Skip to main content
. 2017 Nov;15(8):1085–1092. doi: 10.2174/1567201814666161205131745

Table 3.

Molecular descriptors and forward selection statistics for linear (MLR) and non-linear (SVM) QSAR dataset 2 
(16 Compounds).

Model Descriptors Variables R2 Max. Abs. Error Mean Abs. Error R2CV (N-Fold)
Linear
(MLR)
H0m 1 0.4827 1.1753 0.4315 0.2908
H0m, C-025 2 0.7114 1.0899 0.3089 0.5508
H0m, C-025, nBnz 3 0.8670 0.5661 0.2180 0.7736
H0m, C-025, nBnz, Mor17m 4 0.9274 0.4868 0.1542 0.8547
Non-linear
(SVM)
GGI9 1 0.6459 1.1049 0.3207 0.4738
GGI9, R7v+ 2 0.7902 0.7553 0.2370 0.6831
GGI9, R7v+, G(O..S) 3 0.8970 0.7558 0.1135 0.7834
GGI9, R7v+, G(O..S), HATSe 4 0.8803 0.7725 0.1255 0.8155

Statistical fitness derived from various statistical parameters of linear and non-linear QSAR models show that models were acceptable in the current form. R2 values indicate a strong confidence level even in bi-variable linear (R2=0.8634) and non-linear (R2=0.9747) QSAR models. R2CV values further confirm the stability of QSAR models