Skip to main content
. 2017 Nov 27;60(11):337–343. doi: 10.3345/kjp.2017.60.11.337

Table 1. Virtual reality experiences for the rehabilitation of children with ADHD.

Aim of study ADHD patients' characteristics VR technology types Results Sources
Study the efficacy of a near-infrared spectroscopy-based Neurofeedback training in VR classroom. n=90 schoolchildren VR classroom Improve training programs and academic performance and decrease of ADHD symptoms. University Hospital Tuebingen (2016)51)
Range, 6–10 years
(1) Study the diagnostic validity of VC in comparison to a CPT test, (2) explore the task difficulty of VC, (3) address the effect of distractors on the performance of participants with ADHD. n=33 Virtual classroom-CPT (VC) Significant differences between performance in the virtual environment and the traditional computerized one, with longer reaction times in virtual reality. Neguţ et al. (2016)52)
Range, 7–13 years
(1) Investigate validity and reliability of the ClinicaVR: Classroom-(CPT); (2) test the relationship between performance in the virtual test and the attendant sense of presence and cyber sickness experienced by participants (3) assess potential effects of gender and age on performance in the test. n=102 (53 girls and 49 boys) ClinicaVR: classroom-(CPT) In this study, test did not cause much cyber sickness. Also ClinicaVR: classroom-CPT recommend as an assessment tool for selective and sustained attention, and response inhibition. Nolin et al. (2016)19)
Range, 7–16 years
The comparison of the performance in a CPT test in a VR classroom between medicated and unmedicated children with ADHD and healthy children n=94 (26 medica ted children with ADHD and 68 medicated children with ADHD and 34 healthy children) Virtual reality classroom (CPT-VRC) Virtual reality technology has potential to evaluate ADHD symptoms in an ecologically valid environment. Muhlberger et al. (2016)45)
Range, 7–16 years
Study time of performances in the VR classroom with measures of the CPT II. n=36 VR classroom Decrease performance time in individuals with ADHD. Bioulac et al. (2012)14)
Range, 7–10 years
Study the efficacy of VR in manipulating and eventually training time perception n=not mentioned VR game Training and improvement in time perception of children with ADHD Gongsook (2012)15)
Range, not mentioned
Develops a novel assessment based on performance of children with ADHD, behavior & reaction using VR n=not mentioned VR classroom Improve attention and executive function. Yeh et al. (2012)3)
Range, 7–13 years
Explore the efficacy of VR systems as treatment tools in primary impairments of ADHD, autism and cerebral palsy disorders. n=not mentioned Review past studies Provide (1) feedback-focused interaction, (2) gesture-based interaction, and (3) haptic-based interaction. Wang and Reid. (2011)53)
Range, not mentioned
(1) Compare the performance of children with ADHD on VR-CPT with TOVA. (2) Assess the how the VR environment is experienced. n=37 (20 with ADHD and 17 without ADHD) VR-CPT The VR-CPT is an enjoyable and user-friendly assessment tool to help diagnosis of children with ADHD. Pollak et al. (2009)34)
Range, 9–17 years
Investigate the ability of the VR classroom to compare between children with ADHD and the 16 same age control group and also evaluate the efficacy of ecologically valid distracters. n=19 VR classroom (1) Introduce lifelike distractions, (2) make test with more ecologically valid test and (3) offer a standardized environment to carry out research. Adams et al. (2009)35)
Range, 8–14 years
Highlight the implementation of the psychotherapeutic principles for children with ADHD in VR classroom. n=not mentioned VR classroom (1) Provide high accurate assessment, (2) reduce time (3) control the therapeutic process and (4) applying cognitive behavioral therapy techniques Anton et al. (2009)49)
Range, not mentioned
The comparison of performance of children with ADHD in VR-CPT with NO VR-CPT and TOVA n=20 VR-CPT The VR-CPT is a sensitive and user-friendly assessment tool in children with ADHD. Pollak et al. (2009)48)
Range, 9–17 years
Validation of VR technology for the assessment of children with ADHD n=10 VR classroom The efficacy of VR-CPT to identify attentional difficulties in children with ADHD Gutiérrez-Maldonado et al. (2009)54)
Range, 6–11 years
A controlled clinical comparison of attention performance in children with ADHD in a VR classroom n=10 boys VR classroom Virtual classroom had good potential for controlled performance assessment within an ecologically valid environment and due to the presence of distraction stimuli, appear significant effects. Parsons et al. (2007)22)
Range, 8–12 years
Highlight unsafe road-crossing behavior of children with ADHD in a hazardous environment. n=24 (12 boys and 12 girls) VR traffic gap-choice task Virtual reality helps identify and educate those at higher risk of being involved in dangerous traffic situations. Clancy et al. (2006)55)
Range, 13–17 years
Investigate VR feedback to increase EEG signal n=120 subjects with ADHD, epilepsy or mood disorders VR games Better outcomes with information-rich feedback in virtual reality environments Othmer and Kaiser (2004)56)
Range, not mentioned
Highlight the potential of VR for improving attention n=26 VR classroom The effectiveness of integrated VR with cognitive training in attention enhancement and focus on some tasks Cho et al. (2002)57)
Range, not mentioned
Developed the prototype of the Attention Enhancement System using VR and EEG biofeedback n=50 VR Neurofeedback (1) Improve assessment and treatment. (2) enhance attention Cho et al. (2002)57)
Range, 13–17 years
Develop the new treatment system for children with ADHD using VR. n=10 VR classroom (1) Decrease inattention or impulsivity (2) improve attention and treatment Lee et al. (2001)2)
Range, not mentioned
Study VR applications in assessment and rehabilitation of cognitive/functional processes n=15 VR classroom Improve the reliability of neuropsychological assessments Rizzo et al. (2000)32)
Range, not mentioned

ADHD, attention deficit hyperactivity disorder; VR, virtual reality; CPT, continuous performance test; VC, virtual classroom; TOVA, Test of Variables of Attention; EEG, electroencephalography.