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Abstract. This study’s purpose was to develop and validate a method to estimate patient-specific detectability
indices directly from patients’ CT images (i.e., in vivo). The method extracts noise power spectrum (NPS) and
modulation transfer function (MTF) resolution properties from each patient’s CT series based on previously vali-
dated techniques. These are combined with a reference task function (10-mm disk lesion with —15 HU contrast)
to estimate detectability indices for a nonprewhitening matched filter observer model. This method was applied to
CT data from a previous study in which diagnostic performance of 16 readers was measured for the task of
detecting subtle, hypoattenuating liver lesions (N = 105), using a two-alternative-forced-choice (2AFC) method,
over six dose levels and two reconstruction algorithms. /n vivo detectability indices were estimated and com-
pared to the human readers’ binary 2AFC outcomes using a generalized linear mixed-effects statistical model.
The results of this modeling showed that the in vivo detectability indices were strongly related to 2AFC outcomes
(p < 0.05). Linear comparison between human-detection accuracy and model-predicted detection accuracy (for
like conditions) resulted in Pearson and Spearman correlation coefficients exceeding 0.84. These results sug-
gest the potential utility of using in vivo estimates of a detectability index for an automated image quality tracking
system that could be implemented clinically. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)[DOI: 10.1117/1.JM1.5.3

.031403]
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1 Introduction

A key goal of image quality assessment is to ensure that the
images presented to radiologists contain sufficient and clear
information, so readers may perform given task(s) pertaining
to the state of the patient.'™ The emerging landscape of preci-
sion medicine in the practice of imaging requires such an assess-
ment to ensure consistent, high-quality care to each patient. To
do so, methods have been developed to assess the image quality
of images. These methods broadly fall into one of three catego-
ries: (1) objective, phantom-based methods, (2) preference-
based methods, and (3) cohort-based methods. Some of these
methods have been incorporated into yearly assessments
required by clinical imaging accreditation bodies. For example,
in the case of the American College of Radiology, images of a
specified phantom and a small sample of patient images are
assessed to ensure that they fall within certain expectation of
quality.® However, from such efforts the quality of image-spe-
cific care can only be inferred, as phantom images do not fully
represent clinical quality and clinical images are only sparsely
sampled. To fulfill the expectations of precision medicine, a
clinical imaging operation needs to monitor its image quality
with relevant, higher sampling, and objective assessment
beyond those possible by current assessment methods.

The current methods of measuring image quality are of three
types: the first method is based on objective measures from
phantom images. Phantom-derived measures of image quality
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can be based either on simple measurements of the technical
capacity of a system (e.g., noise, resolution, and c:ontr21st),1’3’7’8
or on more complex statistical metrics grounded in detection
theory, which combine these fundamental, simpler aspects
together.'*>>!% The simpler metrics, though well-defined and
functionally straightforward to measure, do not constitute a
straightforward correspondence to clinical outcomes. To
approach clinical correspondence, the aspects of noise, resolu-
tion, and contrast have been extended to a statistically based
detectability index (d’) using observer models. In this way,
the detectability index is a step toward clinical relevance.
However, methods for measuring d’ only exist within the con-
text of in-phantom measurements, which lack anatomical
complexity.

The second type of image quality assessment is comprised of
preference-based methods. Preference-based methods aim to
address the lack of anatomical complexity in phantoms through
subjective assessment of image quality in a collection of
actual patient images.®!!~1* In this type of assessment, readers
are asked to rate the quality of images by assigning each image a
quality score on a Likert-type scale. Studies based on subjective
scoring are somewhat vulnerable to the biases and personal pref-
erences of the expert readers. As a result, images with unique or
properties (e.g., noise texture of iterative reconstruction) may be
scored lower owing more to reader unfamiliarity than to
degraded diagnostic performance.'> Additionally, another draw-
back to these studies is that they require human input and feed-
back. As such, this type of study would be infeasible to conduct
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on a frequent basis as a means of real-time tracking the quality
of the clinic.

In the third method of image quality assessment, observers
are asked to ascertain the presence of an abnormality in detec-
tion-based observer studies. This method does not have the sub-
jectivity of the preference-based methods. However, as in that
method, the measured image quality pertains to a cohort of
images rather than an individual case. Additionally, conducting
cohort-based observer studies is costly. Observer studies are
labor-intensive, and gathering interest from expert readers can
be difficult.>*'" Radiologists are either asked to donate their
time to complete such studies or are compensated monetarily.
As such, these studies are financially and laboriously burden-
some and not feasible for clinical needs.

Although each of the aforementioned methods has its bene-
fits as a means of quantifying image quality, each also has draw-
backs that make it cumbersome or suboptimal for monitoring
the performance of an imaging clinic on a routine basis. To
track image quality in a practical, relevant, and patient-specific
manner, an ideal examination method would combine the objec-
tivity of phantom-image-based d’ measurements with the ana-
tomical realism provided by assessing patient images. The
method should also be image-specific, rather than cohort-based,
to make a statement about the quality of each image acquired in
the clinic. Furthermore, such a quantification of image quality
should be neither exhaustive of a clinic’s resources of money or
reader-time nor heavily reliant on user-feedback.

Prior work has attempted to overcome some of the limita-
tions of the aforementioned methods by measuring noise,
contrast, and resolution in individual patient images (i.e., in
vivo).'*!® This approach offers patient-specific characterization
of image quality, which further facilitates patent-based quality
monitoring. However, the attributes of noise, contrast, or reso-
lution by themselves provide isolated depictions of image qual-
ity, not capturing the overall attribute of an image to depict a
potential abnormality.

This work seeks to develop and validate an economical,
objective, and patient-task-specific method of estimating a
detectability index automatically from patients’ CT series.
The detectability index estimate was calculated based on the
aforementioned patient-specific measurements of resolution
and noise. The in vivo detectability index was sought to serve
as a means of inferring the detection performance of radiologist
observers. As such, the study investigated the concordance of
the index against observer reading of clinical images. The
index was implemented such that it could feasibly be used to
track a clinic’s image quality over a large population of patients
and across protocols.

2 Methods

2.1 Detectability Index Estimations

The in vivo detectability index estimate is based on the nonpre-
whitening (NPW)-matched filter observer model, which is
implemented in the Fourier domain. It is informed by individual
patient images and denoted as dj, ;. The detectability index esti-
mate d/ , is calculated using both patient-specific measurements
of resolution and noise magnitude, as well as a noise power
spectrum (NPS).

The resolution measurements are made according to a
previously published method,'® where an image edge-spread
function is estimated using the air—skin interface. After the
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edge-spread function is differentiated to yield a line-spread
function, it is Fourier transformed and normalized, resulting
in a modulation transfer function (MTF) for the dataset.

The noise is calculated from patient images using a method
that was investigated in a previous publication.'® This method
measures image noise in two steps. The first step consists of
thresholding the image to isolate soft tissue (—300 to 300
HU accepted inclusively). Then, a region-of-interest is swept
throughout the identified soft-tissue regions, resulting in a histo-
gram of local standard deviations. The mode (i.e., peak) of the
histogram is recorded as the global noise magnitude in the
image. The patient-specific NPS is taken as a modified phan-
tom-derived NPS whose magnitude is scaled to match the mea-
sured variance from the patient image. The functional form of
the phantom-derived NPS is measured on a homogenous region
of the mercury phantom (Duke University) using the methodol-
ogy of Chen et al."

Finally, the MTF and NPS are combined with an assumed
task function (10-mm disk lesion with contrast of —15 HU)
to compute a detectability index for an NPW matched filter
model observer as’

2 [J[W(u.v)]? - MTF?(u, v)dudv]?
e J ‘W(“’ ”)’2 - MTF?(u, v) - NPS(u, v)dudv’
(1

where u and v correspond to the x- and y-direction spatial
frequencies, MTF(u, v) is the modulation transfer function,
NPS(u, v) is the noise power spectrum, and W(u, v) is the
Fourier transform of the task function (whose spatial domain
representation is a statistically averaged in-slice representation
of the inserted lesions). If this detectability index is calculated
using an MTF and NPS, which have been derived from individ-
ual patient images (i.e., measured in vivo), we denote the detect-
ability index as dj .

2.2 Human Detectability Data

Using the method described above, dj, ; was measured on a col-
lection of patient CT images and validated against the results of
the human-observer detection study. The patient data for this
study were drawn from a previous human-perception experi-
ment,”® in which abdominal scans of 21 patients were acquired
on a dual source CT system (Siemens SOMATOM Flash). Each
subject was scanned at two different dose levels, under an
Institutional Review Board approved protocol, corresponding
to a 50% and 100% dose CT scan. Projection data from each
of the dual x-ray sources were reconstructed to create scans cor-
responding to a total of six different dose levels®' for each
patient. Subtle hypoattenuating liver lesions (five per patient,
105 total, prereconstruction contrast of —15 HU, 12-mm diam-
eter) were generated and virtually inserted into the raw CT pro-
jection data®® before reconstruction. Images were reconstructed
using filtered backprojection (FBP) (B31f kernel) and SAFIRE
(I31f kernel, strength of 5) resulting in a total of 252 CT series
(21 patients, 6 dose levels, and 2 reconstructions).

Using a two-alternative-forced-choice methodology (2AFC),
16 readers (6 radiologists and 10 medical physicists) were
shown two regions of the patient’s liver and asked to identify
the region that contained the liver lesion. A mock example of
one such 2AFC decision is shown in Fig. 1. The 6 dose levels,
2 reconstruction algorithms, 105 lesions, and 16 readers
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With lesion

Without lesion

Fig.1 A mock example of a 2AFC decision presented to readers. The
arrow indicates a virtually inserted, subtle, hypoattenuating lesion.
Over 10,000 trials were conducted for each of the two reconstruction
methods.

constituted more than 20,000 total 2AFC trials. The binary
responses from these trials were compared with the in vivo
detectability index values as described below.

2.3 Statistical Analysis and Validation
2.3.1 Comparison between 2AFC outcomes and di.

Validation of the detectability index estimates consisted of four
steps. In the first step, we confirmed that the proposed method-
ology yielded a detectability index which was related to lesion
detection. That is, the d/ ; was measured for each inserted lesion
in the 2AFC human-observer study and compared with detec-
tion outcomes of that 2AFC trial. A single 2AFC trial consisted
of a binary response (VK'Y =1 for “detected” or “MY =0
for “missed”) for a specified combination of the following
conditions: reader “i” (i ¢ {1, 2, ..., 16}), dose level
“ G e {12.5%, 25%, 37.5%, 50%, 75%, 100%}),
reconstruction algorithm “k” (k ¢ {“FBP,” “SAFIRE”}), and
lesion “I” (I € {1, 2, ..., 105}). This step consisted of a com-
parison of each measured detectability index estimate, /¥d/ ., to
the corresponding binary perception-study outcome, /*'Y, using
a generalized linear mixed-effects statistical model (probit link
function, linear terms only, and no interactions). The human-
observer data demonstrated high interreader variability, and
thus a random reader term was included in the model as

P(HY = 1) = ®(u + ¥d!  + R,), @

where XY is the reader outcome,  is an intercept term, “*d! |
is the measured lesion detectability index estimate, and R; is a
categorical random effects term for reader i. All data were
pooled (i.e., all i, j, k, and [ combinations were included) to
fit the model.

2.3.2 Model-predicted versus observed accuracies

In the second step of validation, we assessed how indicative our
detectability index estimates were of the results of a cohort-
based study. The cohort-based study is the current gold standard
of image quality assessment. Therefore, cohort-based detection
accuracies represent the natural benchmarks against which to
test the d;, ;-predicted accuracies. In this method, human-detec-
tion accuracies were calculated by averaging the detection accu-
racy for a fixed observer and a fixed dose level over all lesions.
This amounted to fixing i, j, and k and averaging binary
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detection responses over L. As such, these human-observer accu-
racies are denoted as Ag.‘,im"“‘. Model-predicted accuracies were
taken as the average predicted accuracy of lesions averaged in

the same way and denoted as A%‘,?d‘fl:

105 lesions

1 .
Agiman - ﬁ Z ljle, (3)
=1
1 lOSisfons
Aliv‘llgdel - P(iijY — 1)
J 105 4
1 105 lesions B
=105 > Ou+ Ml +R;). 4)

=1

As such, this measurement reflected a cohort-based measure
of the detection accuracy of a representatively average lesion in
the given image acquisition conditions.

2.3.3 Sensitivity to reconstruction algorithm

The third validation method is focused on the validity of the
proposed measurement methodology in light of different
reconstruction algorithms. One advantage of using a detectabil-
ity index as a metric of image quality is that, by definition, it can
be used to compare images with vastly different physical proper-
ties (e.g., varying noise texture, resolution, three-dimensional
versus two-dimensional, different modalities, etc.). A detection
scale is agnostic to the underlying conditions under which an
image is formed and speaks directly to how well an image
can be used for a given task. This fact is what makes d’
potentially more useful than traditional image quality metrics
such as pixel standard deviation or contrast-to-noise ratio.
For example, a d’ value should not have to be qualified by
which reconstruction algorithm was used to form the CT images
despite different algorithms (e.g., FBP versus iterative) having
distinct noise and resolution properties. Since one future appli-
cation of this automated image quality assessment method is to
compare how reconstruction algorithms perform on real-world
clinical images, it was important to verify that (a) the method is
sensitive to changes in reconstruction settings and (b) changes in
measured d’ between reconstruction algorithms were reflective
of corresponding changes in human-detection accuracy.

If d, was not reflective of how the human readers
performed differentially between reconstruction settings, one
would expect a clustering of data points according to
reconstruction algorithms on a plot of model-predicted detection
accuracy versus human-detection accuracy. Therefore, to ensure
that d, responds properly to different reconstruction algo-
rithms, we tested whether it was possible to classify data points
as either FBP or SAFIRE on a model-predicted versus observed
scatter plot using a linear discriminant. This analysis was
previously used by Solomon and Samei' to test if different
observer models responded properly to different reconstruction
conditions. In this analysis, a higher reconstruction algorithm
classification error implies that d;, is properly sensitive to
the effect that the reconstruction algorithm has on detection
accuracy.

For this analysis of d/; as a function of the reconstruction
algorithm, we also compared the average predicted and
observed detection accuracies as a function of dose level.
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This amounted to comparing the predicted and observed average
accuracy for V¥ d] | after averaging over readers i and lesions /
for a given reconstruction k at a given dose j. The purpose of this
comparison was to assess to what degree the d/ ; predictions are
able to reproduce Solomon’s results>’ of detection accuracy as a
function of dose and reconstruction algorithm

1 16 readers 105 lesions

Z ijkIY’ (5)

i=1 =1

AHuman —

K105 % 16

1 16 readers 105 lesions N
A = o5 ie 2 (e + My + R,).
i=1

=1

(6)

2.3.4 Comparison to individual factors

In the final validation, we investigated if there was appreciable
benefit to using the d/; as a predictor of lesion detection rather
than just using image noise or resolution. To assess this, we re-
created two new generalized linear mixed-effects statistical

models (probit link function, linear terms only, and no

interactions) as in Sec. 2.3.1. The two new models were
informed solely by representative statistics of (a) image noise
and (b) resolution, instead of d},. For the noise-informed
model, we used the image noise calculated in the way previously
described in Sec. 2.1. For the descriptive statistic of image res-
olution, we used the cutoff frequency, at which the MTF is
reduced to 1/2 of its maximum normalized amplitude.

In all cases of statistical analysis, variability in statistical
measures of correlation coefficients and R-squared values
was estimated at 95% confidence intervals using a bootstrapping
methodology with 100,000 replicates.

3 Results

Figure 2 shows three patient datasets reconstructed with FBP at
three different dose levels. The red arrow indicates the location
of an inserted task function to accentuate the visibly apparent
differences in lesion conspicuity and detectability for some val-
ues of measured d, ,. Here, a higher value of d/ ; denotes a slice
in which lesions would be more easily detectable.

The comparison of each measured detectability index to
the corresponding binary perception-study outcome (i.e.,
“detected” or “missed”) indicated a strong connection between
the in vivo detectability index and lesion detectability

d'ng=0.99

Sharper MTF

NS

Lower noise >

Fig. 2 FBP reconstructions of three patient datasets at varying radiation dose levels. The image noise
decreases along rows from right to left. The image sharpness increases along columns from top to bot-
tom. The red arrow indicates the insertion of the desired task function to visually indicate the conspicuity
of representative lesions in each dataset. Listed values are d; ; measurements for each of the corre-

sponding slices.
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Table 1 Fit results from the generalized linear mixed-effects modeling. Linear fit results indicated the strong predictive capability of this dj ,
(p < 0.05). AIC, Akaike information criterion; BIC, Bayesian information criterion; and STD, standard deviation.

Output of the generalized mixed effects linear regression model

Model form

P (Y =1) = ®(u+ Mdp + Ry)

A: Fixed effects

Effect Estimate Standard error t statistic p value 95% ClI
Intercept (u) 0.27914 0.059425 4.6974 2.65x107° 0.16266, 0.39562
In vivo detectability index (/'d} ,) 0.21229 0.016119 13.17 1.89 x 10%° 0.1807, 0.24389
B: Random effects
Effect N level Type STD
Reader (R;) 16 Intercept 0.20537
C: Fit statistics
Parameter AlC BIC Log likelihood Deviance
Model 69953 69976 —34973 69947

(p <0.05). Table 1 summarizes the results of the statistical
model for the FBP-reconstructed and iteratively-reconstructed
datasets, respectively. This suggested that the image resolution
and in-plane noise influenced the ability of radiologists to detect
lesions. This influence was reflected in our d/ ; measurement
methodology on an image-by-image basis.

The comparison between all model-predicted accuracies and
human-observer detection accuracies showed strong Pearson
and Spearman correlations of 0.84 £0.04 and 0.85 % 0.04,
respectively. The R-squared of the data was 0.71 4 0.06.
When considered alone, the Pearson and Spearman correlations
and the associated R-squared value for the FBP-reconstructed
data showed similar concordance between the predicted and
observed accuracies for this reconstruction. When considered
alone, the corresponding correlations and R-squared value for
the SAFIRE-reconstructed data also indicated similar agreement
between model-predicted and observed accuracies for SAFIRE
reconstructions. The correlations and R-squared values calcu-
lated for each of these subsets of data (i.e., divided by the
reconstruction algorithm) are shown in Fig. 3.

Figure 3 shows the model-predicted accuracy versus human-
detection accuracy. Each datum corresponds to the average
lesion detection accuracy for a fixed reader i, at dose level j,
for images reconstructed using recon algorithm k. Here, the
closer that data fall to the diagonal, the more closely the
model-predicted detection accuracies agree with the results of
the human-observer study. Four fits are shown in Fig. 3. One
corresponds to a direct proportionality between predicted and
observed detection accuracies (y = x, dotted line). Goodness-
of-fit measures for the fit of y = x are shown for subpopulations
of FBP and SAFIRE in the figure. The other three (dash-dot,
dashed, and solid) correspond to least squares fits of FBP
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scans, SAFIRE scans, and all scans, respectively. Table 2 sum-
marizes the regressions shown in Fig. 3.

A comparison showed that the results for FBP-reconstructed
and iteratively reconstructed datasets were not easily linearly
separable. A linear discriminant was used to attempt to separate

100%

@ Humans versus model [FBP scans]
A Humans versus model [SAFIRE scans]
Linear fit [all scans]
----Linear fit [FBP scans]
90% -~ Linear fit [SAFIRE scans]
........ x=y

o
£

k]

c

5]

e

[0}

(2]

«

o

>

3

< 80%

Q

Q

©

o=t

Kl

=

(6]

% 70%

©

e

[}

9

Q

9 A R%(FBP) = 0.65 = 0.10

L 60% p,(FBP) = 0.82 £ 0.07

o _

3 ’ »(FBP) =0.82  0.06

s R%(SAFIRE) = 0.75 + 0.07

= K £(SAFIRE) = 0.89 + 0.04
7 »(SAFIRE) = 0.90 + 0.05

50% 60% 70% 80% 90% 100%

Human detection accuracy

Fig. 3 Comparison of observer study accuracy results and corre-
sponding detectability index model-predicted accuracies. Listed
Pearson and Spearman correlations and R-squared values correspond
to subsets of data as characterized by the dotted line, y = x (denoting
exact correspondence between predicted and observed detection
accuracies). Shown linear fits are summarized in Table 2.
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Table 2 Summary of the results liner regressions of model-predicted accuracies to observed detection accuracies shown in Fig. 3. Correlation

coefficients in Table 2 section A are also shown in Fig. 3.

Outputs of linear regressions of predicted versus observed detection accuracies

Model form

Model _
Af/k =

14 Afyman

A: Fixed fits

Subset of data Intercept Slope R-squared p (Pearson) p (Spearman) Legend (Fig. 3)
FBP 0 1 0.65 0.82 0.82 Black, dotted
SAFIRE 0 1 0.75 0.89 0.90
All data 0 1 0.71 0.84 0.85

B: Least squares fits
Subset of data Intercept Slope R-squared p (Pearson) p (Spearman) Legend (Fig. 3)
FBP —0.007364 1.027 0.669 As above As above Blue, dash-dot
SAFIRE -0.1783 1.219 0.795 As above As above Red, dashed
All data —0.05458 1.074 0.711 As above As above Gray, solid

data and classify each result as originating from an FBP or
SAFIRE, resulting in a classification error of 35%. This error
was in line with Solomon’s classification error of 40% for the
channelized-hotelling observer (CHO) model on FBP-recon-
structed and ADMIRE-reconstructed data.'® Concordance between
these classification errors suggests that our estimates of the detect-
ability index through the d, methodology (i.e., the NPW
observer model in Fourier space) were on par with the most
common choice of spatial-domain observer model in terms of
being properly sensitive to changes in reconstruction settings.
Table 3 summarizes the comparison of the d;, ;-based predic-
tions to predictions based on noise and resolution as a function
of reconstructed dose. The table lists the observed and predicted
average detection accuracy as a function of dose for the models

fit with resolution, noise, and dj, ;, respectively. Noise and d

i ind
were found to be strongly related to lesion detection (p < 0.05
for both). Resolution alone was not found to be predictive of the
binary 2AFC outcomes (p > 0.05) but was included in the table
for completeness. R-squared values and root-mean-squared
errors between model-predicted and observed detection accura-
cies as a function of dose are reported.

Figure 4 shows the comparison of predicted and observed
average detection accuracy as a function of reconstructed
dose for the two algorithms. Predictions are shown for models
based on image (a) noise magnitude and (b) d/, ;. Since the res-
olution alone was not found to be predictive of lesion detection
(p > 0.05), the analogous plot for the resolution-informed
model is omitted to avoid clutter. The blue and red dash-dot
lines represent the predicted detection accuracies for FBP and
SAFIRE reconstructions, respectively. The blue and red solid
lines represent the corresponding observed detection accuracies.
The R-squared values indicate statistically significant improve-
ments in the predictions of the d/ ;-based model for SAFIRE
reconstructions when compared with the noise-based model.
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4 Discussion

The de-facto current state of practice relies on the use of images
of phantoms to infer image quality. Both simple and complex
phantom-based measures of CT image quality are often acquired
on a daily basis as a part of setup and clinical operational pro-
cedures. In this fashion, they provide a glimpse into a clinic’s
image quality and the current standard of image quality tracking.
However, such a paradigm of image quality tracking has two
issues.

First, such measurements are only acquired once daily. We,
therefore, assume that the image quality for the clinic does not
vary in an appreciable way throughout the day, but rather is con-
stant. Second, our daily notion of the clinic’s image quality
comes from measurements made on a representatively average
“patient” (i.e., the phantom itself). The assumption is that this
level of quality holds true for all patients that we image for the
day. In this way, we presume that the image quality does not
vary in an appreciable way from patient to patient and can be
represented by that which is measured in our phantom.
However, phantom-based studies can sometimes provide mis-
leading results due to their oversimplified nature. Furthermore,
phantoms lack the variability present in patient populations.

To overcome these limitations, this study implemented an
observer model methodology directly on individual images in
a patient-specific manner. These results showed that accuracies
predicted by a d’ methodology applied to liver lesions correlated
with observed detection accuracies for a specific case of liver
lesion detection. While the results of this study are specific
to the cases considered, the findings indicate that a model
observer methodology can be used to objectively measure
image quality on a patient-specific basis.

The practice of using model observers to objectively assess
image quality has matured considerably."!° Today, there exists a
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Table 3 Summary of the results of model-predicted accuracies as a
function of reconstructed dose.

Residual accuracies for
models (%) (FBP)

Observed

Dose (%) accuracy (%) Resolution Noise* arg”
12.5 64.52 -9.56 -2.34 -3.41
25 70.06 —4.05 -0.29 -0.11
37.5 72.56 -1.64 1.28 1.45

50 76.01 1.89 3.24 3.12

75 78.15 3.85 4.51 3.81
100 78.63 4.42 3.99 2.23
RMSE (%) 497 3.00 2.68

R? 0.00+0.01 0.63+0.40 0.71+0.24

Residual accuracies for
models (%) (SAFIRE)

Dose (%)  Observed Resolution Noise* ding”
accuracy (%)

12.5 66.19 -7.50 -8.19 —-4.24
25 70.89 -2.72 —-4.84 -2.29
37.5 73.75 0.00 -2.52 -1.03
50 74.46 0.87 -2.33 -2.31

75 79.94 6.09 2.74 1.22
100 82.08 8.25 4.54 1.34
RMSE (%) 5.32 4.66 2.34

R? 0.00+£0.02 0.23+0.18 0.81+0.23

*Representative statistics of image quality aspects that were found to
be predictive of individual detection outcomes (p < 0.05).

variety of different mathematical observer models, for the pur-
pose of simulating human-observer detection performance. The
NPW matched filter was selected as the observer model for this
work. This model has been shown to predict human-observer
study responses for low-contrast detection tasks, like the one
considered here.>'*? We utilized a frequency-domain imple-
mentation of the NPW observer model and assumed system lin-
ear shift invariance and noise wide-sense stationarity.
Practicality drove the selection of the observer model and the
assumptions that we made. Other commonly used observer
models such as the spatial-domain CHO, for example, require
a prohibitively large amount of input images on which to
train.>>* The appeal of these observer models is the sparse
set of assumptions that they require regarding image statistics.
However, the purpose of this work was to develop a method of
estimating the detectability index that could feasibly be used to
track and assess image quality in the clinic. In a clinical oper-
ation, a scan-rescan method for obtaining patient images is
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impractical. Thus, the larger number of required input images
to the spatial-domain methodology made such models nonstar-
ters. Hence, our selection of observer model framework is to
estimate the detectability index.

This study represents an extension of the objective method-
ology of using observer models in the assessment of patient-spe-
cific image quality. Despite the simplicity of the model (no eye
filter and no internal noise), the NPW matched filter observer
model predicted detection accuracies that showed strong corre-
lations with human-detection accuracy. As such, the methodol-
ogy offers a practical strategy for assessing image quality in the
clinical practice on a patient-specific manner.

The presented methodology is patient-specific in many, but
not all, aspects. In particular, the method incorporates patient-
specific measurements of noise magnitude and MTF, an indica-
tion-specific task function, and a protocol-specific NPS. Each of
these aspects specifically contributes to the calculated dj, ; for a
patient case, even though not all were drawn from that specific
patient case. In this way, the calculation of d/, is a more
“patient-specific” assessment of image quality than alternatives
of phantom-based measurements or anthropomorphic model
predictions. The method only relies on phantom images in
the derivation of the functional shape of the NPS. This
assumption is valid in the case of FBP reconstruction. In the
case of iterative reconstructions, which may have nonlinearities
in the noise properties, the analogous assumption represents
more of an approximation to the NPS. Nevertheless, the NPS
measured in phantom is considered to be a reasonable approxi-
mation to the quantum noise properties of a uniform organ such
as the liver considered in this study. The uniformity of the liver
also motivates the decision to not incorporate variation due to
anatomical structure into calculation of the detectability index.
Even so, the predictions based on the measured detectability
index were found to be strongly correlated with human-observer
results. These correlations agreed within the statistical flucua-
tion with the correlations in the results based on FBP
reconstruction. Further, the FBP-reconstructed and SAFIRE-
reconstructed data were not easily linearly separable on the
basis of their model-predicted and human-detection accuracies.
This might be due to the fact that the degree of nonlinearity of
SAFIRE is small.

When compared as a function of dose, average human detec-
tion accuracy and average model-predicted detection accuracy
were found to have similar trends and rank orderings. In the
noisier (i.e., low dose) regime, the d/ , had a tendency to over-
predict the average detection accuracy, whereas in the higher
dose regime the dj, was found to slightly underpredict the
same quantity. The d;, was also found to slightly overpredict
the dose-reduction potential of the SAFIRE reconstruction.
However, the major findings of the study indicate that d , is
not limited to one specific reconstruction algorithm. This result
opens up the possibility of using dj; to compare the detectabil-
ity of patient images that were reconstructed using different
algorithms or imaging protocols.

The results of the generalized linear mixed effects modeling
suggest that the dj, measured on an individual image was
related to the detectability of lesions in that image. In addition,
the correlation of the model-predicted detection accuracies with
the human-observer detection accuracies presented here indi-
cates that information that is reflected in large-scale cohort stud-
ies (such as the observer study used as validation in this work) is
reflective of the individual datasets. This result is of particular
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Fig. 4 Comparison of average observer study accuracy and corresponding average model-predictions
for both FBP and SAFIRE as a function of dose for predictions based on (a) noise and (b) d 4. There is
considerable concordance between predicted and observed detection accuracies in both models for data
reconstructed with FBP. The improvement in concordance between predicted and observed detection
accuracies in SAFIRE reconstructions demonstrates the benefit of using d;, as a way of comparing

detectability across reconstruction algorithms.

interest since the detectability index, from its roots in statistical
signal detection, is a statistically based quantity. That is, the
detectability index can be thought of as the separation of two
statistically distributed populations (in this case, “lesion-
present” and “lesion-absent” images). In this paradigm, a larger
d’ is related to a lesser overlap in these distributions and
therefore a larger degree of success in classification tasks.
Conversely, with a low detectability index and a larger statistical
overlap between “lesion-present” and “lesion-absent” states,
there is larger possibility of misclassification error (either
false positives or false negatives). Each image constitutes one
member of these populations (the population of images either
containing or lacking a lesion) in such a paradigm.

The d/ , methodology presented here, however, represents a
slightly different paradigm from above. It is characterized by a
method of estimating the d’ using the statistics present in an
individual patient image. That is, d/, could be interpreted as
an estimate of the d’ that one might measure through repeated
realizations of the same patient image: some realizations with
and some without the lesion present. The detectability index
estimated in this way is shown to be correlated with detection
of lesions in that individual image (as d’ is for populations of
images). Furthermore, when the d, values are cohorted for a
given reading condition (fixed reader and dose level), the detec-
tion rates that they predict are strongly correlated with the detec-
tion rates that we observe.

The comparison between predictions for the d/ ,-based
model and the noise-based model showed comparable results
for the FBP-reconstructed data. However for data that were
reconstructed with SAFIRE, Fig. 4 shows that the noise-
based model greatly over-predicted the lesion detection accu-
racy for lower doses (50% reconstructed dose and lower).
This is likely due to the effect that SAFIRE has on resolution,
image noise, and noise texture. Although the overall noise in the
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image was in fact far lower in the SAFIRE reconstructions (aver-
age image noise + std was 16 + 3 HU for FBP, 8 £ 1 HU for
SAFIRE), the improvements on lesion detectability in SAFIRE
data were not as drastic. This overestimation is due in part to the
fact that SAFIRE changes the noise texture and resolution, as
well as the noise magnitude. While SAFIRE-reconstructed
images do have a lower noise magnitude than their FBP-recon-
structed counterparts, the relation between noise texture and
detectability is not well-captured if one only considers the
noise magnitude as the primary driver of detectability and
image quality, as in the current state of practice.

A model of image quality that is based solely on noise is
agnostic to changes in resolution, yet resolution is important
in lesion detection. Imaging system resolution blurs the target
lesions. In this case, this spatial blur created a decreased contrast
of the already subtle lesion. This decrease is captured in the cal-
culation of the detectability index, but not if one measures just
the noise magnitude alone. This could account for the overesti-
mation of detectability in the low-dose IR paradigm when using
noise alone as a predictor of image quality. The increased con-
cordance over all the image dose regimes serves to support the
use of dj; as a means of inferring detectability. It also points
toward the utility of the method to compare and contrast
among images created using different reconstruction algorithms.

It is worthwhile to note some limitations of this work. First,
the resolution measurement was made at a high-contrast edge
(namely, the air—skin interface of the patient). Since the lesions
considered in this study are low-contrast liver lesions, such a
measurement of the MTF is likely an overestimate of the
lesions’ sharpness profiles. This translates to an overestimation
of the contrast with which the lesions are rendered in SAFIRE
reconstructions. A more relevant measure of the resolution could
be made using an interface with similar contrast as the lesions.
However, there is not currently a method available to make such
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a measurement directly on patient images. This mismatch of the
MTF is likely responsible for some of the deviation between the
human-observer and model-predicted accuracies in Figs. 3 and
4. Nevertheless, there is a correspondence between the MTF
measured at high-contrast edges, like the air—skin interface
measured here, and their low-contrast edge counterparts. It is
due to this correspondence that the dj; calculated in this
study still proves to be a useful tool that handles differences
in reconstruction algorithms better than noise alone.

5 Conclusions

This study developed and validated a method of estimating a
detectability index from individual patient images, i.e., in
vivo. The individual-image estimate, d,;, was found to be pre-
dictive of human-observer detection outcomes for lesions in
images reconstructed with FBP and SAFIRE (p <0.05).
Detection accuracies predicted with the d/, agreed well with
cohort-based observed detection accuracies for images using
both reconstruction algorithms. Concordance between predicted
and observed detection accuracies as a function of dose is better
for d] ;-based model predictions than predictions via the current
gold standard of noise magnitude. As such, variations in the
individual-image estimate of detectability index, d,, are
both visually perceptible and clinically relevant. The patient-
derived detectability methodology is a useful extension of objec-
tive image quality assessment from a phantom-based metrology
to a patient-specific one. In doing so, this method combines the
ideal objective assessment of phantom-based images with the
anatomical complexity of patient scans. It can be used to esti-
mate detectability and track the image quality of a clinical oper-

ation in a patient-by-patient and objective manner.
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