proportional to the mean expression of individual genes in all ΔUL135 and ΔUL138 infections, respectively. Orange dot size is pro-
portional to the mean expression of individual genes in all ΔUL135 and ΔUL138 infections. For corresponding significant genes at 2 dpi refer to SI Appendix, Fig. S2.

Cheng et al. PNAS | Published online November 20, 2017 | E10589

M
IC
RO

BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710522114/-/DCSupplemental/pnas.1710522114.sapp.pdf


viral transcriptomes was distributed similarly across the expres-
sion range such that the wave 1 and wave 2 regulatory patterns
observed in CD34+ HPCs were lost (Fig. 4D). Using different
bandwidth settings in kernel density estimates (SI Appendix,
Fig. S7A) and comparing between 12 real and random samples
(SI Appendix, Fig. S7B), we confirmed a similar level of variation
across the expression range, including the high expression region
(Fig. 4D, blue arrow). We then calculated the genewise disper-
sion estimates for two mutant virus infections at 12 and 48 hpi
and found that the expression variability between them was low
(Fig. 4E). Furthermore, there were no significant changes in viral
gene expression within the wave 1 vs. wave 2 regions in the fi-
broblast dataset (P = 0.128, Wilcoxon rank sum test). Taken to-
gether, these results indicate that the UL138-mutant virus
transcriptome is not substantially different from that of ΔUL135 or
WT infection in fibroblasts, and instead three transcriptomes
converge over time as indicated by PCA.

Analysis of HCMV Transcriptome in Clinical Latency. Our targeted en-
richment platform provided us with the sensitivity to analyze the
HCMV transcriptome associated with latency in 12 healthy individ-
uals (clinical latency). None of these donors were supporting active
viral replication since no viral cytopathic effect or immediate early
gene expression could be detected following incubation of fibroblasts
with plasma from each of these donors (SI Appendix, Fig. S8A).
Further, as HCMV genomes are maintained in PBMCs at or below
the limit of quantitation of quantitative real-time PCR (qPCR), viral
genomes were only detected in three of the donors and at a fre-
quency well below that of a host gene (SI Appendix, Fig. S8B).
RNA isolated from PBMCs of the HCMV-seropositive subjects

was pooled and viral cDNAs were enriched using our SureSelect
platform for RNA sequencing. Given the low number of HCMV
reads mapped (SI Appendix, Dataset S1), we analyzed read diver-
sity by determining the percent identity of HCMV reads from
clinical or in vitro infection samples to the TB40/E reference se-
quence (blastn, e-value < 1e-5) (SI Appendix, Fig. S9A). The clinical
reads share significantly lower similarity to the TB40/E reference
than in vitro infections (P < 0.01, Wilcoxon rank sum test). Further,

clusters of those pooled HCMV reads and Shannon entropy esti-
mates indicated that intrasample diversity was greatest for clinical
reads (SI Appendix, Fig. S9B). Finally, comparison of variants using
SAMtools (35) and GATK workflow (36) revealed high-confidence
single nucleotide polymorphisms (SNPs) that were present in all in
vitro samples, but not detected in clinical samples (SI Appendix, Fig.
S9C). Collectively, these analyses demonstrate that the viral reads
obtained from clinical samples represent bona fide natural infection.
The enriched clinical transcriptome shared high correlation with

the enriched viral transcriptomes from CD34+ HPCs infected in
vitro at 2 dpi (R2 = 0.78) and 6 dpi (R2 = 0.65) (Fig. 5A). This in-
dicates conservation of the transcriptomes associated with infection
of hematopoietic cells. Nine genes (UL1, UL2, UL8, UL59, UL90,
UL120, UL127, UL134, and UL148B) detected in in vitro tran-
scriptomes were absent in the clinical samples, the majority of which
encode putative membrane proteins or uncharacterized proteins.
Comparing gene expression in clinical and in vitro infection

samples revealed that 41 genes were concordantly expressed at
2 and 6 dpi in vitro relative to the clinical sample, defined as an
absolute log2 fold change (ALFC) <0.5 (Fig. 5B, zoom). Half of these
concordantly expressed genes are conserved among all herpesviruses
or β-herpesviruses. We then examined latency-associated (UL133,
UL135, UL136, UL138, UL144, and US28; Fig. 5B, green) and
replication-associated genes (UL32, UL82, UL99, UL122, UL123;
Fig. 4B, blue) in in vitro and clinical latency. These genes differed
by ALFC <2. We also specifically examined the 30 genes in Fig. 3D
that were differentially expressed during ΔUL135 and ΔUL138
infection across all replicates and found that the majority also
differed by ALFC <2 (Fig. 5B, red and cyan dots). In Fig. 5C,
FPKM was normalized to the 41 concordant genes (cFPKM) to
facilitate intergroup comparisons between latency-associated (green),
replication-associated (blue), wave 1 (red), and wave 2 (cyan) genes.
There were no significant differences in the expression of each
gene group between clinical and 2 or 6 dpi samples (P > 0.1,
Wilcoxon test). These comparisons indicate a high level of con-
servation in transcriptomes between clinical samples and this
experimental model.

A B

C D

Fig. 3. Low and moderately expressed genes exhibit
high variability across different infections and cell
donors. (A) Optimal kernel density estimates of ex-
pression levels of six samples (line colors correspond
to sample colors in Fig. 2A) across three cell donors
(yellow, green, and orange). Two regions of low and
moderate expression (termed wave 1 and wave 2)
exhibit high variation. (B) Dispersion (orange, Left y
axis) and cumulative dispersion (blue, Right y axis)
measurement for within wave 1 and wave 2 genes in
ΔUL135_6dpi and ΔUL138_6dpi transcriptomes (n =
8). (C) Venn diagram displaying overlap between
genes whose expression fell within wave 1 or wave
2 in all eight mutant viruses and genes from DE in
Fig. 2E. (D) Thirty low and moderately expressed
genes derived from shared kernel/dispersion work-
flow and DEmetrics are organized in the four-quadrant
model. * marks genes that are among the PC2 top
loading genes in Fig. 2A.
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To provide a landscape of HCMV gene expression associated
with HCMV latency, mean expression from our in vitro (n = 4,

three unique donor pools) and clinical samples is shown in Fig.
5D (see SI Appendix, Dataset S2 for FPKM values per sample).

A B

C

D E

Fig. 4. Viral gene expression is not antagonistically regulated in ΔUL135- and ΔUL138-infected fibroblasts. (A) PCA of six samples at 12 and 48 hpi. (B) Quadrant-specific
expression pattern using ribbon plot of fold change vs. counts of genes with their absolute log2 FC >0.5. (C) Corresponding genes residing in quadrants Q2/Q4 or
Q1/Q3 are shown. Red dashed rectangles highlight the twofold change. Green and blue dot size is proportional to the expression of individual genes in ΔUL135 and
ΔUL138 infection, respectively. Orange dot size is proportional to themean expression of individual genes in bothΔUL135 andΔUL138 infection. For corresponding genes
at the other two time points, refer to SI Appendix, Fig. S5. (D) Optimal kernel density estimates of expression levels of six samples (line colors match samples in A). Blue
arrow indicates the variation caused by highly expressed genes. (E) Dispersion (orange, Left y axis) and cumulative dispersion (blue, Right y axis) measurement for
ΔUL135 and ΔUL138 transcriptomes at 12 and 48 hpi (n = 4). Wave 1 (red shading) and wave 2 (cyan shading) from Fig. 3B are also highlighted in this dataset.
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UL4, UL5, and UL22A were highly expressed across all samples;
however, low levels of expression were detected from many

regions across the genome. We also show a heatmap for expres-
sion of the 100 most highly expressed genes across all biological

A B C n.s.n.s.

*

***

D 

41 concordant genes

Fig. 5. Comparison of in vitro infection in CD34+ HPCs to clinical latency. Enriched HCMV transcriptomes from CD34+ HPCs infected with WT in vitro or from
PBMCs isolated from seropositive individuals were compared. (A) Gene abundance (FPKM) comparisons between in vitro WT infection at 2 (Top) and 6
(Bottom) dpi vs. clinical latency. Pearson’s correlation coefficient is calculated. Level of confidence intervals for predictions of a linear model is 0.95.
(B) Comparison of individual viral genes expressed at 2 or 6 dpi in vitro vs. clinical latency using absolute log fold change (ALFC). A total of 41 concordant
genes (ALFC < 0.5, zoom) were identified. Similarly expressed (0.5 < ALFC < 2) genes are in the shaded area. Differences in viral gene expression (AFLC > 2)
between 6 dpi in vitro and clinical latency are indicated by density plot. Latency- and replication-associated genes are indicated by green and blue dots,
respectively. Wave 1 and wave 2 genes (Fig. 3D) are indicated by red and cyan dots, respectively. (C) FPKM of genes in the four groups in B was normalized by
the geometric mean of 41 concordant genes (cFPKM). All error bars are SEM. n.s., no significant difference in the expression of each gene group between
clinical and 2 or 6 dpi samples (P > 0.1, Wilcoxon test). (D) HCMV gene abundance across genome in clinical and in vitro (2 and 6 dpi) infections from four
samples with three donors. All error bars are SEM; * indicates FPKM values >50,000 (see SI Appendix, Dataset S2 for FPKM values).
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samples (SI Appendix, Fig. S10). These data further demonstrate con-
sistency of gene expression between natural infection in PBMCs
and CD34+ HPCs infected in vitro.
The latent transcriptome defined for in vitro infection and

clinical samples includes a larger number of genes than antici-
pated based on our current understanding of HCMV latency.
One concern is that the transcriptome may be influenced by a
small number of cells supporting lytic replication. To exclude this
possibility, we analyzed the transcriptomes from CD34+ HPCs in-
fected for 10 d in the presence or absence of ganciclovir (GCV).
GCV is a nucleoside analog that is toxic to cells replicating viral
DNA and will kill cells undergoing lytic replication. While viral
gene expression was generally decreased at 10 dpi compared with
2 or 6 dpi (SI Appendix, Fig. S11 vs. Fig. 5D), GCV treatment did
not substantially alter the profile of gene expression in CD34+

HPCs infected with WT virus (SI Appendix, Fig. S11). From these
data, we conclude that the profile of gene expression is indicative
of the latent transcriptome and is not heavily influenced by cells
undergoing lytic replication.

Discussion
Understanding the patterns of viral gene expression associated
with HCMV persistence is an important goal toward defining the
molecular underpinnings of latency and its associated health risks.
This is a challenging question to address because CMV genomes
are maintained and genes are expressed at exceedingly low levels
in hematopoietic sites of latency. The development of a custom
targeted enrichment platform was essential for transcriptome-wide
characterization in latently infected human samples and in detecting
viral transcripts expressed at low levels during in vitro infection of
CD34+ HPCs. Targeted enrichment provides an efficient and
robust method for recovering the HCMV transcriptome in the
context of natural infection where HCMV transcripts typically
comprise less than 0.0001% of the total transcriptome. Enrichment
yielded a >6,000-fold increase in the ratio of virus-to-human reads
without skewing the transcriptome (Fig. 1). Previous work by
Rossetto et al. (27) reported transcripts in natural infection in the
absence of enrichment; however, we found that the number of viral
reads mapped in human samples was too low for accurate tran-
scriptome quantification. Even following enrichment, three samples
were pooled to provide sufficient reads for robust computational
analysis. Our computational analysis defines the breadth of viral
gene expression in the latently infected host (Fig. 5D) and identifies
141 genes [absolute log fold change (AFLC) < 2] that are similarly
expressed in natural infection and experimental models of latency
(Fig. 5B), providing targets of study to better understand HCMV
latency in the host. Further, using viruses that differ in their ability to
establish latency or reactivate in CD34+ HPCs extends our under-
standing of the viral transcriptome associated with the establishment
of latent or replicative states in hematopoietic reservoirs (Figs. 2 and
3). Importantly, many genes identified by this study have been
understudied and do not have well-understood functions in in-
fection. Therefore, this study provides an initial road map to ad-
vance our understanding of HCMV latency and persistence.
Heterogeneity inherent to hematopoietic sites of HCMV la-

tency highlights the likelihood that the transcriptome associated
with these cell populations reflects not a single transcriptome, but
an aggregate of many associated with specific subpopulations within
the larger PBMC or CD34+ populations. As such, our study defines
the breadth of viral gene expression in the host and in experimental
models for latency rather than a single transcriptome. The tran-
scriptome derived from clinical samples or CD34+ HPCs infected
in vitro contains transcripts from all classically defined kinetic
classes (14) (Fig. 5D). A common criticism of HCMV latent tran-
scriptome studies is the likelihood that the latent transcriptome
may be skewed by a disproportionate contribution of transcripts
from a minority of cells undergoing lytic replication; a tenable
argument given that HCMV reactivation is intimately linked to

hematopoietic cell differentiation. We have addressed this possible
caveat by defining the transcriptome in CD34+ HPCs infected in
vitro and treated with ganciclovir to eliminate cells undergoing lytic
replication. Under this treatment, the transcriptome defined in
CD34+ HPCs was stable (SI Appendix, Fig. S11), indicating that our
transcriptomes are not overwhelmingly influenced by cells pro-
ductively replicating virus. We also detected low to no viral ge-
nomes or infectious virus in clinical samples (SI Appendix, Fig.
S8), providing further evidence that the donors were not sup-
porting detectable virus replication and were not viremic. Defining
individual transcriptomes present within this aggregate tran-
scriptome can only be addressed through single cell sequenc-
ing, which is challenging in the case of natural infection due to the
low frequency of cells harboring HCMV genomes and expressing
HCMV genes. Further, it is difficult to capture robust sequenc-
ing data for low abundance transcripts using single cell sequencing.
While the data presented here represent unprecedented depth for
the natural infection and computational analysis for HCMV, the
landscape of viral gene expression is broadly consistent with other
genome-wide studies in hematopoietic cells infected with HCMV
(15, 16, 20, 26, 27, 37). The similarity between the HCMV
transcriptome from clinical samples (PBMCs) and CD34+ HPCs
infected in vitro (Fig. 5A) provides validation of our experimental
CD34+ HPC model for the study of infection and latency in he-
matopoietic cells and suggests some conservation of the viral tran-
scriptome across hematopoietic cell subpopulations.
The use of recombinant viruses that serve to shift infection to a

predominantly nonreactivating, latent-like (ΔUL135) or replicative
(ΔUL138) state is a powerful tool to identify genes important for
latency or replication in CD34+ HPCs. While WT and ΔUL135
infections were strikingly similar, a number of HCMV genes were
antagonistically expressed in the context of a ΔUL135 vs. aΔUL138
infection in CD34+ HPCs (Fig. 2), a phenomenon not observed in
fibroblasts that only support productive replication (Fig. 4). We
identified 30 genes that were expressed at low to moderate levels
across all biological replicates (Fig. 3) and were also detected in
clinical samples (Fig. 5B). While we anticipate that genes impor-
tant to infection and persistence in hematopoietic cells extend
beyond these 30 genes, this represents a robust core group of gene
candidates that may contribute to distinct patterns of infection. For
example, higher expression of UL135, which promotes reactivation
and replication, in ΔUL138 infection relative to WT fits within
existing models (23, 38).
Genes antagonistically regulated in the context of ΔUL135 and

ΔUL138 infections reflect the antagonistic functional relationship
described for UL135 and UL138 (23, 38) and may be important to
the switch between latent and replicative states. The UL135 and
UL138 proteins are membrane bound and associated with cyto-
plasmic secretory membranes. As such, the mechanisms by which
UL135 and UL138 impact viral gene expression may be indirect
through their opposing effects on host signaling (38) or through an
effect of UL138 in suppressing IE gene expression (39). By con-
trast, concordantly regulated genes suggest a partnership between
UL135 and UL138, such that the loss of either partner produces a
similar effect on viral gene expression. Consistent with this pos-
sibility, we previously demonstrated interaction between UL135
and UL138 proteins (38). The functional relevance of these differ-
entially regulated viral genes to the outcomes associated ΔUL135
and ΔUL138 infection awaits further investigation to understand
their role in regulating latency and the switch between latent and
replicative states of infection.
In comparison with the genes differentially regulated during

ΔUL135 and ΔUL138 infection in CD34+ HPCs, genes that are
highly expressed in CD34+ HPCs and natural infection in PBMCs
(e.g., UL4, UL5, UL22A, and UL132) were also highly expressed
in fibroblasts and were not differentially impacted by ΔUL135 and
ΔUL138 infection (Figs. 2, 3, and 5). These genes have been pre-
viously reported as being highly expressed in monocyte-derived
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cell types (26) and fibroblasts (13). While lncRNAs were ex-
cluded from our analyses, HCMV lncRNAs are also known to be
highly expressed across cell types (13, 26, 27, 37). These highly
expressed genes may play a fundamental role in infection re-
gardless of cell type, but may be less likely to have substantial
impact on the switch between latent and productive states be-
cause of their uniform expression across cell types and infection
states. A comparison of the 100 most highly expressed genes
between clinical latency, CD34+ HPCs infected in vitro, and fi-
broblasts infected in vitro, is provided in SI Appendix, Fig. S10.
From our analysis, we propose a model whereby viral genes ex-
pressed at low to moderate levels and differentially regulated in
ΔUL135 or ΔUL138 infection, although representing a minor
subset of virus–host metatranscriptome, may have a greater impact
on directing the pattern of infection than more abundantly
expressed viral genes.
As nucleic acid detection approaches have exponentially in-

creased in depth and sensitivity, the breadth of gene expression
detected in the context of latency has also increased. As such, the
notion of strict quiescence during latency is being challenged for
all herpesviruses. Broad gene expression has also been reported
in the context of herpes simplex virus type 1 (HSV-1) and varicella
zoster virus (VZV) latency (40–44). In latently infected mice,
single cell sequencing revealed HSV-1 lytic gene expression in
the majority of infected dorsal root ganglia, which was accompanied
by detectable protein expression (43, 45). Together these studies
indicate that herpesvirus latency may be a more dynamic state
than previously appreciated with regard to viral gene expression
and highlights the risk in defining latency as the presence of a
single latency transcript in the absence of a single lytic transcript.
This study paves the way to establish paradigms of HCMV latency
through enhanced definition of the viral transcriptome associated
with natural infection in the host and latent vs. replicative states in
an experimental model of latency.

Materials and Methods
Cells and Viruses. For details on the culture and TB40/E strain infection of
CD34+ HPCs and fibroblasts, see SI Appendix, SI Materials and Methods.

Clinical Latency Human Samples. Healthy donors gave consent and PBMCs
were collected using a consent form and protocol approved by the In-
stitutional Review Board at the University of Arizona (IRB 1510182734).
Human peripheral blood samples were obtained and PBMCs and plasmawere
cryopreserved from 12 healthy individuals known to be CMV seropositive.
Human subjects ranged in age from 24 to 78 y old, with a mean ± SD age of
49 ± 21 y. Eleven of the 12 subjects self-identified as Caucasian, 1 as Asian;
2 subjects self-identified as Hispanic, and 10 as non-Hispanic. The presence of
Abs against CMV was determined by ELISA on frozen plasma samples, as
previously described (46). CMV titer was determined utilizing a standard
curve from a confirmed clinical positive control as the reference with a
negative control cutoff of 1:30. Additionally, a clinically verified negative
CMV control was run with every plate. CMV serological titer ranged from
117 to 6,281, with a mean of 1,258 ± 1,698. Cryopreserved PBMC samples
were thawed, cells were counted and immediately lysed in RNA/DNA lysis
buffer (Zymo Research) and stored at −80 °C until nucleic acid was isolated.
Three libraries were prepared for next-generation sequencing (NGS) from a
pool of four donors.

SureSelect Enrichment RNA Bait Design. SureSelect enrichment probes were
designed in collaboration with the bait design team at Agilent Technologies.
Enrichment probes were designed as overlapping (2× tiling), 120-mer RNA
baits spanning the positive strand of the HCMV TB40/E reference genome
(GenBank accession EF999921.1). Regions of the HCMV genome with more
than 70% identity to the human genome were masked to avoid enrichment
of nonviral sequences. The HCMV long noncoding RNAs (4.9 kb, 2.7 kb, and
1.2 kb) were also excluded, as they have been shown to be expressed to high
levels during HCMV infection and may prevent adequate enrichment of rare
transcripts expressed during HCMV latency (13, 27). Bait libraries were syn-
thesized by Agilent. All bait designs are available in Agilent’s eArray soft-
ware and from the corresponding author. Control baits, including sequences
for TATA binding protein (Entrez gene accession no. 25833) and POU2F3

(accession NM014352) were incorporated to use in quantification of virus-
sequence enrichment and human-sequence depletion.

NGS Library Preparation and Sequencing. Samples frozen at −80 °C in RNA/
DNA lysis buffer were thawed and RNA was isolated using the ZR-Duet Kit
(Zymo Research), following manufacturer instructions. Isolated RNA was
DNase I treated off column and repurified using the Machery-Nagel RNA II
Kit. Following this additional DNaseI treatment, no sequences are amplified
by PCR in the absence of reverse transcriptase, indicating the absence
of contaminating DNA. RNA quality was assessed using the Agilent Bio-
analyzer; RNA preparations used for subsequent NGS library preparation
had an RNA integrity number (RIN) of ≥9. NGS library preparation was
performed using manufacturer guidelines, including recommended quality
control steps using either Agilent’s SureSelect Strand-Specific RNA Library
Preparation Kit or Kapa Biosystems KAPA Stranded mRNA-Seq Kit. Briefly,
500 ng–1 μg of total RNA from CD34 cells or 4 μg of total RNA from fibro-
blasts was poly-A selected and chemically sheared, reverse transcribed, end
repaired, adapter ligated, and PCR amplified. For samples processed without
SureSelect enrichment, barcodes were added to adapters in a final, low cycle
number PCR. All libraries were analyzed on the Agilent Bioanalyzer before
SureSelect and the Advanced Analytical Technologies, Inc. (AATI) Fragmen-
tation Analyzer (with AATI NGS High-Sensitivity Kit) before HiSeq loading
for assessing library size and DNA contamination. For SureSelect enrichment,
100 ng of each library was hybridized to RNA enrichment probes (described
above). After purification of enriched viral sequences, barcodes were added
in a final PCR amplification step. Samples were multiplexed and sequenced
using either HiSeq or the MiSeq. Raw sequencing data were demultiplexed
and fastq files generated using either built-in software (MiSeq) or CASAVA
(HiSeq). All project sequence reads are available at the National Center for
Biotechnology Information (NCBI) under accession number GSE99823.

Quality Reads and Alignments. RNAseq datasets refer to the following cate-
gories: (i) CD34+ HPC samples (2 and 6 dpi) were sequenced yielding a total
of ∼269/143 million, uniform 101-bp paired-end reads for donor 1-NS/donor
2-NS samples, and ∼12/15 million, 151 bp (see SI Appendix, Fig. S12 for read-
length distribution) paired-end reads for donor 1-SS/donor 3-SS samples;
CD34+ HPC samples (10 dpi, SS) were sequenced yielding a total of ∼47 million,
uniform 101-bp paired-end reads. (ii) Three pooled clinical samples contain
∼6 million, 151 bp (see SI Appendix, Fig. S12 for read length distribution)
paired-end reads. (iii) Fibroblast samples were sequenced yielding a total of
∼204 million, 101-bp paired-end reads. (iv) Mock samples in CD34+ HPCs and
fibroblasts were also sequenced (SI Appendix, Dataset S1). Raw sequence data
were first evaluated using FastQC (v0.11.3, www.bioinformatics.babraham.ac.
uk/projects/fastqc/) and preprocessed for quality through a combination of
trimming and filtering using Trim Galore (v0.4.0, 15 bases were trimmed off
from the 5′ end of the reads and five bases were trimmed off from the 3′ end;
Phred score threshold of 20 and minimum length of 50 bp, paired, www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). Quality reads were then
uniquely mapped to HCMV (strain TB40/E, GenBank: EF999921.1) and human
(GRCh38) genomes using Tophat2 (v2.1.1) (47) with strand-specific alignment
of fr-firststrand. For HCMV alignment, themaximum intron size was set to 5 kb
as described in the Tophat2 manual, and the uniquely mapped HCMV, but not
human, reads were used for all subsequent analyses.

Differential Expression. Raw read counts for each sample were obtained by
mapping reads at the gene-level using HTSeq-count tool from the Python
package HTSeq (48), with a stranded setting (reverse). DESeq2 R package (31)
(v1.8.2) was then used to perform DE and statistical analysis, with a biological
sample from SS and NS libraries of the same cell donor, grouped. We
combined two-dimensional DE of ΔUL135/WT and ΔUL138/WT as Cartesian
coordinates to form an antagonistic regulation model, where antagonisti-
cally and significantly (FDR < 0.05) regulatory genes reside at quadrants
2 and 4. Those genes were quantified by counts and the difference across
time of postinfection was accessed using Fisher’s exact test.

Rlog-Based Kernel Density Variation. Raw read counts for genes over a group of
six biological samples (WT, ΔUL135, and ΔUL138, each at 2 and 6 dpi) of CD34+

HPC infection were normalized through a regularized logarithm transformation
(rlog) implemented in DESeq2 (31), and kernel density estimates (KDEs) were
then obtained using the density R function with default parameters. The six
density curves were overlaid on one plot. The featured density variation was
further evaluated using an extended group composed of all NS/SS replicates
from different cell donors (the same six biological samples in each panel, four
panels, for a total of 24 samples). Density variation across samples was accessed
by different bandwidth settings (0.5, 0.75, 1, and 1.25), which determine the
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degree of smoothing in the estimate of the density function. In addition, density
variation across samples was assessed by the comparison between real and
random samples, where raw read count for each gene in each sample was the
mean value of 100 permutations of involved real samples and rlog normaliza-
tion was performed. The same pipeline is applied to the fibroblast dataset.

For details on additional computational analysis, see SI Appendix, SI
Materials and Methods.

Statistical Tests. Statistical tests were performed and Benjamini–Hochberg
adjusted P values were calculated using R (https://www.r-project.org/).
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