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Abstract

Problem—Decidual immune dysregulation is thought to underlie major pregnancy disorders, 

however, incomplete understanding of the decidual immune interface has hampered mechanistic 

investigation.

Method of Study—Human term decidua were collected and single-cell phenotypic information 

acquired by highly polychromatic flow cytometry. Cellular identity analysis was performed with t-

distributed Stochastic Neighbor Embedding, densVM clustering and matched to CellOntology 

database.

Results—Traditional analytical methods validated known cellular T and dendritic cell subsets in 

human term decidua. Computational analysis revealed a complex and tissue-specific decidual 

immune signature in both the innate and adaptive immune compartments.

Conclusion—Polychromatic flow cytometry with a streamlined computational analysis pipeline 

is a feasible approach to comprehensive immunome mapping of human term decidua. As an 

unbiased, standardized method of investigation, computational flow cytometry promises to unravel 

the immune pathology of pregnancy disorders.
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1. Introduction

The immune system plays a critical role at the maternal-fetal interface, providing protection 

against pathogens1,2, maintaining tolerance towards the semi-allogeneic fetus3, and 

promoting vascular remodeling in the decidua4–6. Accordingly, immune dysregulation is 

implicated in a wide range of pregnancy pathologies such as preeclampsia, pre-term labor 

and recurrent pregnancy loss2, to name but a few. Progress in the field has been limited by 

the difficulty in providing unbiased, simultaneous analysis of the entire immune component 

present at the maternal-fetal interface. The complexity of mapping the immune component 

of the maternal-fetal interface necessitated a novel platform, combining highly 

polychromatic flow cytometry, traditional manual analysis and advanced computational 

analysis. To demonstrate the power of this approach, we simultaneously mapped the diverse 

subsets of conventional T cells and antigen presenting cells (APCs), from individual 

decidual specimens.

Manual operator-driven analysis of high-dimensional panels, such as those employed in this 

study can prove difficult and inefficient and can mislead due to tissue-dependent deviations 

in canonical marker expression. T-distributed stochastic neighbor embedding (t-SNE), a 

dimensionality reduction technique that preserves high-dimensional proximity relationships 

in data, while projecting cellular information unto a lower-dimensional map7, is a promising 

method for visualization of logarithmically distributed, high-dimensional flow cytometry 

data8. Combined with density-based clustering aided by support vector machine, or 

DensVM, for unbiased segregation of cellular subtypes in hierarchical families, we leverage 

this computational platform to evince the rich diversity and novel features of the human 

decidual immunome.

The human decidua is a tissue with unique immunological requirements, whose 

investigation required a novel approach. To determine the validity of such an approach, we 

focused on mapping the diversity of T cells and dendritic cells in the human term decidua. 

However, the extent of CD4+ T cell naïve/memory/effector subset distribution has not been 

extensively studied, and assigning of cellular identities of DCs/macrophages/monocytes, is 

difficult due to overlap in expression of canonical markers by multiple cellular subsets9,10, 

with expression often being tissue specific11.

2. Materials and Methods

2.1 Human Samples

De-identified term human (>37 wks GA) placental samples were collected from normal 

elective cesarean sections under the UW Obstetrical Tissue Bank IRB protocol 

(#2014-1223). Briefly, decidua basalis was separated from placenta and decidua parietalis 

was scraped from the embryonic membrane and washed with cold PBS, as previously 

described12. Tissue was minced and dissociated in RPMI containing 1 mg/ml of Collagenase 

type V (Worthington Biochem. Corp.), 2 μg/ml DNAse I (Worthington Biochem. Corp.), 

using the gentleMACS™ Dissociator system (Miltenyi Biotec Inc. San Diego, CA). 

Homogenates were then filtered through a 70 μm filter, red blood cells were lysed with ACK 

lysis buffer (Life Technologies) and mononuclear cells (MCs) were recovered and frozen 

Vazquez et al. Page 2

Am J Reprod Immunol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



until processing. Control, anonymous, PBMCs were acquired from All Cells® (Alameda, 

CA) and kept frozen until processing.

2.2 Flow Cytometry and Standardization

Isolated MCs were first labeled with LIVE/DEAD® fixable blue stain (Invitrogen) 

according to manufacturer’s instructions. MCs were then labeled with flourochrome-

conjugated monoclonal antibodies, listed in Table 1. Briefly, antibodies were diluted in BD 

Horizon Brilliant™ Stain Buffer (BD Biosciences, San Jose, CA) and used to label MCs 

according to manufacturer’s instructions. Samples were then acquired using the LSR 

Fortessa in a 5 laser (355nm, 405nm, 488nm, 562nm, 633nm) 20-detector configuration (BD 

Biosciences).

SPHERO™ Rainbow Calibration Particles (Sperotech, Lake Forest, IL) were used to 

standardize PMT voltage settings. Briefly, PMT voltages were optimized during first 

experimental run. MFI values were then calculated for the Rainbow beads and were used in 

subsequent experimental runs as target values (± 10%) to set PMT voltages.

2.3 Data Analysis

Manual analysis identifying well-characterized populations was performed using FlowJo v.

10 software (FlowJo LLC, Ashland, OR). Dimensionality reduction was performed using the 

t-SNE algorithm, followed by DensVM clustering, both part of the open-source R package, 

Cytofkit (github.com/JinmiaoChenLab/cytofkit)13. Briefly, data files were pre-gated to 

exclude dead cells and irrelevant populations and concatenated using FlowJo. Concatenated 

files were then uploaded to R/Cytofkit via GUI interface and parameters of interest were 

selected. Newly derived t-SNE and DensVM coordinates were added to original data 

matrices, exported, and analyzed in FlowJo. Cluster frequenices and MFI values were then 

calculated within FlowJo. Heatmaps for MFI (z-score normalized) and cluster frequencies 

were constructed using JMP Pro® v. 11.0.0 (SAS, Cary, NC). All data is represented as 

Mean ± SEM and statistical significance was determined with ANOVA analysis, followed by 

Tukey’s post-hoc test to correct for multiple comparisons, using Prism® v. 7 (GraphPad 

Software, Inc, La Jolla, CA).

3. Results

3.1 High dimensional flow cytometry panels identify canonical T and antigen presenting 
cell subsets in term human decidua

To examine the T cell and dendritic cell component of the human term decidua, two 16-

parameter panels (Table 1) were developed. These panels were validated by subset mapping 

of known T cell subsets in human term decidua (Figure 1) and technical control PBMCs 

(Figure S1). Similarly, diverse antigen presenting cells were precisely defined (Figure 2), 

including macrophages (HLA-DR+CD16−CD14+, Figure 2B), dendritic cells (DC, HLA-

DR+CD16−CD14−, Figure 2C), and DC subsets plasmacytoid (pDCs, Figure 2D), and 

myeloid (mDCs) type in human term decidua (Figure 2E).
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3.2 Cellular subset visualization by dimensionality reduction allows phenotype 
classification without complex gating

Analysis of flow cytometry data by manual methods can be a source of variation and 

requires expert knowledge. To test whether dimensionality reduction coupled with 

automated clustering presented a valid tool to analyze the decidual immunome, T cell and 

dendritic cell data sets were visualized (Figure 3). Pre-gated CD3+ populations from three 

data sets (3 decidua basalis, 3 decidua parietalis, 2 PBMC) were coded with sample numbers 

(censored from analysis), merged, and visualized with t-SNE dimensionality reduction. 

Thirteen cellular phenotypes were identified by DensVM clustering, providing visual 

partitioning of t-SNE map (Figure 3A, top). To validate t-SNE/DensVM-derived cellular 

identity, TH (1, 2 and 17) and CD8+ T cells were manually gated and overlaid onto the 

reduced t-SNE dimensions. Manually gated TH and CD8+ cells mapped onto separate 

regions of the plot, validating application of this platform to decidual immune cells (Figure 

3A, bottom). A heatmap of the median fluorescence intensity (MFI) for every marker 

analyzed within each cluster was generated to assess phenotypes (Figure 3B). Phenotypes 

were then classified as T cell subsets by CellOntology14 (Table 2), allowing rapid 

assignment of cell identity.

The t-SNE analysis pipeline was then used to classify decidual dendritic cells (Figure 3C), 

within HLA-DR+CD16− subpopulations from three experiments (3 decidua basalis, 3 

decidua parietalis, 3 PBMC). Because a small subset of DCs express the CD14 marker, it 

was included in the analysis. DensVM analysis revealed 12 phenotype clusters on the 

merged t-SNE dataset map (Figure 3C, top). Major DC populations segregated onto unique 

regions of the generated t-SNE map (Figure 3C, bottom). MFI values for each marker were 

calculated for each cluster and a heatmap was generated (Figure 3D). Thus, t-SNE/

DenseVM/CellOntology analysis pipeline provides an unbiased, operator-independent 

method for mapping the cellular immunome of the human decidua.

3.3 DenseVM clustering reveals unique immune signature of human term decidua

To determine if patterns of cellular phenotypes observed in specimens constitute cellular 

“signatures” characteristic of tissue of origin (decidua, PBMC), individual t-SNE maps of 

decidual and PBMC specimens were visualized (Figure 4A). Quantification of phenotype 

frequency in each sample, followed by hierarchical 2-way clustering (phenotype and tissue), 

revealed a distinct distribution of phenotypes across the tissues tested (Figure 4B). PBMC 

and decidual specimens segregated based on frequency of cellular phenotypes constituting 

them. Furthermore, certain phenotypes (e.g., cluster 11) were found primarily in PBMC 

samples, while others (e.g. cluster 4) were characteristic of the decidua (Figure 4B). 

Classification by CellOntology suggested that cluster 4 are activated CD8+ T cells (Table 2, 

elevated in decidua parietalis), while clusters 11 (CD4+ effector memory) and 12 (CCR4+ 

Treg) were preferentially represented in PBMCs (Figure 4C).

To determine whether this was cell type specific, a similar analysis investigated the 

distribution of DC clusters in decidua and PBMCs and revealed cluster frequency 

differences between decidua basalis and PBMCs (Figure 5A) and Ward clustering of cell 

frequency segregated decidual tissues from PBMC samples (Figure 5B). Three clusters (4, 6, 
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8) were found to be statistically different between tissues (p < 0.05). Cluster 4 (granulocyte 

monocyte progenitor cell; Table 3) was significantly elevated in decidua parietalis, while 

clusters 6 and 8 (neutrophilic myelocite) were elevated in PBMCs (Figure 5C).

4. Discussion

A successful pregnancy requires the collaboration of a diverse array of maternal and feto-

placental immune and non-immune cells. Accordingly, the complex network of immune 

cells at the decidual maternal-fetal interface guides the assembly of tissue architecture, and 

enacts an appropriate site-specific balance of immune privilege/tolerance and protection. 

Dysregulation of this system often leads to adverse consequences for both the mother and 

neonate. Historically, mechanistic dissection of these processes employed single/few 

identifying cell-surface markers to link specific immune cells with adverse pregnancy 

outcomes in humans15,16 and model systems, with mixed success, limiting translational/

clinical progress. Consequently, the development and application of a novel, comprehensive 

and unbiased analysis platform was necessary. We optimized and validated highly 

polychromatic flow cytometry to comprehensively and concomitantly examine immune cells 

in term human decidua. Resulting datasets exhibited high dimensionality and manual 

analysis confirmed and extended many known features of adaptive immunity found in the 

decidua, validating this approach. Analysis of such complex datasets, and standardization for 

future assessment of clinical-outcome related cellular hubs, led us to apply operator-

independent dimensionality reduction for visualization and machine learning algorithms for 

assignation of cellular identity.

To test the power of dimensionality reduction/machine learning analysis, and compare with 

manual expert gating, CD3+ cells from our specimens were analyzed. This revealed that 

amongst CD8+ T cells, the activated fraction is elevated and naïve fraction diminished in 

decidual tissues (Figure 4C). Furthermore, the identified cellular clusters defined the tissue-

specific “cellular signature” as decidual specimens segregated from the control PBMCs 

when examined by Ward clustering. Previous studies have shown the presence of DCs at the 

maternal-fetal interface17,18 and our data supports those findings. However, the dramatic 

level of diversity within DC populations at the maternal-fetal interface has been 

underappreciated since most of these studies focused on a few defining markers. 

Dimensionality reduction analysis presented here revealed a high degree of diversity, with 

nine substantially unique clusters, and distinctive DC subset distribution in the decidua 

(Figure 5A,B). Herein, we demonstrate the power of tSNE/DenseVM analysis in classifying 

unique distributions of T/DC subtypes in decidual tissues.

The difficulties in interpretation of clinically relevant data sets focused on immune cells at 

the maternal-fetal interface prompted the design of the current study, to provide a nuanced 

understanding of the decidual immunome and establish a baseline for future studies in 

pregnancy pathology. Our experience reveals both the power and challenges of this 

approach. Utilization of high-dimensional flow cytometry is currently limited by the detailed 

expertize and quality control necessary to standardize and maintain necessary consistency 

across experiments. To reduce technical variations between experiments, we employed use 

of bead standards to tune flow cytometer detectors prior to each run and employed 

Vazquez et al. Page 5

Am J Reprod Immunol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



automated specimen disaggregation, freezing, batching, and careful antibody batch titrations 

to increase staining consistency. Despite these extensive efforts, we still observe batch effect 

when employing machine learning, indicating that even batch-batch staining difference not 

immediately apparent on manual 2D-section analysis will be revealed by agnostic learning 

algorithms (data not shown). This phenomenon is a key challenge in all of flow cytometry, 

and use of agreed-upon classifiers (such as CellOntology14) can help curtail the batch 

variance. Development of algorithms allowing efficient and operator-independent cross-

experiment normalization and classification is a key feature necessary for broader 

distribution of this technology. Similarly, seeding of t-SNE clusters and random-walk 

optimization is run-specific, necessitating re-running of the entire concatenated series with 

each added specimen, a task that scales logarithmically with added data points, presenting 

challenges in computational time/resource use. We, and others, are currently pursuing 

optimizations and adaptations of dimensionality reduction/machine learning algorithms to 

overcome these limitations. Accomplishing this goal would dramatically expand use cases 

for flow cytometry/machine learning in clinical diagnostics.

Our work establishes a novel platform for immunome assessment at the maternal-fetal 

interface. Human term decidual immunome analysis reveals the stunning complexity of the 

normal immune signature, validated against conventional manual gating. Computational 

flow cytometry platform promises standardization and simplification of decidual immunome 

analysis for both basic research and translational physiology and pathology applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
T cell subsets identified in term human decidua. Gating scheme for: (A) CD3+, (B) CD4+ 

and CD8+ T cells, and (C) Tregs and Tregs subsets, (D) T helper (TH) subsets, (E) Central 

Memory (C.M), naïve, effector memory (E.M), and effector CD4+ (top) and CD8+ (bottom) 

T cells, and (F) activated CD4+ (top) and CD8+ (bottom) T cells, from decidua basalis.
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Figure 2. 
Antigen presenting cell subsets in term human decidua. Gating scheme for: (A) Lin (CD3, 

CD19, CD56) negative cells, (B) macrophages (CD16−HLA-DR+CD14+), (C) dendritic cells 

(CD16−HLA-DR+CD14−), (D) plasmacytoid dendritic cells (pDCs), and (E) myeloid 

dendritic cells, from decidua basalis.
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Figure 3. 
Visualization of T cell and dendritic cell diversity. (A) t-SNE map generated from pre-gated 

CD3+ cells from decidua basalis (D.B), decidua parietalis (D.P), and PBMC (P) data sets 

(top) and manually gated subsets overlaid onto total CD3+ cells (bottom). (B) Hierarchical 

clustering of median surface marker expression levels of clusters identified by DensVM. (C) 

t-SNE map generated from merged data from pre-gated Lin−HLADR+CD16− cells from 

D.B, D.P, and (P) data sets (top) and indicated cell manually gated subsets overlaid onto 

total Lin−HLADR+CD16− cells (bottom). (D) Hierarchical clustering of median surface 

marker expression levels of clusters identified by DensVM.
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Figure 4. 
Unique T cell distribution signature in term decidua. (A) Separate decidua basalis (D.B) and 

PBMC (P) visualized using t-SNE map generated from the merged data set. (B) Hierarchical 

clustering of cluster frequencies within CD3+ cells from D.B, decidua parietalis (D.P), and 

P. (C) Bar graphs of average cell frequencies that were determined to be statistically 

different. D.B (n = 3), D.P (n = 3), and P (n = 2). Significance is denoted by *p < 0.05.
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Figure 5. 
Dendritic cell distribution in term decidua. (A) Separate decidua basalis (D.B) and PBMC 

(P) visualized using t-SNE map generated from the merged data set. (B) Hierarchical 

clustering of cluster frequencies within Lin−HLA-DR+CD16− cells from D.B, decidua 

parietalis (D.P), and P. (C) Bar graphs of average cell frequencies that were determined to be 

statistically different. D.B (n = 3), D.P (n = 3), and P (n = 3). Significance is denoted by *p 

< 0.05.

Vazquez et al. Page 12

Am J Reprod Immunol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vazquez et al. Page 13

Table 1

Antibodies used for flow cytometry analysis.

Marker Clone Fluorochrome Supplier

CCR4 1G1 PerCP-Cy5.5 BD Bioscience

CCR6 11A9 BUV496 BD Bioscience

CCR7 G043H7 Alexa647 BioLegend

CD1a HI149 PE-Cy5 BD Bioscience

CD1c L161 PE-Dazzle594 BioLegend

CD3 UCHT1 BV421 BD Bioscience

CD3 SK7 PE-Cy7 BD Bioscience

CD4 RPA-T4 Alexa488 BD Bioscience

CD8 SK1 BV605 BD Bioscience

CD8 RPA-T8 BV421 BD Bioscience

CD11b ICRF44 BV605 BD Bioscience

CD11c B-ly6 BB515 BD Bioscience

CD14 M5E2 BV605 BD Bioscience

CD16 3G8 BUV496 BD Bioscience

CD19 SJ25C1 APC-H7 BD Bioscience

CD25 M-A251 PE BD Bioscience

CD27 M-T271 PE-Cy7 BD Bioscience

CD33 WM53 PE BioLegend

CD38 HIT2 BV510 BD Bioscience

CD45RA HI100 Alexa700 BD Bioscience

CD45RO UCHL1 APC-H7 BD Bioscience

CD56 B156 PE-Cy7 BD Bioscience

CD62L Dreg-56 PE-CF594 BD Bioscience

CD80 L307.4 A700 BD Bioscience

CD123 7G3 BUV395 BD Bioscience

CD127 A019D5 BV785 BioLegend

CD141 1A4 APC BD Bioscience

CD161 DX12 BV650 BD Bioscience

CD209 DCN46 PerCP-Cy5.5 BD Bioscience

CXCR3 AC6/CXCR3 PE-Cy5 BD Bioscience

HLA-DR G46-6 BV786 BD Bioscience

HLA-DR G46-6 BUV395 BD Bioscience
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Table 2

Presumed classification of CD3+ clusters

Cluster Phenotype Presumed Name

1 CD4+CCR6-CCR4+CD27-CD45RA-CD197-CD62L-CXCR3+CD45RO+CD161+CD25+ CD4-positive, 
CD25-positive, 
CCR4-positive, 
alpha-beta 
regulatory T cell

2 CD8+CD127-CCR4+CD27-CD45RA-CD197-CD62L-HLA-DR+CD38+CXCR3+CD45RO+CD161+CD25+ CD8-positive, 
CD25-positive, 
alpha-beta 
regulatory T cell

3 CD8+CCR6+CD127-CD45RA-CD197-CD62L-HLA-DR+CXCR3+CD161- Cytotoxic T cell

4 CD8+CD127-CCR4-CD27-CD45RA-CD197-CD62L-CXCR3+CD161+CD25+ Cytotoxic T cell

5 CD4+CCR6-CD127-CCR4-CD45RA-CD197-CD62L-CD38+CXCR3+CD45RO+CD161+CD25+ T-helper 1 cell

6 CD4+CCR6+CD127+CD27-CD45RA-CD197-CD62L-HLA-DR-CD38-CXCR3+CD45RO+CD161+ T-helper 1 cell

7 CD8+CD127-CCR4+CD27-CD197-CD62L-HLA-DR-CXCR3-CD45RO-CD161+ Cytotoxic T cell

8 CD4+CCR6-CD127+CCR4+CD45RA-CD197-CD62L-HLA-DR-CD38-CXCR3-CD45RO+CD161+CD25+ T-helper 2 cell

9 CD4+CD127+CCR4+CD27+CD45RA-CD197-CD62L+HLA-DR-CD38-CD45RO+ Central Memory 
T Cells

10 CD8+CCR6+CD127+CCR4+CD27+CD45RA+CD197+CD62L-HLA-DR-CD38-CXCR3-CD45RO-CD161-CD25- Cytotoxic T cell

11 CD8-CD27+CD45RA+CD197+CD62L-HLA-DR-CD38-CXCR3-CD45RO-CD161-CD25- Effector Memory 
T cell

12 CD4+CD127+CCR4+CD27+CD45RA+CD197+CD62L+HLA-DR-CXCR3-CD45RO-CD161-CD25+ CD4-positive, 
CD25-positive, 
CCR4-positive, 
alpha-beta 
regulatory T cell

13 CD4+CD127+CCR6+CCR4-CD27+CD45RA+CD197+CD62L+HLA-DR-CXCR3-CD45RO-CD161-CD25- T-helper 17 cell
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Table 3

Presumed classification of HLA-DR+CD16- clusters

Cluster Phenotype Presumed Name

1 CD123+CD1a-CD80-CD8+CD209+CD1c+CD11b-CD14-CD33-CD11c+ CD141+ Myeloid

2 CD123+CD141+CD1a+CD80+CD209-CD1c+CD11b-CD33-CD11c- Plasmacytoid

3 CD123-CD141-CD1a-CD80-CD8-CD209+CD11b-CD14-CD33-CD11c- CD11c- negative plasmacytoid dendritic cell

4 CD123+CD1a-CD80-CD209+CD11b-CD14-CD33-CD11c- Plasmacytoid

5 CD123-CD141-CD1a-CD80-CD8-CD209+CD11b-CD14-CD33-CD11c- CD11c- negative plasmacytoid dendritic cell

6 CD123-CD141-CD1a+CD8+CD209-CD1c+CD11b-CD14-CD33+CD11c- CD1c+ Myeloid

7 CD123-CD141-CD8+CD209-CD1c-CD11b+CD14+CD33+CD11c- CD11b-Positive Dendritic Cell

8 CD141-CD80-CD8+CD1c-CD33+CD11c- CD33+ Myeloid Dendritic Cell

9 CD123+CD141-CD1a-CD80-CD8+CD209+CD1c+CD11b-CD33-CD11c+ CD1c+ Myeloid

10 CD123+CD141-CD1a+CD80+CD8+CD209-CD1c-CD11b+CD14+CD33+CD11c- Plasmacytoid

11 CD123+CD141-CD1a+CD80-CD8-CD209-CD1c-CD11b+CD14+CD33+ CD11b-Positive Dendritic Cell

12 CD123-CD141-CD1a+CD80+CD8+CD209-CD1c-CD11b+CD14+CD33+CD11c+ Myeloid-derived Suppressor Cell
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