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Abstract

Rationale and Objectives—Changes in the composition of body tissues are major aging 

phenotypes but they have been difficult to study in depth. Here we describe age-related change in 

abdominal tissues observable in Computed Tomography (CT) scans. We used pattern recognition 

and machine learning to detect and quantify these changes in a model-agnostic fashion.

Materials and Methods—CT scans of abdominal L4 sections were obtained from Baltimore 

Longitudinal Study of Aging (BLSA) participants. Age-related change in the constituent tissues 

were determined by training machine classifiers to differentiate age groups within male and female 

strata (‘Younger’ at 50-70 y.o., vs. ‘Older’ at 80-99 y.o.). The accuracy achieved by the classifiers 

in differentiating the age cohorts was used as a surrogate measure of the aging signal in the 

different tissues.

Results—The highest accuracy for discriminating age differences was 0.76 and 0.72 for males 

and females, respectively. The classification accuracy was 0.79 and 0.71 for adipose tissue, 0.70 

and 0.68 for soft tissue, and 0.65 and 0.64 for bone.

Conclusions—Using image data from a large sample of well characterized pool of participants 

dispersed over a wide age-range we explored age-related differences in gross morphology and 

texture of abdominal tissues. This technology is advantageous for tracking effects of biological 
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aging and predicting adverse outcomes when compared to the traditional use of specific molecular 

biomarkers. Application of pattern recognition and machine learning as a tool for analyzing 

medical images may provide much needed insight into tissue changes occurring with aging, and 

further, connect these changes with their metabolic and functional consequences.

Changes in body composition, both in the relative quantities of different tissue and their 

cellular and matrix content, occur with aging in all living organisms. Humans undergo an 

overall decline in lean body mass, mostly represented by muscle, and an increase in fat mass 

that occurs even in individuals who maintain the same weight over long time periods. In 

addition to global, quantitative changes, there are also qualitative changes that affect the 

characteristics and regional distribution of fat and muscle. For example, aging men show fat 

accumulates preferentially within and around the abdomen rather than in the subcutaneous 

tissue of the limbs and chest. CT and MRI images collected in large epidemiological studies 

have described tissue-specific changes in density and texture that may be correlated with 

adverse physiological changes and predict disease outcomes (1, 2). Based on these studies, 

researchers have suggested that measures of body composition should be included in any 

attempt to characterize phenotypic aging (1, 2).

A problem with this approach found in CT and MRI images characterizing body 

composition is the large variability in overall fat content and its regional distribution 

between individuals. Indeed, no previous studies have used body images to identify 

characteristics from multiple tissues that in aggregate correlate with chronological age, nor 

has this approach been validated in independent samples or in subsamples randomly selected 

from the original study population. Several previous studies used CT and MRI to find age-

related differences in brain (3), bone (4), kidney (5) and fat distribution in skeletal muscle 

(6). All these studies were able to find statistically significant differences in morphology 

correlated with age, but they involved relatively a small number of participants, and used 

manual steps or semimanual classification in the analysis pipeline. Thus, until now it 

remained unclear whether information from body images alone can be used to detect 

changes in body composition and discern phenotypic age in a fully objective and automated 

way.

We present an automated analysis framework for abdominal CT scans that uses machine 

learning to eliminate potential bias from manual image processing steps, uses a much larger 

data set of over 1200 images, and achieves higher age discrimination accuracy than previous 

studies. Abdominal CT scans are especially well suited for examining changes in adipose 

tissue. The characteristic low radiodensity of adipose tissue allows for its easy isolation from 

other tissues, making it possible to directly compare age-related changes in fat distribution 

and texture to those in other tissues in the abdomen. Supervised learning is ideal for 

comparing groups of images with substantial individual differences and a large variety of 

possible changes between groups (7). We used supervised learning to train classifiers to 

distinguish between abdominal CT scans of subjects grouped by age, and used classification 

accuracy as a surrogate measure of the aging signal in abdominal tissues. We compared 

several different classification techniques used separately and in an ensemble classifier to 

ensure that our results are independent of the analysis technique used.
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We focused our study on age-related changes occurring later in life, thus our “Younger” 

cohort was 50-70 y.o., and our “Older” cohort was 80-99 y.o, with male and female 

participants being considered separately. We demonstrated that aging signal could be 

detected in unmodified scans and that this could be substantially improved with contrast 

enhancement. We explored differential aging by quantifying the contribution of aging signal 

from three constituent tissue groups: Adipose Tissue (AT), soft tissues (ST) and bones. We 

found that AT had the greatest age-related change of the three tissues in both males and 

females, followed by ST and bones. We also found that males had consistently greater age 

related change than females in all three abdominal tissues.

Materials and Methods

Our institutional review board approved this retrospective study and waived the requirement 

for informed consent.

Study population

CT scans were from participants in the Baltimore Longitudinal Study of Aging (BLSA) 

ranging from 30 to 99 years old. Fig. 1 shows the age distribution for male and female 

participants. Of the 1092 participants with CT scans (544 males and 548 females), we 

assigned participants into two groups based on their age at the time of exam: “Younger”, age 

50-70; and “Older”, age 80-99 (see Table I). We did not further refine or sub-select the 

BLSA population other than by age, so the demographics inherent in the BLSA (race, 

income, genetic diversity, BMI, etc.) are reflected in our sub-population. Each of the 

participants had scans from 1 to 6 visits, such that the total number of scans was 1967.

From raw scans to Hounsfield units

CT images were collected with a Siemens Somatom Sensation 10 CT scanner. The scans 

were performed with a 500 × 500 mm field of view, 512 × 512 image matrix, and 10-mm 

slice thickness. Pixel planes used for processing were single-slice CT scans acquired at the 

L4-L5 vertebrae on the lumbar column. A standard calibration procedure using phantoms in 

the scanner's bed was performed, so that intensity of the reconstructed pixels was based on 

the Hounsfield scale. We used shifted Hounsfield units (SHU) where a range in pixel values 

from 1 to 2000 corresponds to a range of -1000 to 1000 HU.

Automated processing

The data processing was based on conventional pattern recognition as previously described 

(8). Two basic stages of data flow were image pre-processing and feature computation 

followed by cross-validation experiments (see Results) using three statistical classifiers (next 

section).

Image preprocessing (see in Fig. 2) had a biomedical rationale and consisted of several 

steps: trunk masking (to remove background), rigid-body registration, tissue masking and 

contrast enhancement. We masked the trunk area by setting a global threshold below the 

lowest tissue value, choosing the largest connected component (the trunk) and discarding 

smaller components (including the scanner bed, phantoms, etc.: Fig. 2, panels 1-2, (9)). We 
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implemented a simplified rigid-body registration procedure that includes translation and 

rotation (Fig. 2, panels 2-3). First, cropping the subject's trunk as above, resulted in the 

translation transform. The rotational alignment was largely provided by the physical 

alignment to the scanner's bed, requiring no more than two degrees of additional rotation 

correction. Due to the relatively small correction required, we used one based on the second-

order moments of the binary mask of the trunk (10). Thus, the angle correction was 

calculated using the binary mask, and then it was applied to the original scan.

Tissue masking was used to define sub-regions of the trunk corresponding to specific tissues. 

The range of pixel values comprising the mask was defined as a segment in the Hounsfield 

scale. We used contrast-limited adaptive histogram equalization (CLAHE, (11)) for intensity 

enhancement. In this approach, the raw scan pixel plane is first split into several tiles (we 

used 16 tiles), local histogram equalization takes place for each tile, and then interpolation is 

used at tile boundaries. Importantly, the CLAHE enhancement was performed separately on 

the whole image, independently of tissue masking (Fig. 2, panels 4-6). We applied the tissue 

mask to the enhanced scan to select the target tissue. Additionally, the pixels outside the 

mask were set to the average pixel value of the whole trunk area (Fig. 4B).

We used the general image features we previously described (8, 12, 13) to provide a large set 

of numerical image descriptors for each image. The feature library consists of twelve 

different algorithms, including features based on histograms from polynomial coefficients 

(Chebyshev and Chebyshev-Fourier types), coefficients of Zernike polynomials, features 

derived from Radon transforms, Gabor filters, multi-scale histograms, textures (Tamura and 

Haralick), edge statistics, and object statistics based on the direct and inverted Otsu 

threshold. As described before, these image features were also extracted from transforms of 

the original image, consisting of the fast Fourier transform, Chebyshev transform, and 

wavelet transform (symlets5, level-1 details), as well as two compound transforms: Fourier 

of Chebyshev and Fourier of wavelet.

The CHARM descriptors have been a dependable tool for quantitative analysis of diverse 

biological and biomedical applications (8, 12, 13). The multipurpose nature of the CHARM 

features allows to avoid biasing the classifier with any pre-conceived notions of the biology 

responsible for the observed changes. This also allows asking open-ended questions and 

design assays without a-priori knowledge of underlying mechanism or biology, which is of 

primary utility when the biology is not well understood.

Statistical classifiers

We employed three statistical classifiers, WND5 (7, 8, 12, 13) (referred to subsequently as 

WND) and two support vector machine (SVM) classifiers (14-16). When categorizing a 

given test sample, WND goes over the training data class-by-class and selects the class 

where the average similarity between all of its training samples and the test sample is 

largest. In WND, similarity is defined as the inverse-exponential distance in weighted 

feature space, with the exponent set to 5. Fisher scores were used as weights for the feature 

space dimensions as before. We have used WND for a variety of pattern recognition 

applications (8, 12, 13, 17) and we use it here due to its consistent performance. Compared 
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to other classifiers, WND operates in a comparatively high-dimensional space, and it was set 

to use the top 600 Fisher-weighted features for this study.

SVM converts data into an artificial high-dimensional space and constructs support vectors 

to build a decision boundary, which is a unique hyperplane maximizing the margin of 

separation between different classes. The SVM algorithm is based on Cover's theorem 

stating that data cast in a high-dimensional space non-linearly are more likely to be linearly 

separable than in the original lower-dimensional space. The design implements very efficient 

use of this high-dimensional space: during training/testing only pair-wise dot products are 

used in contrast to explicit use of large vectors in computations. As a specific 

implementation of the SVM algorithm in our experiments, we used libSVM (14) with the 

RBF kernel. To be computationally efficient, SVM requires a greater reduction in the 

dimensionality of the original feature space compared to WND. We used two techniques, 

both based on the concept of mutual information. The minimal-redundancy maximal 

relevance (mRMR) (15) algorithm forces inter-class features to be maximally distant (e.g. 

minimally redundant) while maximizing their relevance to the targets. The conditional 

mutual information minimization (CMIM, (16)) method operates on similar principles, 

favoring individually informative and pair-wise weakly dependent features. We set both 

algorithms to pick the best 30 features from the training sets for use in SVM classifiers.

Classifier evaluation

Classifiers were evaluated using non-exhaustive two-fold cross-validation with 100 

randomized splits into training and testing sets. For cross-validation purposes, the presence 

of multiple scans per participant required that scans from one participant are not used for 

both training and testing sets. In each split, we randomly selected participants for training 

and then selected one of their visits at random for the training samples. This resulted in a 

very close number of training samples for both genders: 420 (e.g. 210 per-class) samples for 

male participants and 396 (198 per-class) samples for female participants in each 

randomized split. The remaining scans were then used to test the resulting classifier.

Classifier performance is reported as the overall classification accuracy (CA), which is the 

fraction of all samples that were called correctly. To avoid overfitting, we used the recursive 

feature addition, where the features were pre-ranked as described in the previous section. 

Cross-validation strategy precluded from selection bias. Additionally, we reported per-class 

accuracies allowing for supplemental analysis of classification errors.

We tested three classification schemes consisting of two classifiers and three feature 

selection methods (Fisher/WND, mRMR/SVM, and CMIM/SVM). We also defined an 

ensemble classifier based on the majority vote of the three for each test sample.

Results

Aging signal in raw scans and signal enhancement

Raw scans of whole abdominal areas (labeled Torso) were analyzed first (See Table II). 

Preprocessing was limited to cropping the raw scans to exclude the area outside of the 
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abdomen. Classification of this raw data resulted in an ensemble CA of 0.688 for male 

subjects and 0.635 for female subjects.

Next, we performed image normalization and enhancement (CLAHE pre-processing; see 

Materials and Methods). We observed that CLAHE enhancement (See Fig. 3) resulted in a 

significant classification improvement compared to the raw scans, even without rotation 

correction (not shown). After applying rotation correction, classification improved further 

but to a much lesser extent than the improvement from contrast enhancement. The CLAHE-

enhanced, rotationally corrected images of the whole torso resulted in an ensemble CA of 

0.759 for males and 0.718 for females (Table II).

Where is the aging signal?

The Hounsfield scale can be broadly split up into ranges of radiodensity corresponding to 

bones (1100 - 2000 in shifted Hounsfield units, SHU), adipose tissues (ATs, 850 to 950 

SHU), and soft tissues (STs, 1030 to 1060 SHU) (See Figure 4). Bones have a broad range 

of radiodensities and hence take up a large proportion of the upper range of the Hounsfield 

scale. Adipose tissues occupy a much smaller portion of the lower range of the Hounsfield 

scale, while soft-tissues, despite having the largest variety of tissue types, capture a 

relatively narrow range in the middle of this scale (18). In order to mask these three types of 

tissue using Hounsfield ranges, we divided the cumulative histogram of Hounsfield units 

into quartiles, and merged the middle two quartiles to define the three types of tissue (see 

Fig. 4, panel A). The resulting boundaries (in SHU) were 720-938 for the first segment, 

939-1070 for the second segment, and all values above 1071 for the last segment. The three 

segments largely corresponded to ATs, STs, and Bone tissue ranges.

We compared discrimination between the two age cohorts in all three tissue segments 

(Bones, STs, ATs) and in the whole torso (labeled Torso), using three different classifiers 

and an ensemble classifier based on the three classifier votes. The results are shown in Table 

III, where each cell contains two sub-compartments: overall classification accuracy (CA) in 

the upper sub-cell and per-class CAs in the lower sub-cell for the Younger and Older classes 

respectively.

The ensemble classifier always reported either the highest overall CA, or was within 0.5% of 

the highest CA (See Table III). This classifier also had closer and more consistent agreement 

between the per-class accuracies for Younger and Older subjects. The CAs reported by each 

of the four classifiers for the different tissues were much more consistent between classifiers 

than they were between tissues, indicating that different tissues change with age to different 

extents, and that this is independent of the classification technique used. Thus, the CAs are 

an indication of the non-uniform aging signal present in different tissues.

In males, the highest aging signal was observed for ATs (0.785, see Table III and Fig. 5), 

while in females, Torso (0.718) was higher than ATs (0.707). In both males and females, the 

lowest aging signal was observed in Bones (0.647 and 0.644, respectively). Males had 

higher aging signals than females in every tissue, with the largest gender difference in ATs 

(0.078 or 10%) and lowest for Bones (0.003 or 0.5%).
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Discussion

As indicated in the introduction, the difficulty with characterizing phenotypic aging through 

direct body composition is in large variability of data within the same age cohort. Large 

within-class variability requires adequate sampling to capture data variance. In the cross-

validation experiments, we trained classifiers on about 400 unique participant-scans to 

capture the variance and to avoid overfitting to phenotype.

The aging signal in the raw abdominal scans was 0.688 for males and 0.635 for females, 

which is relatively low compared to a noise level of 0.5. We speculated that the signal 

strength in raw scans was somewhat compromised by decreased efficiency of feature 

algorithms on low-contrast images (Fig. 3, columns 1,2). As expected, contrast enhancement 

resulted in an increased classification signal of 0.759 for males and 0.718 for females. There 

are several sources of noise in the scan data: variations in subject size, z-section of subjects, 

and other distortions that are impossible to normalize for. Additionally, only the 

chronological age of the subjects is known, while it is the unknown physiological age of the 

subject that affects the observations. In this context, an accuracy of 0.759 should be 

considered relatively high, and is higher than the age discrimination values reported in 

previous imaging studies.

Adipose tissue: highest aging signal

Out of the three constituent tissue types (ATs, STs, and Bones) considered, adipose tissue 

had the largest aging signal in both genders (see Table III and Fig. 5), which is consistent 

with AT as an aging biomarker. From a pattern recognition perspective this is surprising 

since AT has a narrow dynamic range as well as (at least by visual inspection) limited 

variation in texture. This is in contrast to bones, which have the largest dynamic range of the 

three tissues and a much larger variation in texture, but have little detectable aging signal in 

either gender. The accuracies we observed are thus reversed from what one may expect from 

very basic assumptions.

We speculate that the reason for the high aging signal observed in AT may be the age-

associated transition of AT from subcutaneous to visceral fat, and probably a change in 

density and texture that occurs in the visceral fat with aging (19-23). Additionally, the two 

genders showed substantially different classification accuracies for AT (0.785 in males vs. 

0.707 in females), a difference of almost 10%. We speculate that this is due to the difference 

in the distribution of AT in males vs. females (24). In males, AT typically accumulates in the 

abdominal area, and abdominal scans are well suited to capture the transition from 

subcutaneous to visceral fat. In contrast, females have multiple depositions of AT and a more 

complicated process of fat redistribution during aging that is not necessarily optimally 

represented in abdominal scans. Thus, the redistribution of AT between subcutaneous and 

visceral fat may explain the high aging signal in this tissue, while the specific concentration 

of fat in the abdomen of males vs. a more dispersed distribution in females may explain why 

the aging signal is substantially higher in males than in females.
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Soft tissue

Soft tissue is composed of a variety of tissues largely characterized by their water content 

(neither bone nor fat). Soft tissue occupies a relatively large percentage of the torso (∼40%), 

has (by manual observation) a variety of textures and shapes, but also has the narrowest 

radiodensity range of the three tissues. The observed aging signal (per Table III) was 

relatively high at 0.700 in males and 0.678 in females. It is possible that muscle is a 

significant contributor to this aging signal, as myosteatosis is a known marker of aging as 

well as age-related insulin resistance and hyperinsulinemia (25, 26). However, muscle is not 

the only component of soft tissue, and is not the main tissue with this range of radiodensities 

within the abdomen. To our knowledge, ST has not been previously described as an aging 

marker, and our results indicate that these tissues warrant further study.

Bones: smallest aging signal

As noted above, age discrimination for Bones was the lowest out of the four data sets 

considered in both genders: 0.647 (males) and 0.644 (females), while the gender difference 

between the two was in the third digit of their values. Bone tissue is a well-known age 

marker, and bone loss is a hallmark of the aging process. Bone tissue is also well suited for 

CT studies because its density spans across half of the Hounsfield scale. Based on these 

considerations, we would have expected to detect a substantial aging signal in bone. Bone 

aging is also known to be distinct in the two genders. Bone density with aging decreases in 

males gradually, while in females bone loss accelerates after mid-life (19, 27, 28). We would 

expect to detect these differences. Although the aging signal we detected is significantly 

higher than noise, it is of low magnitude and shows no differences between males and 

females.

A set of contributing factors may explain our observations. First, in much of the research on 

bone density loss, the study subject is the femur (29, 30), a weight-bearing bone whose 

density loss is directly related to functional decline. In this study, the bones consisted of 

highly variable fragments of lower ribs and the L4 lumbar vertebra. Although the bone in the 

vertebrae is known to be sensitive to osteoporosis as it consists mostly of trabecular bone, 

the specific parts of the vertebra and ribs that were captured in the scans was highly variable 

from sample to sample because they came in and out of view with small changes in body 

position (See Fig. 4, panel B). These types of abdominal sections are simply not optimal for 

studying bone structure. Lastly, both the older and younger female cohorts in our dataset 

consist of post-menopausal women, which may be past the stage of accelerated bone loss, 

where changes are smaller and more comparable to those in men. We suggest that studies 

addressing changes in bone would be better performed on scans of the thigh and/or calf.

Where classification errors occur

The per-class accuracy (Table III, values in brackets) allowed for analysis of common 

misclassification measures, miss rate (e.g. frequency of ‘Y’ misclassified as ‘O’) and fall-out 

(frequency of ‘O’ misclassified as ‘Y’). These rates can be calculated as complementary to 

the known per-class accuracy given binary classification problem. For example, the per-class 

accuracies [0.770 0.747] (Males: ensemble, Torso) give miss rate and fall-out as 0.230 and 

0.253, respectively. The per-class misclassifications were rather uniform for male 
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participants (the largest difference is 0.03 for ATs). For female participants, the differences 

between fall-out and miss values were low (less than 0.02) for ATs and Bones, but were 

higher for Torso (0.16) and for STs (0.12). Here ‘O’ cohort showed higher misclassification 

rate, which could be attributed to a greater dispersion of morphology within older 

participants, given heterogeneous nature of this tissue group (more receptive to age diversion 

in the constituent tissues).

Conclusions

We present a framework for automated processing of CT scans to evaluate the relative aging 

signals in tissues present in abdominal sections. The method relies on supervised machine 

learning and low-level generic image descriptors. Using three different classifiers and 

ensemble classification we demonstrate that robust aging signals exist in the morphological 

patterns of contrast-enhanced abdominal CT scans. The analysis showed that aging signal 

was higher overall in males than in females. In males, the strongest aging signal was 

observed in adipose tissue, while in females, adipose tissue was a close second to the signal 

in the whole torso. This was the first aging study based exclusively on image data from the 

BLSA and is by far the largest aging study based on images thus far conducted in humans.
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Figure 1. Age distribution in male and female BLSA subjects
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Figure 2. 
Scheme for generating intensity range data for experiments with tissue-specific scan areas. 

1: original scan, 2: background pixels removed, rotation normalizing, 3: clipped, 4: CLAHE 

adjusted trunk, 5: tissue-specific mask, 6: CLAHE-adjusted and masked image.
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Figure 3. 
Representative abdominal CT scans for middle-aged group (age 50-70 y.o., indicated as ‘Y’) 

and old group (age 80-99 y.o., marked as ‘O’). Each ‘Y’ and ‘O’ group contains 4 subjects. 

Columns 1,2 show the scans with original (un-manipulated) pixel intensity, while columns 

3,4 show CLAHE-enhanced images.
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Figure 4. 
Panel A: analysis of different quantiles over CT scans of all male subjects resulted in three 

intensity ranges roughly corresponding to adipose tissue, soft tissues and bones. Panel B 

illustrates segmentation of the whole intensity range according to the selected ranges shown 

above. Rows 1-3 present Fats, STs, and Bones ranges, respectively. Four male subjects 

shown correspond to obese 67 y.o. (1), normal 69 y.o. (2), obese 82 y.o. (3), normal 82 y.o. 

(4).

Orlov et al. Page 14

Acad Radiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Per-tissue signal contributions by the ensemble classifier.
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Table 2
Classification accuracy comparisons

Raw CLAHE

Males, WND 0.655 0.718

Males: cmim+svm 0.677 0.762

Males: mrmr+svm 0.659 0.736

Males: ensemble 0.688 0.759

Females: WND 0. 635 0.701

Females: cmim+svm 0.622 0.712

Females: mrmr+svm 0.595 0.698

Females: ensemble 0.635 0.718

Comparison of classification accuracy of Torso for two data types: a) original (raw) pixel intensity in the left column, and b) CLAHE-enhanced 
images in the right column.
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Table 3
Per-tissue classification accuracies in different tissues

Torso ATs STs Bones

Males: WND 0.718 [0.772 0.665] 0.787 [0.749 0.825] 0.677 [0.757 0.597] 0.650 [0.591 0.709]

Males: cmim+svm 0.762 [0.780 0.743] 0.770 [0.772 0.767] 0.691 [0.659 0.724] 0.622 [0.647 0.596]

Males: mrmr+svm 0.736 [0.705 0.767] 0.753 [0.766 0.741] 0.670 [0.616 0.723] 0.609 [0.665 0.553]

Males: ensemble 0.759 [0.770 0.747] 0.785 [0.769 0.802] 0.700 [0.704 0.696] 0.647 [0.646 0.649]

Females: WND 0.701 [0.738 0.644] 0.709 [0.592 0.824] 0.672 [0.672 0.671] 0.639 [0.670 0.608]

Females: cmim+svm 0.712 [0.823 0.601] 0.689 [0.763 0.614] 0.655 [0.761 0.549] 0.632 [0.609 0.654]

Females: mrmr+svm 0.698 [0.769 0.638] 0.671 [0.724 0.619] 0.646 [0.722 0.570] 0.582 [0.601 0.564]

Females: ensemble 0.718 [0.798 0.638] 0.707[0.705 0.710] 0.678 [0.738 0.617] 0.644 [0.654 0.634]

Upper sub-cells show CA, and lower sub-cells show per-class CAs (for the Younger and Older classes respectively).
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