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Repeated exposure to drugs of abuse can produce adaptive changes
that lead to the establishment of dependence. It has been shown that
allelic variation in the α5 nicotinic acetylcholine receptor (nAChR) gene
CHRNA5 is associated with higher risk of tobacco dependence. In the
brain, α5-containing nAChRs are expressed at very high levels in the
interpeduncular nucleus (IPN). Here we identified two nonoverlapping
α5+ cell populations (α5-Amigo1 and α5-Epyc) in mouse IPN that respond
differentially to nicotine. Chronic nicotine treatment altered the trans-
lational profile of more than 1,000 genes in α5-Amigo1 neurons, includ-
ing neuronal nitric oxide synthase (Nos1) and somatostatin (Sst). In
contrast, expression of few genes was altered in the α5-Epyc popula-
tion.We show that both nitric oxide and SST suppress optically evoked
neurotransmitter release from the terminals of habenular (Hb) neu-
rons in IPN. Moreover, in vivo silencing of neurotransmitter release
from the α5-Amigo1 but not from the α5-Epyc population eliminates
nicotine reward, measured using place preference. This loss of nicotine
reward was mimicked by shRNA-mediated knockdown of Nos1 in the
IPN. These findings reveal a proaddiction adaptive response to chronic
nicotine in which nitric oxide and SST are released by a specific α5+

neuronal population to provide retrograde inhibition of the Hb-IPN
circuit and thereby enhance the motivational properties of nicotine.
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The interpeduncular nucleus (IPN) is a single midline nucleus
beneath the ventral tegmental area that receives the majority

of its input from the medial habenula (MHb) and is reciprocally
connected to the raphe nuclei (1–3). Recent evidence has high-
lighted a role of the IPN in nicotine consumption and withdrawal
due to its high expression of the α5 nicotinic acetylcholine re-
ceptor (nAChR) subunit gene, the allelic variation in which is
linked to increased risk of nicotine dependence (4–9).
The α5 subunit is considered an accessory component of func-

tional nAChRs, active only when combined with both α- and
β-nAChR subunits (8, 10). Incorporation of α5 to heteromeric
nAChRs channels potently increases their sensitivity to nicotine (8).
Mice with a null mutation of the Chrna5 gene self-administer more
nicotine at higher, aversive doses, while reexpression of α5 in the
MHb of α5 KO mice restored nicotine self-administration to wild-
type (WT) levels, suggesting that α5 functions to limit nicotine intake
(6). Viral-mediated expression of the most common genetic variant
in CHRNA5, found in heavy smokers, α5D398N, in the MHb of β4-
overexpressing (Tabac) mice, which otherwise show enhanced
aversion to nicotine, was sufficient to increase their nicotine intake to
WT levels (7). α5 is also expressed in cortical interneurons, and mice
expressing the human α5D398N variant exhibit neurocognitive be-
havioral deficits that resemble the hypofrontality observed in patients
with schizophrenia and addiction (9). α5 has also been implicated in
nicotine withdrawal (11–13), characterized by somatic and affective
symptoms, including increased anxiety (14, 15). Reexposure to nic-
otine during withdrawal increases intrinsic pacemaking activity of
MHb cholinergic neurons (16). IPN neurons are activated during

nicotine withdrawal, and optical activation of IPN GABAergic cells
is sufficient to produce a withdrawal syndrome, while blockade of
GABAergic cells in the IPN reduced symptoms of withdrawal (17).
Taken together these studies highlight the critical role of α5 in
regulating behavioral responses to nicotine.
Here we characterize two subpopulations of GABAergic

neurons in the IPN that express α5: α5-Amigo1 and α5-Epyc neu-
rons. The translational profile of α5-Amigo1 cells, but not α5-Epyc,
shows enrichment for Nos1 and Sst. While the presence of strong
neuronal nitric oxide synthase (NOS1) expression in the IPN has
been reported in cells that project to the dorsal raphe (DR) (18),
no studies have been conducted to determine its function in IPN
circuitry. Here, we show that the α5-Amigo1 population utilizes
nitric oxide (NO) and somatostatin (SST) to provide retrograde
inhibition of excitatory inputs from the MHb to the IPN. Con-
sistent with this retrograde mechanism, MHb neurons are
enriched with the receptors for NO (soluble guanylyl cyclases)
and with SST receptors. We demonstrate that α5-Amigo1 neurons
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increase their production of NO and SST in response to chronic
nicotine, providing greater feedback inhibition onto MHb inputs.
This action serves to limit the release of habenula-derived glu-
tamate and enhances the motivational properties of nicotine.
These results reveal a critical role for the α5-Amigo1 population of
IPN cells in regulating the rewarding properties of nicotine
through feedback inhibition of MHb inputs. Furthermore, our
findings suggest that adaptive responses in this α5-Amigo1 con-
trolled molecular circuitry likely plays an important role in reg-
ulating the development of nicotine dependence.

Results
α5-Expressing Neurons Can Be Subdivided into Two Populations.
Using translating ribosomal affinity profiling (TRAP) (19) com-
bined with RNA sequencing (RNA-Seq), we set out to determine
which genes were being actively translated by discrete pop-
ulations of α5+ cells in the IPN using Chrna5-Cre mice crossed to
ribosome-tagged EGFP-L10a mice (Fig. 1A). In Chrna5-Cre
mice, the Chrna5-Chrna3-Chrnb4 gene cluster was overexpressed
in IPN neurons (Fig. S1 and Datasets S1 and S2), which reduces
the utility of these mice for investigating the behavioral actions of
nicotine, since increased nAChR levels in MHb/IPN are known to
affect nicotine reward and withdrawal processes (6, 7, 12, 20).
Nevertheless, these mice provide a useful tool to target α5+ neurons
and investigate their transcriptional mechanisms. Of the genes
expressed in α5+ cells, we identified two highly enriched genes,
Amigo1 and Epyc, both encoding cell-surface adhesion proteins with
relatively little-known function in the CNS. We characterized the
translational profile of Amigo1-Cre::EGFP-L10a and Epyc-Cre::
EGFP-L10a mice. We confirmed that both α5-Amigo1 (Fig. 1B and
Dataset S3) and α5-Epyc (Fig. 1C and Dataset S4) cells express the
Chrna5-Chrna3-Chrnb4 gene cluster at normal levels. Receptor and
neurotransmitter expression profiling revealed that they are both
GABAergic, as expected, and express a wide variety of acetylcho-
line (ACh), glutamate, GABA, and serotonin receptors. This

profile is unique to the IPN and differs significantly from cholin-
ergic MHb neurons (Fig. 1D and Datasets S1 and S3–S5). Consis-
tent with existing data (17, 18), we found that α5+ cells were also
enriched in Sst and Nos1; however, the α5-Amigo1 population was
more highly enriched for these two transcripts than the α5-Epyc
population (Fig. 1D). MHb ChAT neurons express the receptors for
both neurotransmitters at higher levels than IPN neurons (Sstr2 and
Sstr4, Gucy1b3 and Gucy1a3) (Fig. 1D). High expression of these
and other enriched TRAP-translated mRNAs in the two IPN
populations matched the in situ hybridization signal of mRNA
transcripts in the Allen Brain Atlas (Fig. S2). Analysis of the three
populations revealed a great deal of similarity among them (Fig.
1E), although the profiles for α5-Amigo1 and α5-Epyc indicate that
these are distinct subpopulations of α5-expressing IPN neurons.

α5-Amigo1 and α5-Epyc Cells Are Two Nonoverlapping Populations with
Complementary Distribution in the IPN. To determine the distri-
bution of the two subpopulations, we employed Cre-dependent
adeno-associated virus (AAV)-DIO-EGFP-L10a to label nuclei,
AAV-DIO-ChR2-eYFP to label axons and dendrites, and AAV-
DIO-mCherry to label cell bodies and, to a lesser extent, dendrites
(Fig. 2A). While both α5-Amigo1 and α5-Epyc cells are distributed
throughout the rostral nucleus of the IPN (IPR), α5-Epyc cells are
also found in the intermediate nucleus (IPI) (Fig. 2A). Note the
complementary distribution of processes in the ventral half of the
IPN between α5-Amigo1- and α5-Epyc-labeled neurons. To de-
termine the overlap between populations, we crossed Amigo1-Cre
mice with Epyc-EGFP mice and injected AAV-DIO-ChR2-
mCherry to distinguish α5-Amigo1 cells (red) from α5-Epyc cells
(green) in the same animal (Fig. 2 B–D and Fig. S3). Confocal
imaging in the IPN showed that no cells were colabeled and
allowed us to trace the anterograde projections of each population
(Fig. 2 B and C and Fig. S3 A–C). α5-Amigo1 cells contribute the
majority of projections from the IPN to the median (MR), para-
median (PMR), and the DR, as well as the area surrounding the
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Fig. 1. TRAP profiling reveals two subsets of α5
neuronal populations in the IPN. (A) Chrna5-Cre mice
(Top) crossed to EGFP-L10a reporter mice were used
for TRAP. (Bottom) Scatterplots of average TRAP IP
samples (y axis) versus input samples (x axis) represent
enriched (>0.6 log2 fold change, blue) or depleted
(less than −0.6 log2 fold change, magenta) trans-
lated mRNAs. Highly enriched mRNAs for Amigo1
and Epyc were identified for further characterization.
(B) Amigo1-Cre::EGFP-L10a mice (C) and Epyc-Cre::
EGFP-L10a mice were employed for TRAP and showed
enriched mRNAs for Chrna5-Chrna3-Chrnb4 as in-
dicated in the corresponding scatterplots. (A–C) (Scale
bar: low magnification 1 mm, high magnification
200 μm.) Images courtesy of GENSAT.org. (D) Expres-
sion levels (z-score transformed normalized counts) of
receptors and neurotransmitters in the three IPN
populations as well as in ChAT MHb neurons. (E)
α5-Amigo1 and α5-Epyc cells share a large number of
enriched and depleted mRNAs with Chrna5 cells.
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laterodorsal tegmentum (LDTg). There is also a small ascending
projection back to the MHb and to the thalamus (Fig. S3A). Note
that the Epyc-EGFP population appears to be composed of several
local populations in the IPN and along the IPN–raphe axis (Fig. 2 B
and C and Fig. S3C). Within the IPN, local projections between the
two IPI areas were evident (Fig. 2A and Fig. S3C) and confirmed by
streptavidin filling in acute slices (Fig. S3E). We next performed
retrograde experiments to trace the monosynaptic inputs to
α5-Amigo1 and α5-Epyc populations using Cre-dependent rabies virus
(21). We found that both α5-Amigo1 and α5-Epyc populations receive
major input from the MHb and raphe (Fig. 2 E and F and Fig. S3
D–F). Smaller sources of direct input to the IPN included the
septum and a previously uncharacterized projection from the pre-
frontal cortex. No striking differences were observed between
α5-Amigo1 and α5-Epyc inputs, although α5-Amigo1 appeared to have a
larger component of input from the medial septum and dorsal ra-
phe. Together these data show that α5-Amigo1 and α5-Epyc are two
nonoverlapping IPN populations that both receive their main input
from the MHb, but that one projects locally (α5-Epyc) while the
other (α5-Amigo1) sends long projections to raphe and LDTg areas.

Chronic Nicotine Increases Sst and Nos1 in α5-Amigo1 Neurons. Given
that habenulo-interpeduncular α5 has a critical role in nicotine
reward and withdrawal (6, 7, 11), we sought to determine whether
nicotine can induce molecular changes in IPN neurons carrying
α5 receptors. To this end, we administered nicotine in the drinking

water of Amigo1-Cre::EGFP-L10a and Epyc-Cre::EGFP-L10a mice
for 6 wk before performing TRAP. We found that chronic nicotine
significantly changed the translational levels of a large number of
genes in α5-Amigo1 cells (300 mRNAs up-regulated and 1,539
mRNAs down-regulated, Datasets S6–S9). Strikingly, despite the
fact that α5-Epyc cells express similar amounts of Chrna5-translated
mRNAs as α5-Amigo1 (Fig. 3A), chronic nicotine altered the levels of
a much smaller set of genes in these cells (24 mRNAs up-regulated
and 51 down-regulated mRNAs, Datasets S10 and S11). The RNA-
Seq normalized counts for the different nicotinic receptor subunits
did not change with chronic nicotine in any of the populations, ex-
cept for a significant increase of Chrna2 mRNAs in α5-Amigo1 cells
(Fig. 3A and Datasets S6–S14). Of the large number of mRNAs
regulated in α5-Amigo1 cells, Sst and Nos1 mRNA induction was re-
markable (log2 fold change 1.37 for Nos1 3′ UTR and 2.67 for Sst,
Fig. 3B and Datasets S6–S9). We confirmed that this increase in
translated mRNAs corresponded to an increase at the protein level
(Fig. 3 C and D). Comparison of TRAP mRNA-Seq of different
brain cell types showed that Nos1- and Sst-translated mRNA levels
are extremely high in α5-Amigo1 cells, while subunits for the NO re-
ceptor soluble guanylyl cyclase (GC) Gucy1a3, Gucy1b3, and SST
receptors Sstr2 and Sstr4 are expressed in several cell types and at
high levels in cholinergic habenular neurons (22, 23) (Fig. 3E). Ex-
pression of NOS1 in Amigo1-Cre but not Epyc-Cre neurons, as well
as GUCY1B3 and SSTR2 in the MHb and its projections to the IPN
were confirmed by immunohistochemistry (IHC) (Fig. 3F and Fig.
S4). These data demonstrate that chronic exposure to nicotine
strongly and specifically impacts the α5-Amigo1 subpopulation of IPN
neurons, suggesting adaptive changes in these cells that may play a
crucial role in the establishment of dependence.

IPN Neurons Provide Feedback Inhibition to MHb via NO and SST.
Given that IPN α5-Amigo1 neurons enriched in Nos1 and Sst are
synaptically connected to MHb neurons (Fig. 2), and that MHb
ChAT neurons express the receptors for NO and SST (Figs. 1
and 3), we sought to determine whether there was a functional
connection between the IPN and MHb utilizing these neuro-
transmitters. We performed slice electrophysiology in ChAT-
ChR2 mice. These mice express channelrhodopsin in cholinergic
MHb neurons, which heavily innervate the NOS1-enriched area in
the IPN (Fig. 4 A–C). Photostimulation of cholinergic axon terminals
has been shown to evoke postsynaptic responses in IPN neurons
mediated by glutamate and ACh corelease (24). Application of so-
dium nitroprusside (SNP), a nitric oxide donor, in the presence of
nAChR blockers, suppressed light-evoked excitatory postsynaptic
currents (EPSCs) in the IPN, indicating that NO decreases glutamate
release fromMHb terminals (Fig. 4D–F). This effect was long lasting
and recovered minimally after washout. Glutamate release from MHb
terminals was also suppressed by erythro-9-(2-hydroxy-3-nonyl)adenine
(EHNA), an inhibitor of the cGMP-activated phosphodiesterase
PDE2A, and was not further suppressed by addition of SNP (Fig.
S5), indicating that the NO suppression is mediated by an in-
crease in cGMP in habenular neurons. Similarly, application of
SST to ChAT-ChR2 brain slices reduced light-evoked EPSCs in
the IPN, with greater recovery after washout (Fig. 4 G–I). This
presynaptic inhibition is most likely mediated by SSTR2 and
SSTR4 receptors (Gi/o signaling), which are heavily expressed in
MHb ChAT neurons (Figs. 1 and 3). These results demonstrate
strong presynaptic inhibition of habenular neurons by NO and
SST. Since nicotine up-regulatesNos1 and Sst expression in α5-Amigo1

cells, these data suggest important physiological and behavioral roles
for these neurotransmitters in modulation of synaptic transmission
by cAMP- and cGMP-signaling pathways in the MHb/IPN circuit.

Silencing α5-Amigo1 Cells or Inhibiting NO Production in the IPN Eliminates
Nicotine Preference. Finally, to investigate the functional role that
α5 cells might play in the behavioral response to nicotine, we utilized
AAVs expressing Cre-dependent membrane-tethered Ca2+-channel
toxins (tToxins) that prevent neurotransmitter release (25) to silence
either α5-Amigo1 or α5-Epyc cells in the IPN (Fig. 5A). Mice were
subjected to a battery of tests to explore any behavioral consequence

Fig. 2. α5-Amigo1 and α5-Epyc cells are two distinct, complementary IPN pop-
ulations. (A) Amigo1-Cre and Epyc-Cre mice were injected with the indicated
AAVs to label distinct cell compartments and determine the population dis-
tribution. α5-Amigo1 and α5-Epyc cells are present in the rostral subnucleus (IPR),
but α5-Amigo1 cells are largely excluded from the intermediate subnuclei (IPI),
where α5-Epyc cells are densely distributed. (Scale bar: 100 μm.) (B) Anterograde
tracing in Epyc-EGFP × Amigo1-Cre mice injected with DIO-ChR2-mCherry
shows dense Amigo1 projections (red) from IPN to caudal structures relative to
Epyc projections (green). (Scale bar: 200 μm.) (C) Schematic representation of
Amigo projections (red) and Epyc projections (green). Epyc cells appear to be a
series of local interneurons along the IPN–raphe axis, with a relatively minor
projection from IPN to raphe and caudal structures. (D) Coronal sections cor-
responding to the dashed lines in A. (Scale bar: 200 μm.) (E and F) Retrograde
tracing with rabies virus in Amigo1-Cre and Epyc-Cre mice. Coronal sections of
IPN from Amigo1-Cre (E) or Epyc-Cre (F) mouse injected with DIO-TVA-
mCherry and DIO-rabies G protein (1:1, red, Left) followed by injection of EnvA
G-deleted rabies-EGFP to label monosynaptic inputs (green, Right). (Scale bar:
low magnification 500 μm, high magnification 100 μm.)
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of silencing α5 cells. No significant differences were observed be-
tween control- and tToxin-injected animals in locomotion, anxiety,
despair, or in sensory gating tests (Dataset S15). We performed
conditioned place preference (CPP) for a rewarding dose of nicotine,
0.35 mg/kg free base. Silencing α5-Amigo1 cells prevented place pref-
erence for nicotine, whereas silencing α5-Epyc cells had no effect (Fig.
5B). Similar to CPP results, Amigo1-Cre mice injected with tToxins
consumed less nicotine than control mice, while silencing IPN cells in
Epyc-Cre mice had no effect on consumption (Fig. 5C). Given these
differences in the response of nicotine between populations, we
performed electrophysiological recordings. Patch-clamp recordings
with local puff application of nicotine showed large nAChR-evoked
currents in α5-Amigo1 cells (Fig. 5D). Within the α5-Epyc population we
distinguished two types of populations with distinct morphology and
basic electrophysiological properties (Fig. 5E and Fig. S6). α5-Epyc
cells in the IPR showed similar nicotine-evoked current amplitudes as
α5-Amigo1 cells (the majority of which are in the IPR), while strikingly,
α5-Epyc cells in the IPI, which constitute the majority of the α5-Epyc
population, responded poorly to nicotine (Fig. 5E). Given these IPN
regional differences in the response to nicotine and the enrichment of

NOS1 in the IPR, we next sought to determine a possible role of
Nos1 in nicotine reward. We injectedWTmice with AAV-expressing
shRNA against Nos1 (Fig. 5F) and found that, similar to silencing
α5-Amigo1 cells, knockdown ofNos1 locally in the IPN was sufficient to
block preference for a rewarding dose of nicotine (Fig. 5G). These
results demonstrate that a specific subset of α5+ IPN neurons re-
spond at the molecular level to chronic nicotine exposure and that
these adaptive changes may in turn play a crucial role in the estab-
lishment of dependence.

Discussion
In this study, we employed translational profiling to identify a
neuronal population in the IPN that expresses high levels of
α5 nAChRs and responds to chronic nicotine by up-regulating
Nos1 and Sst. We find that NO and SST application in the IPN
abolishes synaptic release from habenular neurons enriched in
receptors for both neurotransmitters. Inhibition of retrograde
signaling, either by silencing neurotransmitter release from the
α5-Amigo1 population or knocking down NO production in the IPN,
eliminates preference for a rewarding dose of nicotine. Our data
demonstrate a strong effect of nicotine on the production of NO
and SST and delineate a signaling pathway that provides pre-
synaptic inhibition as an adaptive mechanism to locally reduce the
activity of the Hb-IPN circuit in response to chronic nicotine.
Unlike classical neurotransmitters that transfer information

from axonal presynaptic release sites to postsynaptic receptors,
neuropeptides and NO ignore directionality of information flow
and can transmit signals outside the typical synapse. Neuropep-
tides, including SST, can be released from dendrites, soma, and
axons (26), while NO is a membrane-permeable hydrophobic gas
(27, 28). While this is a study that examines the functional role of
SST and NO in the IPN, critical roles for NO and SST signaling in
neuronal plasticity and transmission have been established in
other areas of the brain (29–31). For example, SST interneurons
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in the neocortex serve as prominent sources of inhibition, in part
via activation of SSTR2/4 (Gi/o inhibitory) that reduce cAMP and
suppress neuronal firing in pyramidal neurons (29). We believe a
similar situation occurs in the MHb/IPN where SST release from
IPN activates habenular SSTR2/4, reduces cAMP, and inhibits
presynaptic neurotransmission. In favor of this hypothesis, raising
cAMP levels has been shown to increase glutamatergic EPSC
amplitudes in the IPN (32), and activation of GLP-1 receptors (Gs
coupled) diminished nicotine self-administration, an effect that
can be counteracted by a cAMP inhibitor (33). Likewise, in
habenular neurons cGMP production has been shown to activate
PDEA2, which depletes cAMP levels and suppresses presynaptic
neurotransmission (34). We predict that NO binding to soluble
GC activates this cascade, since NO suppression of glutamate
release is blocked by PDE2A inhibitors. Taken together these
and the present studies indicate that cGMP–cAMP fluctuations
in habenular terminals critically influence nicotine consumption.
The MHb/IPN circuit is structurally complex, with multiple en

passant synapses present on MHb axons that crisscross the IPN
multiple times (35) (Fig. S3D). This unique anatomy may be
required to facilitate retrograde volume transmission of NO and
possibly SST. It has been shown, for example, that an array of
puncta 2 μm apart is necessary for volume transmission by NO
(36). Although glutamate release from the MHb may be sufficient

to activate NOS1, as canonically its activation is directly linked to
calcium influx through NMDA receptors, NOS1 can also be
coupled to nicotinic receptors as previously observed in auto-
nomic neurons in the periphery (37). We speculate that the high-
frequency corelease of glutamate and ACh by MHb is required for
maximal NO production. Data from cortex and hippocampus
suggest that spike burst patterns are highly effective at inducing
neuropeptide and NO release, with increased frequency of action
potentials increasing neuropeptide release from both axons and
dendrites (26, 36). Given that habenular neurons employ pace-
making, firing at roughly 10–20 Hz (16), one could postulate that
the increase in SST seen with chronic nicotine is due to increased
pacemaking of habenular neurons. The mechanism of neuropep-
tide release, like neurotransmitter release, is calcium dependent,
and our findings here suggest that tToxins likely affect release of
SST by blocking calcium influx associated with depolarization, as it
has been shown that some neuropeptides utilize P/Q- and N-type
voltage-gated calcium channels for dendritic release (26).
One of the most striking findings is that despite expressing

similar amounts of α5 receptors, the α5-Epyc population demon-
strated no appreciable molecular or behavioral changes in response
to acute or chronic nicotine. Is there a limiting factor? A possible
explanation is that the α2 nicotinic receptor subunit is strongly up-
regulated with nicotine in α5-Amigo1 cells (Fig. 3A). α2 predomi-
nantly associates with β2 subunits in the IPN (38) and reconstitu-
tion of α2α5β2 heterodimers in lipid bilayers forms functional
channels with nanomolar agonist affinity similar to α4β2 receptors
(39). Since α5, α2, and β2 subunits are well expressed in the IPN
(Fig. 3), and α5 and α2 null mice have similar nicotine-related
phenotypes: potentiated self-administration (6, 40) and reduced
withdrawal in a habituated environment (11), it seems likely,
therefore, that these subunits work together in the IPN and that
nicotine stimulation of α2 further amplifies the response of
α5-Amigo1 cells to nicotine. In favor of this hypothesis we observed
high nicotine-evoked currents in the IPR where α2 and α5 coexist
[see in situ hybridization (ISH) in Fig. S2] but not in the IPI region
where the nonresponsive α5-Epyc subpopulation is located (Fig. 5).
Interestingly human genetic studies have linked nicotine de-
pendence not only to CHRNA5 variants (4, 41) but also more re-
cently to CHRNA2 (42). IPI α5-Epyc cells also specifically express
Lynx1 (Fig. S2 and Dataset S4), a prototoxin modulator that limits
nAChR currents, that could have an important influence on its
responses to nicotine (43). The fact that ChAT MHb neurons also
display no translational changes to nicotine exposure (Fig. 3 and
Datasets S13 and S14) provides additional support for the hypothesis
that responses to chronic nicotine must reflect specific nAChRs and
modulators that are characteristic of that cell type.
Although the molecular adaptations that occur in α5-Amigo1

neurons must play an important role in the behavioral differ-
ences we have documented here, it is important to note that their
signaling to the raphe and LDTg (Fig. 2 and Fig. S3) may also
modulate the circuit. In this context, it is particularly interesting
that serotonergic neurons in the raphe also express high amounts
of the soluble GC dimer Gucy1a3/b3 (Fig. 3, serotoninergic
cells). Since the IPN is reciprocally connected to raphe and ret-
rogradely connected to MHb, nicotine activation of the IPN could
release NO to synchronously suppress the activity of MHb, IPN,
and raphe. This possibility will require additional investigation of
the specific responses of raphe neurons to α5-Amigo1 activation in
the context of NO inhibition. Taken together, these results high-
light the critical role of a unique α5 population in the IPN in
detecting and signaling nicotine in the brain.

Methods
Details for all materials and methods can be found in SI Materials
and Methods.

Mice.All studieswere done in accordancewithNational Institutes ofHealth and
Institutional Animal Care andUse guidelines. All procedures and protocolswere
approved by the Animal Care Committee of The Rockefeller University. In-
formation regarding specific lines used are in SI Materials and Methods.
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Translating Ribosome Affinity Purification and RNA-Seq. TRAP was conducted
in at least duplicates as previously described (SI Materials and Methods).
Immunoprecipitated (IP) and total mRNA fractions purified for TRAP were
subjected to RNA sequencing on an Illumina HiSEq 2500.

Histology and Confocal Imaging. Staining of sections from Chrna5-eGFP,
Amigo1-Cre, and Epyc-Cre mice with anti-GFP, anti-mCherry, anti-ChAT,
anti-NOS1, anti-GUCY1B3, and anti-SSTR2 antibodies was done as described
in SI Materials and Methods.

Nicotine Treatment. All nicotine doses are reported as free base. For acute
nicotine, mice were administered 0.35 mg/kg, i.p. For chronic nicotine ex-
posure, mice were given nicotine (500 mg/L) in the drinking water for 6 wk.

Surgical Procedures for Microinjections.Mice were injected with the indicated
virus into the IPN (coordinates, anteroposterior, −3.6 mm from Bregma; medio-
lateral, −1.7 mm from midline; dorsoventral, −5 mm from dura, 20° angle).

Electrophysiological Recordings. For whole-cell recordings of the NO and SST
effects, patch pipettes were filled with internal solution that contained the
following (in millimoles): 130 K-gluconate, 10 Hepes, 0.6 EGTA, 5 KCl, 3
Na2ATP, 0.3 Na3GTP, 4 MgCl2, and 10 Na2-phosphocreatine. Cells were
recorded at 30–33 °C. For full details see SI Materials and Methods.

Statistical Analysis. Sets of data are presented by their mean values and SEMs.
The unpaired one- or two-tailed Student t test was used when comparing
two sets of data with normal distribution.
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