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Objective: To test serum tau as a predictor of neurological outcome after cardiac arrest.
Methods: We measured the neuronal protein tau in serum at 24, 48, and 72 hours after cardiac arrest in 689 patients
in the prospective international Target Temperature Management trial. The main outcome was poor neurological
outcome, defined as Cerebral Performance Categories 3–5 at 6 months.
Results: Increased tau was associated with poor outcome at 6 months after cardiac arrest (median 5 38.5, interquar-
tile range [IQR] 5 5.7–245ng/l in poor vs median 5 1.5, IQR 5 0.7–2.4ng/l in good outcome, for tau at 72 hours,
p< 0.0001). Tau improved prediction of poor outcome compared to using clinical information (p<0.0001). Tau cut-
offs had low false-positive rates (FPRs) for good outcome while retaining high sensitivity for poor outcome. For
example, tau at 72 hours had FPR 5 2% (95% CI 5 1–4%) with sensitivity 5 66% (95% CI 5 61–70%). Tau had higher
accuracy than serum neuron-specific enolase (NSE; the area under the receiver operating characteristic curve was
0.91 for tau vs 0.86 for NSE at 72 hours, p 5 0.00024). During follow-up (up to 956 days), tau was significantly associ-
ated with overall survival. The accuracy in predicting outcome by serum tau was equally high for patients randomized
to 33 8C and 36 8C targeted temperature after cardiac arrest.
Interpretation: Serum tau is a promising novel biomarker for prediction of neurological outcome in patients with car-
diac arrest. It may be significantly better than serum NSE, which is recommended in guidelines and currently used in
clinical practice in several countries to predict outcome after cardiac arrest.
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University, Skåne University Hospital, Lund, Sweden; 3Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,

Sahlgrenska Academy at University of Gothenburg, M€olndal, Sweden; 4Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, M€olndal,

Sweden; 5Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom; 6UK Dementia Research Institute, London,

United Kingdom; 7Department of Clinical Sciences, Anesthesia, and Intensive Care, Lund University, Helsingborg Hospital, Lund, Sweden; 8Department
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Cardiac arrest accounts for a high proportion of

mechanically ventilated patients admitted to intensive

care units (ICUs).1 The length of ICU stay is increasing,

but rates of mortality and neurological morbidity due to

anoxic brain injury remain very high.2 There is a need for

early and accurate prognostication methods, both to avoid

prolonged treatment of patients where continued life-

supporting measures is futile, and to ensure that patients

with potential for recovery receive optimal management.3

Possible prognostication methods include neurological

examination, electroencephalography (EEG), short-latency

somatosensory evoked potentials (SSEPs), neuroimaging,

biochemical markers, and automated pupillometry.4 Some

methods, notably SSEP, have high specificity to predict

poor outcome but limited sensitivity to identify patients

with severe brain injury.5 Other methods, such as EEG6

and neuroimaging,7 appear more sensitive but may be

prone to interpreter variability.8

Blood-borne biomarkers may be easily obtained

and provide a means to quantify the extent of brain

injury.9 The most studied biochemical marker in cardiac

arrest is serum neuron-specific enolase (NSE),10 which is

included in guidelines11,12 and already used in clinical

practice in some countries. However, NSE is susceptible

to false-positive values due to hemolysis.13 Another

potential biomarker is the axonal injury marker tau.14

Cerebrospinal fluid (CSF) tau is increased in patients

with cardiac arrest and poor outcome.15 Measurements

of tau in blood would be preferable to CSF measure-

ments, because lumbar puncture is impractical in these

patients, who are commonly treated with high doses of

platelet aggregation inhibitors or anticoagulants. One

study on 22 patients that used an immunoassay with the

Luminex system found that high serum tau at 48 hours

or 96 hours was associated with poor neurological out-

come after cardiac arrest.16

An ultrasensitive tau assay suitable for serum and

plasma measurements has been developed on a single-

molecule detection platform,17 and showed promising

results in a small cardiac arrest study.18 We used a novel

version of the single-molecule detection assay to quantify

serum tau in a nested cohort within the Target Tempera-

ture Management (TTM) trial, which is a large prospec-

tive cardiac arrest study.2 We aimed to evaluate tau as a

predictor of neurological outcome and death. We also

compared tau with NSE for prognostication.

Subjects and Methods

Patient Population
The TTM trial was a prospective study of effects of targeted

temperature management at 33 8C versus 36 8C in patients who

were unconscious after out-of-hospital cardiac arrest. The

design19 and main results2 of the TTM trial have been pub-

lished. Neurological prognostication and criteria for withdrawal

of life-sustaining therapy were parts of the protocol.20 Twenty-

nine European centers participated in the biobank part of the

TTM trial, and 819 patients were consecutively recruited at

these sites between November 2010 and January 2013. Of

these, 38 died within 24 hours, leaving 782 eligible patients for

this substudy. The final population consisted of 689 patients

(689 of 782, 88%) who had serum tau data for at least 1 time

point (24 hours, 48 hours, or 72 hours). Randomization to the

2 TTM arms was stratified by site and was therefore preserved

in the substudy. The STARD guidelines were followed for this

study.21

Serum Biomarker Measurements
Biochemical analyses were done at the end of the study. Tau

(the index test) was measured using the Human Total Tau kit

(research use only grade, Quanterix, Lexington, MA) on the

Simoa HD-1 analyzer, as described previously.17 This assay uses

a monoclonal capture antibody that reacts with a linear epitope

in the midregion of all tau isoforms, and a detection antibody

that reacts with a linear epitope in the N-terminal region of

total tau. NSE was measured using a Cobas e601 instrument

with an Electrochemiluminescent immunoassay (Roche Diag-

nostics, Rotkreuz, Switzerland), as described previously.10

Hemolysis was tested with the Cobas system. All samples were

analyzed using single batches of reagents, by board-certified lab-

oratory technicians who were blinded to all clinical data. Treat-

ing physicians and staff were blinded to tau and NSE data.

Outcome Measures
Neurological outcome at 6 months was assessed face to face by

the Cerebral Performance Categories (CPC) scale and the mod-

ified Rankin scale (mRS). CPC ranges from 1 to 5, where 1

represents no or minor cerebral disability, 2 moderate disability,

3 severe disability, 4 vegetative state, and 5 brain death. mRS

ranges from 0 to 6, where 0 represents no symptoms, 1 symp-

toms but no disability, 2 slight disability, 3 moderate disability,

4 moderate to severe disability, 5 severe disability, and 6 death.

The main endpoint was “poor neurological outcome” (CPC 3–

5, the reference standard), and contrasted with “good neurolog-

ical outcome” (CPC 1–2). In a sensitivity analysis, we used

CPC 4–5 as the definition of poor neurological outcome. All-

cause mortality was assessed after a minimum follow-up time of

6 months.

Statistics
Statistics were done using R (v3.3.2, The R Foundation for Sta-

tistical Computing). Bivariate associations were tested by Spear-

man correlation and Mann–Whitney U tests.

Associations between tau and neurological outcome were

tested by linear regression, adjusted for age and sex. Differences

in tau over time were tested by linear mixed effects models

(lme4 package, v1.1.12), adjusted for age and sex. The diagnos-

tic accuracy for poor outcome was tested by receiver operating

characteristic (ROC) analyses, by calculating area under the
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ROC curve (AUC; pROC package, v1.8). Optimal cutoff

points were defined by the Youden index, which maximizes the

sum of sensitivity and specificity (Optimal Cutpoints package,

v1.1.3). We also defined cutoff points for the false-positive rates

(FPRs) 0%, 1%, 2%, 3%, 4%, and 5%. Confidence intervals

(CIs; 95%) for AUC, FPR, sensitivity, and specificity were cal-

culated by a bootstrap procedure (n 5 2,000 iterations).

We tested whether tau improved prediction of poor out-

come compared to clinical information, in logistic regression

models with (1) clinical information (age, time to return of

spontaneous circulation [ROSC], and bystander cardiopulmo-

nary resuscitation [CPR; yes/no]), (2) tau, or (3) the combina-

tion of tau and clinical information as predictors. Models were

compared by AUC and the Akaike Information Criterion

(AIC). A lower AIC represents a better fitting of a statistical

model, with a difference in AIC (DAIC) of> 2 representing

some evidence, and >10 representing very strong evidence, for

differences between models (favoring the smaller AIC).22

The relationship between tau and overall survival was

tested with Cox proportional hazard regression (Survival pack-

age, v2.40.1). Cox models were adjusted for age (sex and TTM

intervention arm were also evaluated as covariates).

Tau was compared with NSE to predict poor outcome.

Using an a priori assumption of an AUC of 0.85 for NSE,10 we

had> 80 % power (with a 5 0.05) to detect a significantly higher

AUC of at least 0.90 for tau.23 We also tested combinations of

tau, NSE, and clinical information to predict poor outcome, and

we performed survival analyses for combinations of NSE and tau.

To reduce the skewness of the tau measurements, we

used log10-transformed data. However, for clarity we present

medians and interquartile ranges (IQRs) on the original scale

(rather than means and standard deviations on the log10 scale)

when describing the results. Diagnostics of models included

inspection of residuals, q-q plots, and correlations between

residuals and predicted and observed data.

Significance was set at p< 0.05. Probability values were

adjusted for multiple comparisons by Hochberg correction, as

explained below.

Ethics
Ethical approval was obtained from ethical committees in all par-

ticipating countries. Informed consent was waived, delayed, or

obtained from a legal surrogate depending on circumstances. In

addition, all surviving patients gave written informed consent.

Results

A total of 689 patients were included (Table 1). Greater

tau was associated with older age, longer time to ROSC,

lack of bystander CPR, and (for 72 hours tau) female sex

(see Table 1).

There were slight differences between the 33 8C and

the 36 8C arms. Tau was higher in the poor outcome group

(CPC 3–5) in the 36 8C arm compared to the 33 8C arm at

24 hours (p 5 0.016) and 48 hours (p 5 0.046), and in the

good outcome group (CPC 1–2) in the 33 8C arm com-

pared to the 36 8C arm at 72 hours (p 5 0.042, Mann–

Whitney U). There were no longitudinal differences in tau

between intervention arms in patients with poor outcome.

In patients with good outcome, tau decreased between 24

hours and 48 hours in the 36 8C arm (p< 0.0001), but not

in the 33 8C arm (p 5 0.090), but tau decreased in both

arms between 48 hours and 72 hours (33 8C, p 5 0.0085;

36 8C, p 5 0.00058).

TABLE 1. Demographics

Characteristic Value

No. 689

Age, yr 63.9 6 12.4

Sex, M/F 558/131 (81%)

Time to ROSC, min 30.9 6 22.5

Bystander CPR, No., yes/no 500/189 (73%)

CPC at 6 months, No., 1/2/3/4/5 304/43/27/8/307 (44%/6.2%/3.9%/1.2%/45%)

mRS at 6 months, No., 0/1/2/3/4/5/6 140/114/71/26/17/14/307 (20%/17%/10%/3.8%/2.5%/2%/45%)

Continuous data are given as mean 6 standard deviation. Tau data were available in 667 patients at 24 hours (334 in TTM33 and 333 in

TTM36), in 638 patients at 48 hours (313 in TTM33 and 325 in TTM36), and in 590 patients at 72 hours (289 in TTM33 and 301 in

TTM36). There were no significant differences in age, sex, time to ROSC, bystander CPR, or CPC or mRS at 6 months between participants

with tau data at 24 hours, 48 hours, or 72 hours.

Higher tau was associated with older age (p 5 0.00013 for 24-hour tau, p< 0.0001 for 48-hour and 72-hour tau), longer time to ROSC

(p< 0.0001), and lack of bystander CPR (p 5 0.0060 for 24-h tau, p 5 0.0038 for 48-hour tau, p 5 0.040 for 72-hour tau). Tau at 72 hours was

slightly higher in females than in males (median 5 3.5, IQR 5 1.7–54.7ng/l vs median 5 2.6, IQR 5 1.2–24.3ng/l, p 5 0.043).

CPC 5 Cerebral Performance Categories; CPR 5 cardiopulmonary resuscitation; F 5 female; IQR 5 interquartile range; M 5 male; mRS 5 modi-

fied Rankin scale; ROSC 5 return of spontaneous circulation; TTM 5 Target Temperature Management.
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Overall, the differences in serum tau between inter-

vention arms were minor compared to the differences

between the good and poor outcome groups. Because

neurological outcome did not differ by intervention

arm,2 and the overall aim was to test associations

between tau and outcome, the analyses were done on the

pooled sample. However, we adjusted the results for

intervention arm, as described below.

Tau and Neurological Outcome
The primary endpoint was poor neurological outcome,

defined as CPC 3–5 at 6 months. Due to missing data (partly

due to death during the first 72 hours), the number of patients

differed slightly between time points. For patients with 24-

hour data (n 5 667), 343 had good and 324 had poor out-

come. For patients with 48-hour data (n 5 638), 330 had

good and 308 had poor outcome. For patients with 72-hour

data (n 5 590), 317 had good and 273 had poor outcome.

Poor outcome was associated with higher tau. The effect was

already present at 24 hours (median 5 12.0, IQR 5 4.5–43.5

vs median 5 2.4, IQR 5 1.5–5.3ng/l, p< 0.0001), and

was even greater at 48 hours (median 5 49.5, IQR 5 7.8–392

vs median 5 1.9, IQR 5 1.1–3.4ng/l, p< 0.0001) and 72

hours (median 5 38.5, IQR 5 5.7–245 vs median 5 1.5,

IQR 5 0.7–2.4ng/l, p< 0.0001). The models were adjusted

for age and sex, and were robust when adjusting for TTM

intervention arm.

We also tested an alternative classification of good ver-

sus poor outcome, by classifying CPC 1–3 as good outcome

and CPC 4–5 as poor outcome. Serum tau remained higher

in the poor outcome group at 24 hours (median 5 14.2,

IQR 5 4.8–48.7 vs median 5 2.4, IQR 5 1.5–5.3ng/l), 48

hours (median 5 64.0, IQR 5 8.7–518 vs median 5 1.9,

IQR 5 1.2–3.9ng/l) and 72 hours (median 5 54.5,

IQR 5 7.6–282 vs median 5 1.6, IQR 5 0.8–2.6ng/l). The

differences were significant at all time points (p< 0.0001).

We also evaluated each level of the CPC scale indi-

vidually (Fig 1A–C). Tau was significantly higher in

FIGURE 1: Serum tau concentrations by neurological outcome at 6 months. (A–C) Cerebral Performance Categories (CPC). At
24 hours, CPC 5 had higher tau than CPC 1–3 (p < 0.0001; the difference vs CPC 4 was not significant after correction for multi-
ple comparisons, p 5 0.073). At 48 hours, CPC 5 had higher tau than CPC 1–3 (p < 0.0001), CPC 4 had higher tau than CPC 1–2
(p £ 0.0001) and CPC 3 (p 5 0.011), and CPC 3 had higher tau than CPC 1 (p 5 0.002). At 72 hours, CPC 5 had higher tau than
CPC 1–3 (p < 0.0001), CPC 4 had higher tau than CPC 1–3 (p < 0.0001 for CPC 1–2 and p 5 0.0013 for CPC 3), and CPC 3 had
higher tau than CPC 1 (p 5 0.0003). (D–F) Modified Rankin scale (mRS). At 24 hours, mRS 6 had higher tau than all other
groups (p < 0.0001 for mRS 0–3, p 5 0.004 for mRS 4, p 5 0.002 for mRS 5). At 48 hours, mRS 6 had higher tau than mRS 0–4
(p < 0.0001), mRS 5 had higher tau than mRS 0–2 (p £ 0.0001) and mRS 3 (p 5 0.025), and mRS 4 had higher tau than mRS 0
(p 5 0.041) and mRS 1 (p 5 0.038). At 72 hours, mRS 6 had higher tau than mRS 0–4 (p < 0.0001), mRS 5 had higher tau than
mRS 0–2 (p < 0.0001) and mRS 3 (p 5 0.012), and mRS 4 had higher tau than mRS 0–2 (mRS 0, p 5 0.010; mRS 1, p 5 0.012;
mRS 2, p 5 0.024). All differences were tested by linear regression with log10-transformed tau data, adjusted for age and sex.
Probability values were adjusted for multiple comparisons using Hochberg correction (1 correction at every time point for CPC
[n 5 10 tests at each time point] and mRS [n 5 21 tests at each time point]).
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CPC 5 compared to CPC 1, CPC 2, and CPC 3 at all

time points. At 48 to 72 hours, tau was higher in CPC

4 compared to CPC 1, CPC 2, and CPC 3, and higher

in CPC 3 compared to CPC 1. Note that there were

only few CPC 3–4 patients; therefore, results in them

should be interpreted with caution.

Finally, we also evaluated the mRS scale (see Fig

1D–F). Patients with mRS 6 had higher tau compared to

all other groups at 24 hours, and compared to mRS 0–4

at 48 to 72 hours. mRS 5 had higher tau compared to

mRS 0–3 at 48 to 72 hours. mRS 4 had higher tau com-

pared to mRS 2 at 72 hours and compared to mRS 0–1

at 48 to 72 hours.

Longitudinal Tau and Neurological Outcome
Changes in tau over time were tested with linear mixed effects

models. In CPC 1, tau decreased from a median of 2.3ng/

l (IQR 5 1.5–4.7) to 1.8ng/l (IQR 5 1.1–3.2) between 24

hours and 48 hours (p< 0.0001) and further down to

1.5ng/l (IQR 5 0.7–2.2) at 72 hours (p< 0.0001 compared

to 48 hours). CPC 2 had a similar decreasing pattern, but the

changes were not significant (median 5 3.5, IQR 5 1.5–7.7;

median 5 2.6, IQR 5 1.6–6.8; and median 5 2.3, IQR 5

1.1–4.3ng/l). There were no significant changes in CPC 3

(24 hours: median 5 3.4, IQR 5 1.7–6.5ng/l; 48 hours:

median 5 5.4, IQR 5 3.0–14.4ng/l; 72 hours: median 5

3.7, IQR 5 1.8–13.4ng/l). CPC 4 increased from 6.2ng/

l (IQR 5 2.2–7.3) to 66.5ng/l (IQR 5 25.8–151) between

24 hours and 48 hours (p< 0.0001), with no significant

change at 72 hours (median 5 129, IQR 5 48.0–203ng/l).

CPC 5 increased from 14.5ng/l (IQR 5 4.9–49.5) to

64.0ng/l (IQR 5 8.5–531) between 24 hours and 48 hours

(p< 0.0001), with no significant change at 72 hours

(median 5 51.4, IQR 5 7.4–287ng/l). Due to the small

number of CPC 3–4 patients, trajectories in those groups

should be interpreted with caution.

Fifty-four patients (7.8%) died during the first 72

hours. To avoid bias from these patients, we repeated the

longitudinal analyses in the subset with tau measured at

all time points (557 patients; CPC 1, n 5 266; CPC 2,

n 5 40; CPC 3, n 5 21; CPC 4, n 5 7; CPC 5,

n 5 223). The tau levels were slightly lower than in the

FIGURE 2: Diagnostic accuracy of serum tau for poor outcome. (A) Receiver operating characteristic (ROC) analyses for predic-
tion of Cerebral Performance Categories (CPC) 1–2 versus CPC 3–5 at 6 months. The legend shows area under the ROC curve
(AUC) for tau at different time points (with 95% confidence intervals). The AUCs were not affected by adjusting for Target
Temperature Management arm. (B–D) Histograms for CPC 1–2 versus CPC 3–5 with cutoffs specified by Youden index (J),
false-positive rate (FPR) 5 5%, and FPR 5 1%.
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main analysis (because people who died during the first

72 hours typically had high tau levels), but the results

were overall similar. In CPC 1, tau decreased from a

median of 2.3ng/l (IQR 5 1.5–5.0) to 1.8ng/

l (IQR 5 1.1–3.2) between 24 hours and 48 hours and

further to 1.4ng/l (IQR 5 0.7–2.2) at 72 hours

(p< 0.001 for all differences). CPC 2 had a similar pat-

tern, but without significant changes (median 5 3.9,

IQR 5 1.5–8.0; median 5 2.6, IQR 5 1.6–6.8; and

median 5 2.7, IQR 5 1.1–4.4ng/l). CPC 3 increased

slightly from 3.4ng/l (IQR 5 1.9–7.2) at 24 hours to

5.2ng/l (IQR 5 3.0–9.8) at 48 hours, and decreased

slightly to 3.1ng/l (IQR 5 1.6–9.1) at 72 hours (no sig-

nificant differences). CPC 4 increased from 6.2ng/

l (IQR 5 2.2–7.3) to 31.3ng/l (IQR 5 22.0–167)

between 24 hours and 48 hours (p< 0.001), with no fur-

ther change at 72 hours (median 5 101, IQR 5 41.4–

178ng/l). CPC 5 increased from 11.7ng/l (IQR 5 4.6–

41.6) to 55.2ng/l (IQR 5 8.4–417) between 24 hours

and 48 hours (p< 0.001), with no further change at 72

hours (median 5 51.1, IQR 5 7.6–283ng/l).

Significances were tested in models adjusted for age

and sex. Probability values were adjusted for multiple

comparisons using Hochberg correction over 10 tests (2

tests per CPC group).

Prognostic Accuracy of Serum Tau
The accuracy of tau for poor outcome was tested by

ROC analyses (Fig 2A). A combination of tau at several

TABLE 2. Serum Tau Cutoffs, Sensitivity, and Specificity

Time Cutoff design Cutoff, ng/l Sensitivity 95% CI Specificity 95% CI

24 h Youden 6.1 0.68 0.63–0.73 0.79 0.75–0.84

FPR 5 0% 874.5 0.04 0.02–0.06 1.00 0.99–1.00

FPR 5 1% 82.6 0.17 0.13–0.21 0.99 0.98–1.00

FPR 5 2% 39.1 0.29 0.23–0.33 0.98 0.96–0.99

FPR 5 3% 24.7 0.35 0.30–0.40 0.97 0.95–0.99

FPR 5 4% 22.9 0.36 0.30–0.40 0.96 0.94–0.98

FPR 5 5% 21.5 0.37 0.31–0.41 0.95 0.92–0.97

48 h Youden 6.9 0.77 0.72–0.81 0.91 0.88–0.94

FPR 5 0% 148.8 0.33 0.28–0.38 1.00 0.99–1.00

FPR 5 1% 32.0 0.54 0.49–0.60 0.99 0.98–1.00

FPR 5 2% 18.9 0.61 0.56–0.67 0.98 0.96–0.99

FPR 5 3% 13.3 0.66 0.61–0.72 0.97 0.95–0.99

FPR 5 4% 11.6 0.68 0.63–0.73 0.96 0.94–0.98

FPR 5 5% 10.3 0.69 0.65–0.75 0.95 0.93–0.97

72 h Youden 4.4 0.78 0.73–0.83 0.9 0.87–0.93

FPR 5 0% 72.7 0.42 0.36–0.48 1.00 0.99–1.00

FPR 5 1% 13.4 0.63 0.57–0.69 0.99 0.97–1.00

FPR 5 2% 11.2 0.66 0.6–0.710 0.98 0.96–0.99

FPR 5 3% 10.3 0.67 0.62–0.73 0.97 0.95–0.98

FPR 5 4% 8.6 0.69 0.64–0.75 0.96 0.94–0.98

FPR 5 5% 7.9 0.71 0.65–0.77 0.95 0.92–0.97

Test sensitivity and specificity for serum tau (measured at 24 hours, 48 hours, or 72 hours after cardiac arrest) to separate poor outcome (CPC 3–5)

from good outcome (CPC 1–2) at 180 days. Cutoffs were designed by the Youden index (which maximizes the combination of sensitivity and specific-

ity), or at tau concentrations that resulted in FPR 5 0–5%; 95% CIs for sensitivity and specificity were generated by a bootstrap procedure (n 5 2,000

iterations).

CI 5 confidence interval; CPC 5 Cerebral Performance Categories; FPR 5 false positive rate.
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time points (entered as individual predictors in a logistic

regression model) did not increase the AUC compared to

using the 48-hour or 72-hour data alone. There were no

significant differences in ROC analyses between the

intervention arms (33 8C vs 36 8C) for poor outcome ver-

sus good outcome.

High specificity (low FPR) may be the most critical

metric for use in cardiac arrest.3 We determined cutoffs

for FPR 5 0–5% (Table 2 and Fig 2B–D). Sensitivities

were relatively high even at low FPR. For example, at

FPR 5 2% (95% CI 5 1–4%) the sensitivity was 66%

(95% CI 5 60–71%) at 72 hours.

Adding Serum Tau to Clinical Information
We compared logistic regression models of poor outcome

with (1) clinical information (age, time to ROSC, and

bystander CPR [yes/no]), (2) tau, and (3) clinical infor-

mation and tau as predictors (Supplementary Table).

Clinical information had moderate accuracy (AUC �
0.76). The AUC increased to up to 0.94 when adding

tau. The effect of adding tau was significant at all time

points (p< 0.0001). The coefficient for tau only changed

marginally when tau was used alone or together with

clinical information. The AICs favored models that

included both tau and clinical information.

Serum Tau and Survival
During follow-up, 319 patients died (median time to

death 5 6 days, IQR 5 4–11, range 5 1–736) and 370

remained alive (median follow-up 5 475 days,

IQR 5 343–625, range 5 167–956). Tau was strongly

related to survival (Fig 3). Tau (using log10-transformed

data in models adjusted for age) had hazard ratio

(HR) 5 3.1 (95% CI 5 2.7–3.5) at 24 hours, HR 5 2.8

(95% CI 5 2.5–3.1) at 48 hours, and HR 5 2.7 (95%

CI 5 2.4–3.0) at 72 hours. Sex and TTM intervention

arm were also evaluated, but were nonsignificant predic-

tors of survival.

Serum Tau versus NSE
We found no effects of hemolysis on tau, but as reported

before,10 NSE was increased in samples with significant

hemolysis (p 5 0.047). We therefore excluded samples

with a positive hemolysis index (n 5 21 from 18 partici-

pants in the original cohort with NSE data).

Tau and NSE were correlated (Fig 4A–C), but tau

had higher diagnostic accuracy for poor outcome (see Fig

4D–F). When combining tau, NSE, and clinical infor-

mation (age, sex, time to ROSC, and bystander CPR),

both tau and NSE were significant predictors of poor

outcome (p< 0.0001, tested at 72 hours). AUCs were

similar for (1) a model of NSE and clinical information

(AUC 5 0.92) and (2) a model of tau and clinical infor-

mation (AUC 5 0.94). The combination of tau, NSE,

and clinical information had slightly greater accuracy

than model #1 (AUC 5 0.95, p< 0.0001), but did not

differ from model #2 (p 5 0.09).

Finally, we tested whether tau and NSE provided

independent information about survival, by including

both tau and NSE as predictors in Cox proportional haz-

ards models (for this analysis we standardized tau and

NSE, to make it easier to compare their coefficients).

Both tau and NSE (and age) were independent predic-

tors in these models. At 24 hours, tau had HR 5 1.7

(95% CI 5 1.5–2.1) and NSE had HR 5 1.6 (95%

CI 5 1.4–1.9). At 48 hours, tau had HR 5 2.0 (95%

CI 5 1.6–2.4) and NSE had HR 5 1.7 (95% CI 5 1.4–

FIGURE 3: Serum tau and survival. Survival curves for tau, modeled by Cox proportional hazards regression, adjusted for age
are shown. Tau was used after log10 transformation. Tau was used as a continuous variable in these models, but predicted sur-
vival curves (with 95% confidence intervals) are shown for 3 different levels of tau, corresponding to the median level within
the lowest, middle, and highest tertile of tau, respectively. Greater serum tau was significantly associated with shorter survival
in all models.
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2.2). At 72 hours, tau had HR 5 1.8 (95% CI 5 1.5–

2.3) and NSE had HR 5 1.9 (95% CI 5 1.5–2.3). Fig-

ure 5 shows survival curves for tau, predicted for patients

in different tertiles of tau and with high and low NSE

levels, respectively. These plots show that tau was associ-

ated with survival independently of NSE.

Comparing Associations between Serum Tau for
the CPC and mRS Scales
To test whether the CPC or the mRS scale was more

strongly associated with tau, we compared linear regres-

sion models with tau as the outcome and (1) CPC as

predictor or (2) mRS as predictor, adjusted for age and

sex. As measures of model fits, we used AIC and adjusted

R2. At 24 hours, the AICs were 2,446.7 and 2,448.9

(DAIC 5 2.2), and the R2s 0.290 and 0.289, for the

CPC and mRS models, respectively. At 48 hours, the

AICs were 2,522.7 and 2,532.7 (DAIC 5 10.0), and the

R2s were 0.488 and 0.482. At 72 hours, the AICs were

2,311.1 and 2,325.0 (DAIC 13.9), and the R2s were

0.512 and 0.502. The overall lower AICs favored the

CPC scale, but the differences in R2 were very minor.

Discussion

Using a recently developed ultrasensitive assay for the

axonal injury marker tau in a large prospective cohort

study, we found that higher serum tau correlated with

poor neurological outcome and short survival after car-

diac arrest. Tau more accurately predicted a poor out-

come compared with serum NSE, which is currently the

most widely used biochemical marker for prognostication

after cardiac arrest. The association between tau and neu-

rological outcome was independent of TTM intervention

arm (33 8C vs 36 8C). The results indicate that serum tau

is a prognostic marker of poor neurological outcome fol-

lowing cardiac arrest. Because tau levels were measured

after the completion of the study, there was no circularity

and minimal risk of “self-fulfilling prophecy” for the

association between serum tau and neurological outcome.

FIGURE 4: Comparison of serum neuron-specific enolase (NSE) and serum tau to predict poor outcome. (A–C) Correlations
between serum tau and NSE. Rho coefficients and probability values are from Spearman correlation. The fitted lines were
derived by local regression and are for visualization purposes. (D–F) Receiver operating characteristic (ROC) analyses for Cere-
bral Performance Categories (CPC) 1–2 vs CPC 3–5 at 6 months. Probability values are for area under the ROC curve (AUC) dif-
ferences between NSE and tau. The combination of tau and NSE was not better than tau alone (AUC 5 0.76 at 24 hours, 0.89
at 48 hours, and 0.91 at 72 hours).
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One goal of prognostication after cardiac arrest is

to identify patients in whom prolonged intensive care is

futile.24 To operationalize tau for decision making, we

dichotomized the cohort into good versus poor outcome.

The accuracy of tau to detect poor outcome (CPC 3–5

at 6 months) was high, and cutoffs with low FPRs

retained a relatively high sensitivity for poor outcome.

This suggests that tau may be used with low risk of mis-

classifying patients with good prognosis, while still cor-

rectly identifying around two-thirds of patients with poor

prognosis. It is rare to combine low FPR with high sensi-

tivity for prognostication methods in cardiac arrest.25,26

When analyzing individual levels of CPC and mRS,

we found that tau was primarily increased in CPC 4–5

and mRS 5–6, and slightly increased in CPC 3 and mRS

3–4 patients. In contrast, CPC 1–2 and mRS 0–2 patients

had low and even decreasing levels of tau. This suggests

that tau not only might be useful in discriminating

patients with a poor outcome but also in predicting the

grade of brain injury after cardiac arrest. The absolute

increases in tau were very high in many patients, with

serum tau> 10ng/l, which is much higher than in slowly

degenerative diseases, including Alzheimer disease.17

Tau improved prediction of poor outcome com-

pared to clinical information, and the coefficient of tau

was similar with and without the clinical covariates, sug-

gesting that tau was independently associated with the

neurological outcome. Tau was also closely associated

with survival. The predicted 1-year survival (adjusted for

age) varied between 77%, 64%, and 31% for 24-hour

tau; between 82%, 69%, and 18% for 48-hour tau; and

between 83%, 74%, and 21% for 72-hour tau, for the

median tau level within the lowest, mid, and highest ter-

tile of tau, respectively.

FIGURE 5: Serum neuron-specific enolase (NSE) and serum tau for survival. Survival curves for tau, modeled by Cox propor-
tional hazards regression, adjusted for age and NSE are shown. Tau and NSE were used after log10 transformation, and
entered as continuous variables. Models were done using 24-hour data (A, D), 48-hour data (B, E), and 72-hour data (C, F). Pre-
dicted survival curves (with 95% confidence intervals) are shown for 3 different levels of tau, corresponding to the median
level of tau within the lowest, middle, and highest tertile of tau, respectively. Predicted survival curves are shown for 2 differ-
ent scenarios, one in the context of low NSE (the median NSE level in the lower half of NSE; A–C) and one in the context of
high NSE (the median NSE level in the higher half of NSE; D–F). Greater serum tau was significantly associated with shorter
survival in all models.
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In general, the predictive power of tau was greater

in later samples. For example, the cutoff for FPR 5 2%

had sensitivity 5 29% at 24 hours, 61% at 48 hours, and

66% at 72 hours. Furthermore, the cutoff for any FPR

was higher at 24 hours compared to 48 hours and 72

hours. This suggests that even in people with good prog-

nosis after cardiac arrest there may be an initial transient

release of tau, which does not reflect irreversible neuro-

logical injury or poor outcome. An alternative explana-

tion is that people who die very soon after cardiac arrest

(during the first 2–3 days) are more likely to die from

cardiac causes or multiorgan failure (which may not cor-

relate directly with high tau), whereas people who die

later are more likely to die from causes related to their

brain injury.20,27 There may also be a pathophysiological

delay until a significant amount of tau has been released

from injured neurons and axons, which make the later

samples more reliable to measure brain injury. The

apparent biological half-life of tau in serum is <10

hours; therefore, prolonged elevations at late time points

are likely to be associated with continuous release of tau

from injured neurons.18 We did not find evidence that a

combination of serial tau measurements improved predic-

tion compared to 48-hour or 72-hour tau, but it may

still be possible that specific combinations of tau cutoffs

and longitudinal changes may provide incremental value,

as has been found for NSE.28,29

Tau was more robust to hemolysis than NSE. In

the nonhemolytic samples, the correlation coefficient

between tau and NSE was high. Both tau and NSE were

independent predictors of poor outcome, but tau had

higher diagnostic accuracy for poor outcome. The differ-

ences in AUC between NSE and tau were statistically

significant, and may also be of clinical relevance. Further-

more, when NSE and tau were considered simulta-

neously, both tau and NSE predicted survival. Together,

these results suggest that tau is overall more closely

related to neurological outcome, but both tau and NSE

provide partly complementary information after cardiac

arrest.

One limitation was that tau was analyzed using the

Simoa instrument, which is only available at specialized

laboratories. For comparison, NSE may be analyzed on

high-throughput automated analyzers available in many

hospital laboratories. Although tau was not sensitive to

hemolysis, it may be susceptible to other cohort- or

study-dependent factors that are not yet well defined.17

Specific cutoffs may therefore not be not easily trans-

ferred between laboratories. The assay in this study was a

semiautomated commercially available assay, which

requires a Quanterix reader. There are also other assays

for tau in blood. Further studies in which they are

compared to each other head to head would be a logical

next step following on from this study. Different assays

may produce different absolute concentrations, just like

for NSE, and other biomarkers. This type of variability,

as well as within-laboratory variability, can be solved by

the development of certified reference methods and

materials for tau in blood, which allow for assay harmo-

nization and uniform reference and decision limits.

Another limitation concerns the definition of poor

outcome. We used CPC 3–5 as our main definition of

poor outcome, which is the standard in the current liter-

ature on cardiac arrest, but poor outcome has sometimes

also been defined as CPC 4–5.25,26 We noted that CPC

4–5 patients were effectively separated from CPC 1–3

patients in tau at 48–72 hours, whereas CPC 3 patients

overlapped with CPC 1–2. In sensitivity analyses, we

tested CPC 4–5 as an alternative definition of poor out-

come, which only marginally affected our results (note

that only few patients were classified as CPC 3–4, which

is why the different definitions of poor outcome had

similar results). The alternative classification of CPC 1–3

is relevant, because the withdrawal of life-sustaining

therapy and the principles for defining poor outcome

may differ between countries, and because there is a ten-

dency toward using CPC 3 as a cutoff rather than CPC

4 in studies performed after the introduction of hypo-

thermia in cardiac arrest.25,26 We also considered the

mRS scale, which was closely related to tau, especially at

48 hours (see Fig 1E). In formal testing, there were no

large differences for the associations between tau and

CPC or mRS.

Prognostication after cardiac arrest is difficult and

should never be unimodal. We compared tau with NSE

and basic clinical information, but in the future, we plan

to also examine how tau adds to a complex prognostica-

tion model with detailed clinical data (eg, motor func-

tion), neurophysiological data, and neuroimaging.

The main strengths of the study included the large

sample size, and the prospective and blinded study

design. Taken together, our results indicate that serum

tau is a promising biomarker for prognosticating the

severity of acute brain injury and potentially useful to

predict poor outcome after cardiac arrest.
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