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Pairing sound with vagus nerve
stimulation modulates cortical
synchrony and phase coherence
e o intinnitus: An exploratory
e retrospective study

SvenVanneste!, Jeffrey Martin?, Robert L. Rennaker 2nd® & Michael P. Kilgard®

Recent research has shown that vagus nerve stimulation (VNS) paired with tones or with rehabilitative
training can help patients to achieve reductions in tinnitus perception or to expedite motor
rehabilitation after suffering an ischemic stroke. The rationale behind this treatment is that VNS paired
with experience can drive neural plasticity in a controlled and therapeutic direction. Since previous
studies observed that gamma activity in the auditory cortex is correlated with tinnitus loudness, we
assessed resting-state source-localized EEG before and after one to three months of VNS-tone pairing
in chronic tinnitus patients. VNS-tone pairing reduced gamma band activity in left auditory cortex. VNS-
tone pairing also reduced the phase coherence between the auditory cortex and areas associated with
tinnitus distress, including the cingulate cortex. These results support the hypothesis that VNS-tone
pairing can direct therapeutic neural plasticity. Targeted plasticity therapy might also be adapted to
treat other conditions characterized by hypersynchronous neural activity.

Since the first human vagus nerve stimulation (VNS) implantation in 1989, more than 100,000 patients with med-
ical or surgical refractory epilepsy have been treated with VNS worldwide!. The rationale behind the treatment is
that VNS triggers the release of neuromodulators in the brain that induce an antiepileptic effect. More recently,
it was suggested that VNS paired with experience can drive plasticity in a more controlled and therapeutic direc-
tion that may direct plasticity in order to treat many manifestations of neurological disorders?-. Indeed, recent
research has shown that VNS paired with tones or with rehabilitative training can help patients suffering from
tinnitus or undergoing motor rehabilitation after ischemic stroke***.

Anatomical, electrophysiological, and biochemical findings suggest that VNS engages the cholinergic and
noradrenergic neuromodulatory systems and may even drive the NMDA receptor and GABAa receptor expres-
sion levels, thereby influencing neuronal excitability’. In a recent paper, it was shown that pairing VNS with tones
can indeed drive neural plasticity and reverse the behavioral correlate of tinnitus in noise-exposed rats**°. In a
first set of experiments, Engineer and colleagues were able to show that pairing a single pure tone with VNS is suf-
ficient to generate specific and long-lasting changes in the cortical map*. In a second set of experiments, they were
able to show that repeatedly pairing a range of tone frequencies (but not the tinnitus frequency) with VNS can be
used to reverse the behavioral and neural correlates of tinnitus in noise-exposed rates. A reduction in synchroni-
zation at the auditory cortex was observed in noise-exposed rats after VNS/multiple tone pairing after treatment
similar to control animals, while the sham treatment group had an increase in synchronization compared to the
control and treatment groups®.

Previous human research using EEG'*!!, MEG'>!?, fMRI", and PET' have shown that tinnitus is asso-
ciated with hyperactivity in the auditory cortex. In tinnitus patients, changes in resting state MEG and EEG
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Baseline characteristic | Antwerp (n=10) Dallas (n=38)
Age (yrs.) 45.6 (9.0) 54.9(9.1)
Gender Male: 8/Female: 2 Male: 6/Female: 2
Tinnitus duration (yrs.) | 5.4 (4.10) 19.2 (15.9)
Tinnitus pitch (kHz) 8.8 (4.1) 9.6 (2.71)
Loudness Match (dB) 53.4(20.32) 63.5(24.47)

Table 1. Baseline demographics (mean and standard deviation).

measurements over the temporal cortex go together with a reduction in alpha power (8-12Hz) and increases
in theta (3.5-7.5Hz) and gamma power (>30Hz) in this area!®'>!>16, A resting state EEG study has further
demonstrated that the amount of gamma-band activity in the auditory cortex reflects subjective tinnitus loudness,
while no effect could be obtained looking at psychoacoustic measures'®!”!%. Reduction of the subjective tinnitus
loudness through transcranial magnetic stimulation!® or acoustic coordinated reset neuromodulation (a specific
form of auditory stimulation with the aim to desynchronize hypersynchronous activity in the auditory cortex)"!
is associated with a normalization of gamma power. A recent study further demonstrated that after reduction of
subjective tinnitus loudness, the pathological alpha- and gamma-frequency activity reverses'®, while worsening
of tinnitus can increase the activity in the gamma frequency*?!.

Tinnitus treatment options are as diverse as their outcomes. Both pharmacological and non-pharmacological
modalities are used with only limited success**-**. Psychological treatment tends to improve the emotional symptoms
that go together with the tinnitus percept®. However, a group of patients remains refractory to these treatments?.
For various pathologies, this is the point in which surgical treatments like neuromodulation find their place®.
One new treatment option could be neuromodulation for patients intractable to conservative medical practice.
In this study, we investigate if pairing VNS with tones could drive plasticity in the auditory cortex of humans
for the first time. We assess the effect of VNS paired with tones on changes in synchronization in patients with
tinnitus by investigating resting-state source-localized EEG before and after VNS treatment. We hypothesized
that the behavioral improvement caused by VNS paired with tones would be associated with a decrease in syn-
chronization in the gamma frequency band and an increase in synchronization in the alpha frequency band in
the auditory cortex. The goal of this study was to better understand the underlying neural mechanisms associated
with the therapeutic response to VNS-tone pairing.

Methods

Participants. Eighteen patients with tinnitus were included in this study. Ten participants came from the
Antwerp site, while eight patients came from the Dallas site. Patients’ characteristics can be found in Table 1.
The trial for Antwerp site was registered on clinicaltrials.gov (NCT01253616; date of submission: December 2,
2010), while the Dallas site was part of a multicenter study on clinicaltrials.gov (NCT01962558; date of submis-
sion: October 9, 2013). Both sites had IRB approvals. For the Antwerp data, this study was approved by Antwerp
University Hospital Ethics Committee and then reviewed by the Belgian Competent Authority. For the Dallas
data, this study was approved by the office of research compliance at the University of Texas at Dallas and the FDA
Investigational Device Exemption (IDE, #G130140). All participants gave written informed consent. The clinical
trial data for Antwerp were published in Neuromodulation®. The data from the Dallas site are part of a prospective
double-blind randomized controlled multicenter study published in scientific reports®’. Neither study reports
electrophysiological data. For the multicenter study, only the Dallas site collected electrophysiological data. We
carried out the study in accordance with the approved guidelines. Data were collected in the context of a VNS
clinical trial. However, the data in current paper are retrospectively analyzed.

VNS parameters and procedure. All patients had an implanted VNS device (MicroTransponder Inc.,
Austin, TX; see supplementary materials). The patients in the Antwerp study had an external controller system
which consisted of a commercial laptop computer with headphones that communicated with a commercially
available external stimulator (World Precision Instruments-DS8000) to deliver VNS pulses. The patients in the
Dallas study had an external controller system which consisted of a commercial laptop computer with head-
phones running the Model 4000 Tinnitus Application Programming Software (TAPS) connected to an external
controller that communicates with the internal pulse generator (IPG) via wireless transmitter (WT). The external
system synchronized tones with VNS to provide investigator control of settings for both the IPG stimulator and
tones.

Each VNS simulation consisted of fifteen 0.8-mA, constant-current, charge-balanced pulses (100-ps pulse
width, 30 Hz frequency). The duration of the VNS pulse was 0.5 seconds. Each pulse train was delivered approx-
imately every 30 seconds for 2.5 hours; the exact timing was randomized to provide enough variability such that
the patient could not guess exactly when stimulation would occur. We used the exact same parameters as in the
original animal study, including this randomization. All stimulation parameters were based on earlier animal and
human studies>*..

First, a pitch matching procedure was used to identify the most prominent pitch of the subject’s tinnitus.
The audiologist started with a 1000-Hz pulsed tone and used a bracketing procedure. The presentation level was
adjusted to about the same loudness as the tinnitus. We presented a tone and asked the patient, “Tell me if the
most prominent pitch of your tinnitus is higher or lower than the pitch of my tone” If the patient said higher, we
went up by half an octave, and if they say lower, we went down by half an octave. The run was stopped when the
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tinnitus pitch was bracketed and the last test frequency was recorded. This was repeated 7 times and the average
taken as the most prominent tinnitus pitch.

In the Paired VNS group, each 0.5-second VNS pulse was presented simultaneously with a 0.5-second tone.
Subjects heard several randomly interleaved tones during the therapy and each tone was paired with VNS but
excluded one or more of the subject’s tinnitus frequencies. The tones paired with VNS were at least a half octave
away from the most prominent tinnitus pitch for each individual subject. The frequencies ranged from 125-
12500 Hz in half-octave steps and were played at an intensity based on the patient’s comfort level and adjusted
for any hearing loss at different frequencies. The frequency and intensity (in dB HL) of each tone were randomly
selected each time a VNS pulse was delivered. Each of the tone frequencies were made to appear to arise from
various 3D locations (programmed using a KEMAR head model) in order to avoid a bias of presenting a tone
(paired with VNS) from a single spatial location. For each frequency, the tone intensity was based on the patient’s
audiogram. If the threshold exceeded 40 dB HL, the intensity of the tone delivered was 80 dB HL. For thresholds
between 20-40 dB HL, the tone intensity was 70 dB HL. For thresholds 0-20 dB HL, the tone intensity was set
to 60 dB HL. Any tone that would be presented above 80 dB SPL using these criteria was limited to 80 dB SPL.
Stimulation was delivered to the left vagus nerve since this is the most common practice in VNS for epilepsy
and depression. However, since the upstream targets are bilateral, stimulation should affect both of the cerebral
hemispheres.

Subjects in the Belgium study received treatment for 2.5 hours/day for 4 weeks, while subjects in the Dallas
study received the treatment for 2.5 hours/day for 6 (n=4) or 12 (n =4) weeks, depending on whether subjects
were assigned first to the control condition (sham) or not. The sham patients received VNS for 6 weeks for 2hours
and 15 minutes before and after the VNS tones. After 6 weeks, these patients received paired VNS treatment.

Patients were instructed to be in a quiet room during therapy and to read a magazine, book, etc. while sitting
in a comfortable chair. The patients were also instructed not to sleep or have extended conversations during
therapy; however, they were allowed to work on a muted computer. The intent was to allow the patient to hear the
tones while still being able to perform some other tasks.

Outcome measures. To determine tinnitus loudness, participants were asked to self-rate loudness on a
0-100 visual analogue scale; 0 meaning no tinnitus and 100 indicating the loudest tinnitus that they can imagine.
This estimation was performed either for both ears or, in cases of unilateral tinnitus, documented as only occur-
ring in one ear.

The Tinnitus Handicap Inventory (THI) was selected for implementation because it is a brief and
easy-to-administer questionnaire that is suitable for use in busy clinical settings?®. The THI is a 25-item
self-administered questionnaire that aims to quantify the impact of tinnitus on quality of life by measuring its
effects on everyday function. Respondents are asked to answer the questions with ‘Yes’ (4 points), ‘Sometimes’
(2 points), or ‘No’ (0 points). A higher tinnitus handicap questionnaire score (maximum 100) is indicative of a
greater tinnitus handicap.

Electrophysiological recordings. Asa standard procedure EEG data were obtained before and immedi-
ately after the last sessions of VNS-treatment (post). The EEG recordings were obtained in a fully lighted room
and lasted approximately five min.Each participant was sitting upright on a small but comfortable chair. For the
Belgium population we used a Mitsar-201 amplifiers (http://www.novatecheeg.com/) with 19 electrodes placed
according to the standard 10-20 International placement.For the Dallas population we used Neuroscan Symaps
amplifiers (http://compumedicsneuroscan.com/) with 64 electrodes placed according to the standard 10-10
International placement. Impedances were checked to remain below 5 kQ). Data were collected eyes-closed (sam-
pling rate = 500 Hz, band passed 0.15-200 Hz). Off-line data were resampled to 128 Hz, and band-pass filtered in
the range 2-44 Hz. We plotted data and carefully inspected for manual artifact-rejection. We removed all episodic
artifacts including eye blinks, eye movements, teeth clenching, body movement, or EEG artifact from the stream
of the EEG. As different EEG systems, different environmental noise sources, different hardware filters can gener-
ate different signals between the two sites (Antwerp-Dallas), we checked our data by providing a cross-frequency
analysis in both groups showing that there is no significant difference between the two groups (see supplementary
material).

An average Fourier cross-spectral matrices wascomputed including delta (2-3.5 Hz), theta (4-7.5Hz),
alpha (8-12Hz), low beta (13-21 Hz), high beta (21.5-30 Hz), and gamma (30.5-44 Hz) as the frequency
bands. We used standardized low-resolution brain electromagnetic tomography (SLORETA) to estimate the
intracerebral electrical sources using a common average reference transformation®”. SLORETA computes elec-
tric neuronal activity as current density (A/m?) without assuming a predefined number of active sources. The
solution space used in this study and associated lead-field matrix are those implemented in the LORETA-Key
software (http://www.uzh.ch/keyinst/loreta.htm). In addition, the log-transformed electric current density
was averaged across all voxels belonging to the region of interest (left auditory cortex) for the different fre-
quency bands.

Lagged phase coherence between two sources was calculated By extracting the time-series of current density
for different regions of interests using SLORETA. Power in all 6,239 voxels was normalized to a power of 1 and
log-transformed at each time point so that the region-of-interest values reflect the log-transformed fraction of
total power across all voxels, separately for specific frequencies. Regions of interest selected were the left and right
auditory cortex, the left and right parahippocampus, the left and right insula, the dorsal anterior cingulate cortex,
the subgenual anterior cingulate cortex, and the posterior cingulate cortex. These regions of interest were selected
based on the previous tinnitus literature®.
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Figure 1. A comparison between pre and post VNS treatment for the visual analogue scale for loudness and the
tinnitus handicap inventory shows a significant effect for both scales (**p <0.01).

Statistical analysis. Behavioral measures. A comparison was made between pre and post VNS treatment
on the visual analogue scale for loudness and for the tinnitus handicap inventory using a paired t-test. A Pearson
correlation was calculated between the visual analogue scale for loudness and the tinnitus handicap inventory for
pre-VNS treatment and post-VNS treatment.

Statistical analyses on the whole brain. We use a non-parametric permutation methodology. This method is
based on estimating, via randomization, the empirical probability distribution for the max-statistic under the null
hypothesis comparisons®. This methodology corrects for all voxels and for all frequency bands. As this method
is non-parametric in nature, the assumption of Gaussianity is not nescessary®!. The significance threshold for all
tests was based on 5000 permutations. Comparisons were made between the pre-VNS and post-VNS treatment.
These comparisons were performed on a whole brain by sSLORETA statistical contrast maps through multiple
voxel-by-voxel comparisons in a logarithm of F-ratio.

Region of interest analysis. A comparison was made between pre- and post-VNS treatment for the
log-transformed current density for the theta, alpha, and gamma frequency bands using a paired ¢-test. We
selected these frequency bands because previous research already indicated changes in these frequency bands
within the auditory cortex. A Pearson correlation was calculated between the visual analogue scale and the
log-transformed current density of the auditory cortex at gamma frequency at baseline and after VNS treatment
as well as between pre and post VNS treatment. A similar analysis was applied for the THL

Statistical analyses for the lagged phase coherence. 'We cacluated the lagged phase contrast maps and correlated
with the visual analogue scale for loudness and the THI, respectively, for each frequency bands. Similar to the
whole brain analysis we based ourt he significance level on a permutation test with 5000 permutations. This meth-
odology corrects for all voxels and for all frequency bands.

Results

Behavioral results.  For both the loudness (measured with the VAS; t=2.72, p=0.01) and emotional (meas-
ured with the THI; t=3.32, p=0.004) components of the tinnitus percept, we observed a significant reduction
after VNS treatment in comparison to before VNS treatment (see Fig. 1). On average, the loudness component
was reduced from 80.06 (Sd = 12.97) to 64.10 (Sd = 18.5) (reduction of 18.19%). The emotional component was
reduced from 63.00 (Sd=19.30) to 50.89 (Sd =27.19) (reduction of by 19.22%). The correlation between the pre-
VNS loudness and the emotional component was significant and positive (Fig. 2A, r=0.62, p=0.003). After VNS
treatment, there was no longer a significant correlation between loudness and the emotional component (Fig. 2B,
r=0.30, p=0.37). See Table 2 for the individual scores.

Electrophysiological results. A whole brain analysis showed a significant effect for the gamma frequency
band, indicating a decrease in synchronized activity in the left auditory cortex extending into the middle and
inferior temporal gyri after VNS treatment compared to before treatment (see Fig. 3). No significant effect was
obtained for the delta, theta, alpha, low beta, or high beta frequency bands.

A region of interest analysis for the left auditory cortex showed significant effects for the alpha (¢t =—2.81,
p=0.012) and gamma (t=3.79, p=0.001) frequency bands, but not for the theta (t=—21, p=0.83) frequency
band (see Fig. 4). For the alpha frequency band, increased synchronized activity was observed after VNS treat-
ment in comparison to before VNS treatment. For the gamma frequency band, decreased synchronized activity
was observed after VNS treatment in comparison to before VNS treatment.

A correlation analysis revealed that reduction in loudness correlates positively with reduction in gamma syn-
chronization in the left auditory cortex (r =0.58, p =0.005). There was not a significant correlation between the
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Figure 2. Pearson correlation between the visual analogue scale for loudness and the tinnitus handicap
inventory, before and after the VNS treatment. (Dots represent participants from the Dallas group, while
diamonds represent participants from the Belgium group).

Figure 3. A whole brain analysis showed a significant effect for the gamma frequency band indicating a
decrease in synchronized activity at the left auditory cortex after VNS treatment in comparison to before

treatment.
Stimulation VAS THI
Site Patient No. | weeks Pre Post Pre Post
Antwerp 1 4 51 58 45 26
Antwerp 2 4 87 84 73 34
Antwerp 3 4 84 91 59 64
Antwerp 4 4 88 69 91 88
Antwerp 5 4 88 85 62 50
Antwerp 6 4 81 51 61 42
Antwerp 7 4 85 61 83 96
Antwerp 8 4 80 44 87 92
Antwerp 9 4 99 52 89 90
Antwerp 10 4 81 49 46 42
Dallas 1 6 80 20 58 26
Dallas 2 12 72 65 44 36
Dallas 3 6 90 95 80 46
Dallas 4 6 80 65 48 26
Dallas 5 12 85 75 72 80
Dallas 6 12 45 50 20 10
Dallas 7 6 85 70 70 42
Dallas 8 12 80 70 46 26
Total Mean 80.06 64.10 63.00 50.89
sd 12.97 18.58 19.30 27.19

Table 2. Patient scores on THI and VAS. THI: Tinnitus Handicap Inventory. VAS: Visual Analogue Scale.

visual analogue scale for loudness and the log-transformed current density of the auditory cortex at gamma fre-
quency at baseline (r=0.06, p=0.41) and after VNS treatment (r = —0.05, p=0.43). A correlation analysis for the
emotional component of the tinnitus and the log-transformed current density of the auditory cortex at gamma
frequency revealed no significance at baseline (r=—0.18, p=0.23), after VNS treatment (r = —0.33, p=0.09),
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Figure 4. A region of interest for the left auditory cortex showed a significant effect for the alpha and
gamma frequency bands, but not for the theta frequency band when comparing pre and post VNS treatment.
(¥*p < 0.01; **%p < 0.001).

or in the changes between pre and post treatment (r = —0.08, p=0.37). See Fig. 5d-e. No significant correlations
were observed for the theta or alpha frequency bands.

An analysis of phase coherence revealed a significant effect (r=0.42, p < 0.05) for the theta frequency, indi-
cating a reduction after VNS treatment in comparison to pre-treatment in lagged phase coherence between the
auditory cortex and the dorsal anterior cingulate cortex and the subgenual anterior cingulate cortex and the left
parahippocampus respectively (see Fig. 6). No significant effects were obtained for the delta, alpha, low beta, high
beta, or gamma frequency bands.

Analysis of the difference in phase coherence pre versus post treatment and the difference in the THI pre
versus post treatment revealed no significant effect for the delta, theta, alpha, low beta, high beta, or gamma
frequency bands. A similar analysis for the visual analogue scale for loudness revealed a significant effect for the
theta (r=0.34, p < 0.05) and alpha frequency bands (r=0.31, p < 0.05). For both frequency bands, we observed
areduction in lagged phase coherence between the auditory cortex and the subgenual anterior cingulate cortex
and the left parahippocampus respectively, which is associated with a reduction on the loudness scale (see Fig. 7).

Discussion

This study provides the first human evidence in support of the hypothesis that pairing VNS with experience
drives neural plasticity associated with a reduction in the tinnitus percept. More precisely, we observed that VNS
paired with tones desynchronized the left auditory cortex of tinnitus patients at the gamma frequency band. The
reduction in gamma frequency band activity was correlated with the amount of loudness reduction. VNS paired
with tones also increased synchronization in the left auditory cortex at the alpha frequency band. Although theta
frequency synchronization does not seem to change after VNS paired with tones, we observed a reduction in the
phase coherence between the left auditory cortex and respectively the dorsal anterior cingulate cortex and the
subgenual anterior cingulate cortex and the parahippocampus that is associated with loudness suppression. A
similar effect was obtained for the alpha frequency band. The reduction of the emotional component of tinnitus
after VNS treatment was not associated with any of the neural measures recorded.

Our results are consistent with previous reports that reduction of tinnitus loudness is associated with desyn-
chronization of hypersynchronous activity in the auditory cortex at the gamma frequency band'®'°. Our results
are also consistent with the findings in animals that VNS-tone pairing reverses the increased in cortical synchro-
nization observed in noise-exposed rats®. The amount of gamma-band synchronization in the human auditory
cortex is correlated with subjective tinnitus loudness!’. We were not able to show that gamma activity correlates
with perceived tinnitus loudness before the VNS treatment, but demonstrated that the amount of decreased syn-
chronization at the gamma frequency band was correlated with the amount of loudness suppression after VNS
treatment. Previous research indeed proposed that gamma activity depends on the match between the top-down
predictions and bottom-up sensory input, where the gamma activity is modulated as a function of sensory sur-
prise and is used to signal unexpected information, i.e. prediction error’>*. It can be hypothesized that this
prediction error is reduced due to VNS with tone pairing, reflecting the reduction in synchronized activity in
the auditory cortex that is associated with a reduction in tinnitus loudness. Together with gamma reduction, we
also observed an increase in the alpha synchronization of the auditory cortex after VNS treatment. This is con-
sistent with previous reports of less pathological alpha and gamma frequency activity after reduction of tinnitus
loudness!®.

Although no effect was obtained for the theta signal before and after the VNS-paired tone treatment, changes
were demonstrated in phase coherence for the theta and alpha frequency bands that correlate with changes in the
loudness percept. That is, after targeted plasticity therapy we saw a decrease in phase coherence between the audi-
tory cortex and areas that have been associated with the affective components (i.e. distress) of tinnitus, such as
the dorsal anterior cingulate cortex and the subgenual anterior cingulate cortex™, as well as areas that have been
associated with the tinnitus percept, such as the parahippocampus®*°. The involvement of these non-auditory
areas in relation to emotional factors in tinnitus has previously been reported®**>3”38_ It is interesting to note that
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Figure 5. Top: A correlation analysis between the visual analogue scale and the log-transformed current
density of the auditory cortex at gamma frequency at baseline and after VNS treatment as well as the difference
between pre and post VNS treatment. Bottom: A correlation analysis between Tinnitus handicap inventory
and the log-transformed current density of the auditory cortex at gamma frequency at baseline and after VNS
treatment as well as the difference between pre and post VNS treatment. (Dots represent participants from the
Dallas group, while diamonds represent participants from the Belgium group).

Figure 6. A connectivity analysis revealed a significant effect for the theta frequency, indicating a reduction
after VNS treatment compared to pre-treatment in lagged phase coherence between the auditory cortex and
the dorsal anterior cingulate cortex and the subgenual anterior cingulate cortex and the left parahippocampus
respectively.

the original VNS therapy paired with tones was developed to modulate the tinnitus percept and not necessarily
the emotional component related to the tinnitus. Our data in this study show a correlation between the loudness
and the emotional component before the treatment that does not remain after the VNS therapy. In addition,
we see a correlation between the loudness and reduction in gamma synchronization in the left auditory cortex.
Taking these findings together, we are probably directly modulating the loudness percept and indirectly the emo-
tional component. This is potentially done by reduced connectivity between emotional related brain areas and
the loudness related brain areas.
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Theta frequency band

Figure 7. Connectivity analysis looking at the difference in pre versus post treatment connectivity and the
difference on the visual analogue scale for loudness pre versus post treatment revealed a significant effect for the
theta and alpha frequency bands.

Research also suggests that these non-auditory areas are associated with the conscious phantom percept,
which suggests that the sensory cortices are not sufficient for the generation of a conscious percept and implicate
an involvement of these non-auditory areas in conscious perception®**°. Accordingly, Jastreboff suggested the
more frontal areas as “candidates for the integration of sensory and emotional aspects of tinnitus*”. This idea was
corroborated by recent studies demonstrating abnormal long-range coupling in tinnitus patients*>*>-*. Previous
research already showed that increased coherence in the alpha frequencies between affective areas and loudness
areas of the brain is associated with tinnitus®. That we found reduced coherence for the theta and alpha frequency
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bands suggests either a disintegration of the information or a suppression of the conscious phantom percept and
confirms the idea that alpha coherence plays an important role in the tinnitus percept. This corroborates with a
decrease in the correlation between the loudness and the emotional component post-VNS treatment in compar-
ison to pre-VNS treatment.

Overall, our findings are consistent with the thalamocortical dysrhythmia hypothesis, which states that in a
deafferented state after frequency-specific auditory deprivation (i.e. hearing loss), the dominant rhythm present
in normal circumstances (i.e. alpha activity) decreases to theta frequencies in the deafferented thalamocortical
column. As a result, GABAa-mediated lateral inhibition is reduced, inducing a halo-shaped region of gamma
band activity known as the edge effect’®*” and therefore possibly contributing to the perception of a phantom
sound. Enhanced synchronization in the gamma frequency band in the auditory cortex is regarded as a direct
electrophysiological correlate of auditory phantom perception'*#3. The fact that suppression of tinnitus after
treatment by VNS paired with tones is associated with desynchronization in the auditory cortex at the gamma
frequency band suggests the importance of the electrophysiological correlate of the auditory phantom sensation.
Although thalamocortical dysrhythmia underlines the importance of pathological gamma frequency oscillations,
the impact of reduced alpha oscillations should not be neglected®**. Previous research has suggested that low
levels of alpha are associated with a state of excitation, whereas high levels of alpha are associated with a state of
inhibition'**>*, The fact that alpha synchronization increases after VNS with tone pairing suggests that the alpha
frequency helps to inhibit the percept, which fits with the idea that alpha is involved with frequency-specific audi-
tory deprivation of the dominant rhythm, as suggested by the thalamocortical dysrhythmia concept!?45.

Thalamocortical dysrhythmia is the function of GABAa that mediates decreases in inhibition. This has been
associated with increased gamma-band synchronization'>*. Moreover, it has been shown that synchronization in
the gamma range is the result of impaired GABAergic connections®. The role of GABAa in tinnitus was recently
confirmed in a human study using magnetic resonance spectroscopy demonstrating the association of a sig-
nificant reduction in auditory cortex GABA concentration with tinnitus loudness®. Interestingly, research has
revealed that the therapeutic efficacy of VNS is associated with increased GABA-mediated cortical inhibition by
GABAAa receptor density normalization®. As the beneficial outcomes of VNS can be reflected by the up-regulation
of GABA receptors, and due to the interdependency between GABA modulation and gamma activity, it is possible
that the effect on tinnitus suppression in our study might be directly related to the increase in GABAa receptor
density. However, it is also possible that the gamma decrease could be an indirect effect of VNS-directed plasticity
that is facilitated by cholinergic and noradrenergic transmission that promotes spectral and temporal response
characteristics of the central auditory neurons to restore the normal characteristics of the circuitry and alleviate
the percept of tinnitus’. That is, VNS paired with the appropriate presentation of tones could drive plasticity via
cholinergic and noradrenergic transmission and promote the number of cortical neurons tuned to frequencies
other than the tinnitus frequency in order to reduce the overrepresented tinnitus frequency®. This explanation is
consistent with the normalization of tonotopic maps in noise-exposed animals after VNS-tone pairing®*.

Interestingly, we observe a lateralization effect demonstrating that VNS paired with tones desynchronized the
left auditory cortex of tinnitus patients at the gamma frequency band. An ongoing debate within the literature is
if tinnitus is always generated unilateral on the left-side or the contralateral auditory cortex. Based on Functional
MRI*%7, MEG!**1%8, and EEG!** is it assumed that the tinnitus is located in the contralateral auditory cortex®,
whereas most positron emission tomography (PET) studies suggest tinnitus is always generated in the left audi-
tory cortex®*®!. Our findings corroborate this latter view. Furthermore, the treatment is designed to selectively
target the tinnitus with fits with our finding. However, this could not explain why specific neuromodulators
(GABAergic, cholinergic, and noradrenergic systems) influence neuronal excitability only to the hyperactivity
side.

A limitation of this study is that we pooled data from two studies each using a different length of treatment.
Nevertheless, these results are unique and fit with our hypothesis. Our confidence in the data is increased
due to its consistency with animal data that showed a reduction in synchronization at the auditory cortex in
noise-exposed rats after treatment using VNS-multiple tone pairing. An important avenue to further explore the
mechanisms underlying this therapy would be to look at changes in the GABAergic, cholinergic, and noradrener-
gic systems. This could help us to further explain the underlying mechanism of action that drives plasticity using
VNS.

In conclusion, our results support the hypothesis that VNS-directed plasticity using tones is associated with
desynchronization of auditory cortex gamma frequency activity that is directly correlated with the loudness per-
cept, which could be mediated by GABAa receptor density normalization that might be reflected by an increased
synchronization in alpha inhibition. The fact that gamma band desynchronization correlates with the outcome
of the VNS treatment suggests that inhibition could be potentially used as a biomarker in assessing the efficacy
of VNS treatment. The targeted neuroplasticity therapy of VNS paired with tones is not only reflected by local
changes in the auditory cortex, but also induces changes in phase coherence between auditory and non-auditory
related cortices in the theta and alpha frequency bands that correlate with changes in the loudness percept that
might reflect a suppression of a conscious phantom network. However, more research is needed to further explore
the underlying mechanism and the long-term potential of the treatment.
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