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Energy harvesting efficiency of 
piezoelectric polymer film with 
graphene and metal electrodes
Sanghoon Park1,2, Yura Kim1,2, Hyosub Jung1,2, Jun-Young Park   2, Naesung Lee2 &  
Yongho Seo   1,2

In this study, we investigated an energy harvesting effect of tensile stress using piezoelectric polymers 
and flexible electrodes. A chemical-vapor-deposition grown graphene film was transferred onto both 
sides of the PVDF and P(VDF-TrFE) films simultaneously by means of a conventional wet chemical 
method. Output voltage induced by sound waves was measured and analyzed when a mechanical 
tension was applied to the device. Another energy harvester was made with a metallic electrode, where 
Al and Ag were deposited by using an electron-beam evaporator. When acoustic vibrations (105 dB) 
were applied to the graphene/PVDF/graphene device, an induced voltage of 7.6 Vpp was measured 
with a tensile stress of 1.75 MPa, and this was increased up to 9.1 Vpp with a stress of 2.18 MPa for the 
metal/P(VDF-TrFE)/metal device. The 9 metal/PVDF/metal layers were stacked as an energy harvester, 
and tension was applied by using springs. Also, we fabricated a full-wave rectifying circuit to store the 
electrical energy in a 100 μF capacitor, and external vibration generated the electrical charges. As a 
result, the stored voltage at the capacitor, obtained from the harvester via a bridge diode rectifier, was 
saturated to ~7.04 V after 180 s charging time.

Energy harvesting technology, which converts natural dissipating energy to usable energy, has been studied to help 
mitigate energy depletion around the globe, and thus various methods to harvest this energy have been suggested1–4. 
In particular, energy harvesting technology using piezoelectric materials is one such method which utilizes mechan-
ical energy from various sources such as human motion, acoustic noise, or wind to convert energy into an electric 
current or voltage5. When mechanical energy such as an acoustic wave is applied to the piezoelectric polymer film, 
electrical charges are induced between the two surfaces. Using this property, a piezoelectric material can be applied 
as an electromechanical energy converter6. Some polymers have strong piezoelectric effects when subjected to 
mechanical stretching or external excitation. Thus, piezoelectric polymers can be adopted as a generator material for 
energy harvesting devices as well as actuators, and received great attention from researchers for this reason. As one of 
the representative piezoelectric materials, polyvinylidene fluoride (PVDF) films with high sensitivity and flexibility 
have been studied for application in an energy harvesting device7.

Some conducting materials with flexibility have been adopted as electrodes for PVDF devices, and among 
them graphene in particular has been considered widely8,9. Graphene has been studied as a transparent electrode 
material due to its outstanding physical properties including high electrical conductivity, high thermal conduc-
tivity, and optical transparency9–13. Graphene has been considered as an alternative material to replace indium tin 
oxide thin film as a transparent electrode. In recent times, many research groups have used graphene as electrodes 
for energy harvesting devices because of its flexibility and stretchability. In this study, we fabricated a PVDF film 
based piezoelectric generator with graphene electrodes on both sides of the PVDF. This PVDF generator using 
thin metal film electrodes was made with a metal/PVDF/metal (M/PVDF/M) structure to enable comparisons 
of the output power of the device with graphene/PVDF/graphene (G/PVDF/G). A higher output power was 
obtained from M/PVDF/M devices than that from G/PVDF/G devices.

Besides the electrode issues generators, previous studies on PVDF based generators have been conducted by 
only applying external sources such as acoustic noise, vibration, wind, etc., to the generator. Furthermore, while 
using acoustic noise as an external source, we applied a continuous tensile stress to the aforementioned generators 
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by hanging weights. As a result, we were able to obtain a remarkably high output voltage from generators by grad-
ually increasing the continuous tension. Also, by mounting the generator on a stretchable frame with compressed 
springs, we were able to boost the output voltage by means of the tensile stress. External sources consisting of both 
acoustic noise and mechanical shocks were used to vibrate the sample. In addition to these experiments, we also 
prepared copolymer polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] based generators, and measured 
their performance based on the thickness of the piezoelectric film in the same manner in the aforementioned 
experimental process. It was observed that a thin P(VDF-TrFE) generator induced a higher power density than 
that generated by a thick film.

Experiment
Piezoelectric polymer film fabrication.  To fabricate the piezoelectric film, P(VDF-TrFE) powder 
(Piezotech Co.) was dissolved into N,N-dimethylformamide (DMF) with 15 wt%, and a bar coating method was 
employed to coat the solution onto a silicon wafer with 300 nm oxide. After that, the sample was slowly dried in a 
closed chamber filled with DMF solvent for two hours to reduce the surface roughness of the P(VDF-TrFE) film 
and make it denser to improve performance14. To evaporate the remaining solvent, the sample was annealed at 
60 °C for 40 minutes, and additional annealing (at 140 °C for 2 hours) followed successively to enhance the pie-
zoelectric property created through the phase change of P(VDF-TrFE) from α to β-phase15. After the annealing 
steps, the sample was dipped into DI water to detach the hydrophobic P(VDF-TrFE) film from the substrate, and 
a P(VDF-TrFE) film with ~10 μm thickness was obtained. Then, as a poling process to align the polarizations, an 
electric field of 50 MV/m was applied to the film. All processes are depicted in Fig. 1(a). A readily available com-
mercial film (Fils Co., Ltd., 80 μm thickness) was used for the thick PVDF film device.

Electrode deposition.  The graphene sheets were synthesized by a conventional chemical vapor deposition 
process16. The copper substrate holding graphene sheets was wet etched before the transfer step by the same pro-
cess already explained in our previous work17. When we originally tried to transfer graphene layers on to both 
sides of the PVDF film, we attempted to transfer them one at a time, but the first layer became easily detached 
during the second layer transfer due to weak adhesion between the graphene and the polymer film. To solve this 
problem, two graphene sheets were transferred simultaneously as shown in Fig. 1(b). First they were floated on 
DI water, then a PVDF film or a P(VDF-TrFE) film was dipped into the water and placed vertically between both 
of the graphene sheets. As the piezoelectric film was raised slowly in a vertical position, the graphene sheets were 

Figure 1.  Schematics of the fabrication process for (a) P(VDF-TrFE) based thin film generators (the inset 
shows a photograph of a fabricated device with silver electrodes), and (b) a G/PVDF/G generator fabricated by 
double-sided graphene transfer.
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attached to both sides of the film simultaneously. The samples were hanged immediately after transfer to flow 
down the water and annealed at 100 °C to remove residual water. The PMMA layer was removed by acetone after 
drying the sample completely. An aluminum (or silver) electrode was deposited on both sides of the PVDF and 
P(VDF-TrFE) films via an electron-beam evaporator. It was found that either Al or Ag indicated similar perfor-
mance as electrodes for the piezoelectric device, because they have similar work functions18–20. The thickness of 
the metal film was controlled to 50 nm which would maintain the flexibility of the energy harvester. The active 
areas were about 6 × 6.5 cm2 for the PVDF and 4 × 4 cm2 for the P(VDF-TrFE) samples, respectively.

Experimental Setup.  To isolate external background noise and building vibrations, a soundproof cham-
ber and a pneumatic vibration isolation table were used. The fast Fourier transform from detected signals was 
employed to confirm the frequency spectrum of the background noise of the setup. Though no intentional excita-
tions were applied, a peak was observed at 60 Hz (See Supplementary Fig. S1). This peak is attributed to the 
frequency of the utility power, and no other significant frequency was observed, confirming that this setup was 
isolated from external vibrations and background noise.

The top and bottom edges of the rectangular film was fixed with two bar frames and was suspended from a tripod, as 
shown in Fig. 2(a). The bar frame at the bottom weighed about 70 g and additional weights were hung on to apply longi-
tudinal tension due to gravitational force. The tensile stress was controlled by changing weights. The acoustic vibration 
was excited by means of a loudspeaker. Its frequency and amplitude were controlled by a function generator. The fre-
quency was in the range of 100 Hz to 300 Hz, and the excitation amplitude was fixed at 5 V. Loudness at 10 cm distance 
was measured as 105 to 110 dB by a decibel meter, with variations depending on the frequency. (See Supplementary 
Fig. S2) The induced voltage was measured by an oscilloscope with an input impedance 1 MΩ.

Result and Discussion
Effect of tensile stress on piezo-film.  The required mechanical energy to vibrate the stressed film can be 
approximately estimated by the work done by pulling the film a distance of a as shown in Fig. 2(c). Here, the film 
is stressed by tension F Acσ= , where σ is tensile stresses, and =A twc d is the cross sectional area of the film (t: 
thickness, wd: width). Considering the film as an elastic medium, the spring constant k of the film is given by 

=k EA L/c 0, where E is Young’s modulus. The length change of the film, Δ = −L L L0, can be approximated as 
L a

L
2 2

0
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When we apply a mechanical pulse to excite the films with different thicknesses t, the vibration amplitude (a) is 
proportional to t1/  from Eq. (1) for the same supplied energy cost. The vibrating piezo-film induces charge Q, 
which can be estimated from;

Figure 2.  (a) Schematics of experimental setup applying tensile stress to the generator. The output voltage was 
measured by an oscilloscope. (b) Photograph shows the stressed film based generator and a loudspeaker. (c) 
Illustration shows the model of the vibration of the film with fixed ends.
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ε=Q d EA , (2)31

where d31 is the piezoelectric constant, and A = Lwd and L
L0

ε = Δ  is the strain. The electrical energy converted from 
the mechanical work can be described by the electric energy stored in the capacitor =W Q C/s
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capacitance C =  A

t
dε , and εd is the permittivity of the piezo-film. Therefore, the stored energy is given by
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Finally, the energy conversion ratio η is given by,
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As a preliminary experiment to confirm the flexibility of graphene electrodes in piezoelectric generation, we 
compared the induced voltages of devices with silver paste and graphene as electrodes on PVDF film. A signal 
almost ten times greater was measured from graphene coated devices as graphene was flexible and did not damp 
the vibrational motion of the PVDF film (See Supplementary Fig. S3).

The waveforms of the detected piezoelectric voltages under different acoustic environments were investigated 
as shown in Fig. 3(a–c). (a) When no acoustic excitation was applied intentionally a very small signal (20 mVpp) 
at 60 Hz was detected. In that situation, an acoustic sound of 48 dB was measured in the soundproof chamber. (b) 
When the acoustic wave (86.7 dB) was excited by an input value of 1.0 V and 100 Hz from the function generator, 
the detected signal increased to 95 mVpp. (c) When the acoustic wave (83.7 dB) was excited by the same voltage 
but at the resonance frequency ƒr (220 Hz), an extremely high voltage 1.12 Vpp was generated. The result shows 

Figure 3.  The waveforms of the detected voltages from the stretched G/PVDF/G generator under 1.2 MPa 
stress were investigated, depending on different acoustic environments. (a) No acoustic excitation was applied 
intentionally, and a small noise signal (20 mVpp) with 60 Hz was detected. (b) When the acoustic excitation 
(86.7 dB) was applied at 100 Hz, the device generated 95 mVpp. (c) When the acoustic wave (83.7 dB) at 
resonance frequency (220 Hz) was applied, 1.12 Vpp was detected. After that, the input voltage was increased to 
5 V, and the peak-to-peak output voltage spectra were measured under tensile stresses by different weights:  
(d) 70 g, (e) 170 g, (f) 370 g, (g) 570 g, (h) 870 g, and (i) 1070 g.
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that the generator was active at under weak acoustic excitation conditions with an off-resonance frequency and 
even without an intentional source if it is stretched by the static stress.

The peak-to-peak voltages were measured as a function of frequency with higher excitation (~105 dB) by 1 V 
input as shown in Fig. 3(d–i). (d) When a low tension (70 g) was applied to the device to make it flat, its maxi-
mum peak-to-peak voltage (Vpp) was found to be 1.4 V at 155 Hz. In this graph, there was no significant resonant 
behavior. The data at low tension exhibited multiple peaks by spurious modes due to its crumpled surface, but it 
was suppressed by the reinforced tension. When we applied higher tensile stress to the device by hanging heavier 
weights, the piezo-film was pulled tight. The maximum voltages at its resonance frequencies ƒr were measured 
as (e) 1.9 Vpp at 185 Hz, (f) 2.6 Vpp at 182 Hz, (g) 2.9 Vpp at 210 Hz, (h) 7.6 Vpp at 280 Hz, and (i) 6.6 Vpp at 283 Hz, 
respectively, and the applied masses were 170 g, 370 g, 570 g, 870 g and 1070 g, respectively. It is notable that the 
measured voltage depends on the load resistance. When an 870 g weight was applied, a maximum voltage of 
7.6 Vpp was detected. This voltage is more than 20 times higher than that measured by others21 at similar condi-
tions22, and it is comparable to the voltages obtained by a bending or stretching motion of the piezo-film14,21,23. 
Considering the input impedance 1 MΩ of the oscilloscope in this measurement, the voltage 7.6 Vpp corresponds 
to a generating power 7.2 μW. To confirm the reproducibility of the spectra data, we repeated the measurements 
with the same samples and obtained very consistent results (See Supplementary Fig. S4).

Effect of electrodes on piezo-film.  The fundamental vibrational mode of a stretched string with fixed 
ends is that the wavelength is twice the length of the string, and the resonance angular frequency for the standing 
wave is given by24

π σ
ρ

ω =
L

,
(5)

r
0

where linear density ρ = m L/ 0, L0 is the original length of the film. When there is no stress on the film, no reso-
nance is expected, and the resonance frequency is supposed to be proportional to the square root of σ from Eq. 
(5). The measured resonance frequency ƒr and the voltage Vpp at ƒr were plotted as functions of the stress in Fig. 4, 
where the tensile stresses were calculated from σ = F A/g c with the gravitational forces Fg created by weights. The 
Vpp and ƒr appeared to rise as the tensile stress σ was increased. This increasing tendency of the resonance fre-
quency can be explained by the stretched string model from Eq. (5), but the measured frequencies were roughly 
twice the calculated values. This discrepancy is attributed to the difference of the geometric shape of the piezo-film 
as it is a film instead of a string, because Eq. (5) was derived from 1-dimensional string model. The influence of 
the electrodes was ignored as the electrode thickness (50 nm for metal film, 0.3 nm for graphene) was too thin to 
have a considerable spring constant, compared with the piezo-film (80 μm for commercial film, ~10 μm for syn-
thesized film). The relationship between the amplitude and the applied tension can be explained by the increment 
of the quality factor, as well as the resonance frequency. From a damped harmonic oscillator model24, the quality 
factor Q is given by Q /2rω β= , where β is a damping parameter. The amplitude at the resonance frequency is 
proportional to the frequency and inversely proportional to damping. As the film was stretched by tensile stress, 
the internal friction was reduced and the film’s quality factor was increased. Additionally, the application of a large 
tensile strain could increase the β-phase portion in PVDF film25. The abrupt changes of the data points between 
1.2 and 1.75 MPa in Fig. 4(a) are attributed to a mode mixing between the fundamental mode and other spurious 
modes. It is notable that the applied tension increases the vibration amplitude at high frequencies and it also aug-
ments the piezoelectric energy harvesting effect.

The same measurements were performed for the sample (M/PVDF/M) with metal electrodes instead of 
graphene electrodes, applying tensile stress as shown in Fig. 4(b). (For details see Supplementary Fig. S5). The 
stress dependencies of Vpp and fr for both G/PVDF/G and M/PVDF/M devices were similar, but the output volt-
age for M/PVDF/M was slightly higher than that for G/PVDF/G. The metal electrode generator exhibited an 

Figure 4.  The resonance frequency ƒr and the voltage Vpp at ƒr were plotted as functions of the stress for two 
different samples: (a) G/PVDF/G device and (b) M/PVDF/M device. The left axis indicates the peak-to-peak 
voltage scale, and the right shows the resonance frequencies.



www.nature.com/scientificreports/

6Scientific RePorts | 7: 17290  | DOI:10.1038/s41598-017-17791-3

output voltage 1.94 V higher on average than the graphene electrode generator at the same tensile stress. The 
high piezoelectric generation for metal electrodes can be explained by the fact that the transferred graphene has 
residues on the surface and trapped water, but evaporated metal film has a cleaner surface with good electrical 
contact. Particularly, in the case of the M/PVDF/M device, the maximum voltage 0.4 Vpp without tensile stress 
was increased up to 9.1 Vpp with the stress at 2.18 MPa, corresponding to the areal power density 0.27 μW/cm2, 
which was much higher than that of G/PVDF/G (0.18 μW/cm2). This phenomenon also can be explained by the 
resonance with the enhanced quality factor which is caused by the blue shift of the resonance frequency and 
diminished internal friction.

Effect of thickness of piezo-film.  The same measurements were carried out for the thin film device based 
on P(VDF-TrFE) film, and similar results were obtained as shown in Fig. 5. While no sharp peak was found by 
loading a light weight (70 g), the voltages have peaks at 278 Hz and 358 Hz for loading masses 170 g (4.2 MPa) and 
270 g (6.6 MPa), respectively. For this thin film, high stresses were applied with low weights, and the stressed film 
has high resonance frequencies due to the light mass of the film. The induced voltages were lower than those of 
the thick film device, but the generated power density of the thin film device was higher. The advantage of the thin 
piezo-film was studied by Sung et al. previously, and the higher output voltage was obtained from a thinner film25. 
In our experiment, the maximum power density for the thin film device was estimated as 81.3 W/m3 at 4.2 MPa, 
while the maximum power for the thicker PVDF film was 33.8 W/m3 at 2.2 MPa. This result is a remarkably high 
value in comparison to other piezoelectric polymer devices9. On the other hand, the tensile strain σε = E/  was 
estimated as 0.132% under the maximum stress 6 6σ = .  MPa, where Young’s modulus E of the piezo-film (~ 
5 GPa). In this estimation, the influence of electrodes on the strain was neglected because of its ignorable thick-
ness. The static strain in our experiment is comparable to the dynamic strain of the other group’s piezoelectric 
generator (0.083–0.271%) reported by Lee et al.21. It is notable that the static strain can be kept without supplying 
additional input energy, but the dynamic strain costs kinetic energy. From Eq. (4), the unknown parameter ε can 
be replaced by the term including input energy from Eq. (4), and the energy conversion ratio for a single piezo 
layer,

d E
w L

W
t (6)d d

31
2 2

2
0

η
ε

≅
σ

is inversely proportional to the thickness if one supplies the same amount of mechanical energy for the finite 
tolerable stress. In Eq. (6), the conversion ratio is only a function of thickness, which means that the ratio can be 
enhanced by making the film thin. Furthermore, the total energy efficiency can be boosted by stacking thin film 
layers.

Creating an energy harvester by stacking piezo-films.  Tensile stress was finally applied by using 
square frames with compressed springs, as shown in Fig. 6a. We clamped the left and right sides of the piezo-film, 
and two compressed springs (1.03 kN/m spring constant) were inserted to apply tensile stress. Its 10 mm con-
traction caused Ft = 20.6 N tension, and the tensile stress σ and strain ε were 4.29 MPa and 0.086%, respectively. 
A bridge-diode rectifier circuit (Fig. 6b) for charging the capacitor using four diodes (BAV20) was built with the 
generators to demonstrate its performance. Mechanical tapping was exploited as an energy source.

Nine clamped generators (N = 9) were stacked and electrically connected in parallel and we applied mechan-
ical pulses repeatedly. As we applied a single mechanical pulse in every second by tapping, expansion or contrac-
tion of the film ΔL ~ 0.015 mm occurred, and a few volts in open circuit were generated on the piezo-film. We 
continued to apply mechanical pulses until the capacitor (100 μF) was saturated, and then left it to observe the 
leakage current. In Fig. 6c and d, the capacitor was saturated to 7.04 V at 180 s from the metal electrodes genera-
tors, and 3.3 V at 240 s was shown in regard to graphene electrode generators. From the initial charging rate (inset 

Figure 5.  (a) The generated peak-to-peak voltages from the device based on P(VDF-TrFE) thin film were 
measured as a function of frequency. (b) The peak-to-peak voltage and resonance frequency were plotted as 
functions of the tensile stress.
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in Fig. 6c), the work done by a single mechanical pulse (W = N Ft ΔL) was calculated to be 2.78 mJ and the stored 
energy =( )W CVs

1
2

2  in the capacitor was 57 μJ. Thus, approximately 2.05% of maximum conversion efficiency 
was obtained from the stressed piezo-film stacked generator. Even though this efficiency is similar to others26, it 
should be noted that this efficiency was obtained from a final system including a rectifying circuit. During the 
discharging process, the time constant τ was estimated as 108 s by fitting into an exponential decay function. 
Particularly, the leakage currents ( )I 6 5 Aleak

Q µ≅ ≅ .
τ

 through the diodes and electrolyte capacitor were domi-
nant factors in reducing the conversion efficiency. In terms of electrodes, the metal electrodes were more effective 
than the graphene electrodes due to their surface cleanness and good electrical contact.

Conclusion
This study showed that the performance and sensitivity of an energy harvesting device composed of represent-
ative piezoelectric polymer materials can be improved by applying proper tensile stress. Also, our experimental 
results indicate that thin piezoelectric film exhibits better energy conversion efficiency. The thin piezo-film was 
more effective in converting acoustic waves into electrical charge because free standing thin film is more flexi-
ble and more sensitive to the acoustic waves. The thin piezoelectric P(VDF-TrFE) film (~10 μm) with uniform 
roughness was fabricated successfully, and this showed good tolerance to tensile stress of up to 6.6 MPa. The 
maximum power density for the thin film device was estimated as 81.3 W/m3 at 4.2 MPa. A higher output power 
was obtained from devices with metallic electrodes than those with graphene electrodes. A theoretical model to 
calculate the conversion ratio of the energy harvesting devices was suggested.

Figure 6.  (a) Photograph of stacked generators in parallel connection. (b) The rectifier circuit to accumulate 
the output voltage. The voltage changes over time during the charging and discharging processes are shown for 
the generators with (c) metal electrodes and (d) graphene electrodes.
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In summary, we suggest a novel technique with tensile stress to enhance the performance of PVDF or P(VDF-TrFE) 
based energy harvesting devices with high output power. The energy conversion ratio can be enhanced by making the 
piezo-film thin. This novel solution can be employed not only for PVDF or P(VDF-TrFE) but also for other flexible 
piezoelectric materials in the field of energy harvesting technology. The uniform thin piezoelectric film with application 
of suitable tensile stress can be utilized for a commercialized energy harvesting device.

References
	 1.	 Granstrom, J., Feenstra, J., Sodano, H. A. & Farinholt, K. Energy harvesting from a backpack instrumented with piezoelectric 

shoulder straps. Smart Mater Struct 16, 1810–1820 (2007).
	 2.	 Lefeuvre, E., Badel, A., Richard, C. & Guyomar, D. Piezoelectric energy harvesting device optimization by synchronous electric 

charge extraction. J Intel Mat Syst Str 16, 865–876 (2005).
	 3.	 Shenck, N. S. & Paradiso, J. A. Energy scavenging with shoe-mounted piezoelectrics. Ieee Micro 21, 30–42 (2001).
	 4.	 Zhao, J. J. & You, Z. A Shoe-Embedded Piezoelectric Energy Harvester for WearableSensors. Sensors-Basel 14, 12497–12510 (2014).
	 5.	 Song, H. C. et al. Multilayer piezoelectric energy scavenger for large current generation. J Electroceram 23, 301–304 (2009).
	 6.	 Ueberschla, P. PVDF Piezoelectric polymer. Sensor Review 21, 119–125 (2001).
	 7.	 Rahman, M. A., Lee, B. C., Phan, D. T. & Chung, G. S. Fabrication and characterization of highly efficient flexible energy harvesters 

using PVDF-graphene nanocomposites. Smart Materials and Structures 22 (2013).
	 8.	 Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
	 9.	 Kwon, J., Sharma, B. K. & Ahn, J. H. Graphene Based Nanogenerator for Energy Harvesting. Jpn J Appl Phys 52 (2013).
	10.	 Hecht, D. S., Hu, L. B. & Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and 

Metallic Nanostructures. Adv Mater 23, 1482–1513 (2011).
	11.	 Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev Mod Phys 83, 407–470 

(2011).
	12.	 Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. 

Science 321, 385–388 (2008).
	13.	 Dhiman, P. et al. Harvesting Energy from Water Flow over Graphene. Nano Lett 11, 3123–3127 (2011).
	14.	 Cho, Y. et al. Enhanced energy harvesting based on surface morphology engineering of P(VDF-TrFE) film. Nano Energy 16, 524–532 

(2015).
	15.	 Gomes, J., Nunes, J. S., Sencadas, V. & Lanceros-Mendez, S. Influence of the beta-phase content and degree of crystallinity on the 

piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19 (2010).
	16.	 Ahmad, M. et al. Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film. Nanotechnology 

23 (2012).
	17.	 Park, S. et al. Effect of grain boundaries on electrical properties of polycrystalline graphene. Carbon 112, 142–148 (2017).
	18.	 Dweydari, A. W. & Mee, C. H. B. Work Function Measurements on (100) and (110) Surfaces of Silver. Physica Status Solidi a-Applied 

Research 27, 223–230 (1975).
	19.	 Eastment, R. M. & Mee, C. H. B. Work Function Measurements on (100), (110) and (111) Surfaces of Aluminum. J Phys F Met Phys 

3, 1738–1745 (1973).
	20.	 Yu, Y. J. et al. Tuning the Graphene Work Function by Electric Field Effect. Nano Lett 9, 3430–3434 (2009).
	21.	 Lee, J. H. et al. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energ Environ Sci 6, 169–175 (2013).
	22.	 Tian, H. et al. Flexible electrostatic nanogenerator using graphene oxide film. Nanoscale 5, 8951–8957 (2013).
	23.	 Bae, S. H. et al. Graphene-P(VDF-TrFE) Multilayer Film for Flexible Applications. Acs Nano 7, 3130–3138 (2013).
	24.	 Marion, J. B. & Thornton, S. T. Classical dynamics of particles & systems. 3rd edn, (Harcourt Brace Jovanovich, 1988).
	25.	 Sun, C. L., Shi, J., Bayerl, D. J. & Wang, X. D. PVDF microbelts for harvesting energy from respiration. Energ Environ Sci 4, 

4508–4512 (2011).
	26.	 Chang, C. E., Tran, V. H., Wang, J. B., Fuh, Y. K. & Lin, L. W. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy 

Conversion Efficiency. Nano Lett 10, 726–731 (2010).

Acknowledgements
This research was supported by the Priority Research Centers Program (2010–0020207) through the National 
Research Foundation of Korea (NRF) funded by the Ministry of Education, and a Human Resources Development 
of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean 
government’s Ministry of Trade, Industry & Energy (No. 20164030201340).

Author Contributions
S.P., Y.K. and H.J. performed the experiments and wrote the manuscript text. J.-Y.P. and N.L. suggested 
experimental methods and discussed the results. Y.S. planned this project, analyzed the data and wrote the main 
manuscript text and figures. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-17791-3.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-17791-3
http://creativecommons.org/licenses/by/4.0/

	Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes

	Experiment

	Piezoelectric polymer film fabrication. 
	Electrode deposition. 
	Experimental Setup. 

	Result and Discussion

	Effect of tensile stress on piezo-film. 
	Effect of electrodes on piezo-film. 
	Effect of thickness of piezo-film. 
	Creating an energy harvester by stacking piezo-films. 

	Conclusion

	Acknowledgements

	Figure 1 Schematics of the fabrication process for (a) P(VDF-TrFE) based thin film generators (the inset shows a photograph of a fabricated device with silver electrodes), and (b) a G/PVDF/G generator fabricated by double-sided graphene transfer.
	Figure 2 (a) Schematics of experimental setup applying tensile stress to the generator.
	Figure 3 The waveforms of the detected voltages from the stretched G/PVDF/G generator under 1.
	Figure 4 The resonance frequency ƒr and the voltage Vpp at ƒr were plotted as functions of the stress for two different samples: (a) G/PVDF/G device and (b) M/PVDF/M device.
	Figure 5 (a) The generated peak-to-peak voltages from the device based on P(VDF-TrFE) thin film were measured as a function of frequency.
	Figure 6 (a) Photograph of stacked generators in parallel connection.




