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Abstract

Purpose—To develop a reliable method to estimate electron density based on anatomic magnetic 

resonance imaging (MRI) of the brain.

Methods and Materials—We proposed a unifying multi-atlas approach for electron density 

estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed 

through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of 

inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of 

conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted 

MR images; and (2) electron density given its spatial location in a reference anatomy, obtained by 

deformable image registration. These were combined into a unifying posterior probability density 

function using the Bayesian formalism, which provided the optimal estimates for electron density. 

We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver 

operating characteristic analyses for detecting different tissue types were performed.

Results—The proposed method significantly reduced the errors in electron density estimation, 

with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using 

conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of 

bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% 

specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches 

(area under the curve: 79% and 80%, respectively).

Conclusion—The proposed multi-atlas approach provides robust electron density estimation and 

bone detection based on anatomic MRI. If validated on a larger population, our work could enable 

the use of MRI as a primary modality for radiation treatment planning.
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Introduction

Magnetic resonance imaging (MRI) has a number of important advantages over computed 

tomography (CT) as a primary imaging modality for radiation treatment planning (1). The 

superior soft tissue contrast of MRI and its ability to probe a variety of biological processes 

(such as perfusion) significantly improves the accuracy and reliability of target delineation 

(2–4). Magnetic resonance imaging–based treatment planning will reduce cost and simplify 

clinical workflow, with the additional benefit of zero ionizing radiation for imaging. Despite 

these advantages, MRI is not routinely used as a primary modality for radiation treatment 

planning. One key bottleneck problem is the lack of electron density information in MRI.

Reliable methods for estimating electron density from MRI are currently lacking. Existing 

methods can be broadly categorized into 2 groups: geometry-based and intensity-based 

methods. The geometry-based approach uses deformable image registration to a patient atlas 

with known electron density (5–11). This approach suffers from registration errors caused by 

the inherent anatomic differences between patients (12). On the other hand, the intensity-

based approach assigns electron density directly based on the MR image intensity (13–21). 

Because of the ambiguous relation between electron density and MR image intensity, this 

approach cannot reliably differentiate between bone and air, given their similarly short 

relaxation times. The newer ultra-short echo time (UTE) MR sequence has been used to 

improve visualization of bony anatomy (21–27). Although promising results have been 

obtained (28–30), UTE imaging is not being routinely used in clinical practice and generally 

cannot be used alone for electron density mapping owing to blood flow artifacts (21, 23).

The general concept of combining both geometry and intensity information has been 

explored (31–33). Previous studies (31, 33) used a deterministic regression approach to find 

relations between the CT number of a voxel and its MR intensity and spatial location. 

Recently we proposed a probabilistic Bayesian approach to electron density estimation using 

MRI (32). Despite its demonstrated advantages, our previous method has several limitations. 

First, it was based on a single T1-weighted MR sequence. Several tissue types, such as air, 

fluid, and bone, have similar intensity on T1-weighted MR images, yet with vastly distinct 

CT intensity and electron density. By leveraging the differential contrast of anatomic MR 

images (eg, T1- and T2-weighted), one should better distinguish different anatomic 

structures such as fluid and bone. Second, the method used a single fixed atlas. Given the 

inherent anatomic variations among patients, this is clearly not optimal. A multi-atlas 

approach will significantly improve atlas matching and thus reduce errors. The purpose of 

this work was to develop and validate a novel method for robust electron density estimation 

based on anatomic MRI by using a unifying multi-atlas approach.

Methods and Materials

Overview

Our general approach to electron density estimation incorporates (1) anatomic T1- and T2-

weighted MRI; and (2) multiple patient atlases. By building a composite atlas using 

information from multiple patients, we can effectively mitigate the adverse effects of the 

anatomic differences between patients. To estimate the electron density of a voxel, we 
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integrate information about the image intensity on anatomic MR images as well as its spatial 

location, using a unifying probabilistic approach. Figure 1 shows a flow chart of the 

proposed method.

Image acquisition

With institutional review board approval and waived patient consent, we retrospectively 

analyzed the CT and anatomic T1- and T2-weighted MR images for 10 previously treated 

cancer patients with brain tumors. All patients underwent radiation treatment simulation 

including CT and MRI scans, which covered the whole brain and most of the head. The CT 

images were acquired with a Discovery CT scanner (GE Medical Systems, Milwaukee, WI) 

at the following settings: 120 kVp, 300 mAs, 512 × 512 in-plane image dimensions, 0.6 × 

0.6-mm2 in-plane spatial resolution, and 1.25-mm slice thickness. The MR images were 

acquired using a 1.5-T (n=5) or 3.0-T (n=5) MR scanner (Signa HDxt or Discovery MR750, 

GE Medical Systems) using standard head coils. Two MR sequences were acquired for each 

patient. For T1-weighted spin echo sequence images, echo time ranged from 13 to 16 

milliseconds, repetition time ranged from 523 to 750 milliseconds, flip angle = 90°, 

bandwidth ranged from 122 to 325 Hz per pixel, intraslice voxel resolution varied from 0.93 

to 1.09 mm, and slice spacing was between 1 and 2 mm. For T2-weighted spin echo 

sequence images, echo time ranged from 86 to 95 milliseconds, repetition time ranged from 

3616 to 9700 milliseconds, flip angle = 90°, bandwidth = 244 Hz per pixel, intraslice voxel 

resolution varied from 0.93 to 1.09 mm, and slice spacing was between 1 and 2 mm.

Image preprocessing

We first applied a binary mask on the CT images with a Hounsfield unit (HU) value of −500 

to segment outermost regions of the head. The MR images were resampled to match the 

spatial resolution of CT. For each patient, T1-weighted MR and CT images were rigidly 

registered using the extensively validated Elastix software (34), with localized mutual 

information as the similarity measure and stochastic gradient descent as the optimization 

method. Registration of T1- and T2-weighted MR images across different patients consisted 

of histogram matching between respective images, followed by a rigid registration and B-

spline deformable image registration using Elastix (34), using sum of squared differences as 

the similarity measure. The transformation matrix obtained during this registration process 

was applied to the original CT image of the corresponding patient to generate the deformed 

CT image, which was used as atlas for electron density estimation. This process was 

repeated for a test patient and every other patient in the study.

Composite atlas generation

To minimize the effects of interpatient anatomic variations, we constructed a composite atlas 

by combining the information from multiple patient atlases. First, each atlas was ranked 

according to its similarity to the test patient, using sum of squared differences for both T1- 

and T2-weighted MR images between the test and atlas patients (after histogram matching) 

as the figure of merit. Then the top 4 atlases with the smallest differences were used to 

generate a composite atlas. Specifically, for each voxel we calculated the sum of squared 

difference between the test and selected top 4 atlases on both T1- and T2- weighted MR 

images within a 6 × 6 × 6-mm3 volume. The atlas with the smallest discrepancy was defined 
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as the composite atlas at that particular voxel, including its intensity on CT and T1-and T2-

weighted MR images (Fig. 2). This approach has 2 advantages: (1) electron density 

estimation can be more accurate by excluding irrelevant and potentially confounding atlases 

from analysis; (2) computational efficiency will be improved by reducing the number of 

atlases.

Electron density estimation from anatomic MRI

To utilize the information about the spatial location of a voxel as well as its intensity value 

on anatomic MR images, we proposed a probabilistic approach that effectively combines all 

sources of information in a unifying Bayesian framework. Under this formalism, the 

information contained in the geometry through atlas registration and MR image intensity 

values is encoded in conditional probability density functions (32). The optimal inference of 

the electron density at each voxel can be obtained using the Bayesian theorem.

Mathematically, the posterior probability density function (PDF) of a voxel having an 

electron density value of x, given the corresponding T1-weighted MRI intensity y1, and T2-

weighted MRI intensity y2, and its spatial location z in a reference anatomy can be 

formulated as:

(1)

Here we assumed that the prior probability of x is uniformly distributed and that the MRI 

intensity y1, y2, and spatial location z are statistically independent.

In practice, to compute the conditional PDF of electron density given the T1- or T2-

weighted MRI intensity at a particular voxel, we searched those voxels in the composite 

atlas MRI with similar intensity values (using a 5% threshold). Then the conditional PDF 

was calculated with the nonparametric kernel density estimation method (35). To compute 

the conditional PDF of electron density at a voxel given its spatial location in a reference 

anatomy, we used the neighboring voxels within 6 × 6 × 6-mm3 volume and constructed a 

PDF from their corresponding composite atlas CT using a Gaussian kernel with a standard 

deviation of 3 mm, considering the uncertainty of approximately 6 mm for deformable 

registration methods in the head (36). The posterior PDF for the electron density value of a 

voxel was obtained by multiplying the above 3 conditional PDFs according to Eq. 1. Finally, 

we used the maximum a posteriori method to obtain the estimated electron density.

Evaluations

We evaluated the proposed method for electron density estimation using leave-one-patient-

out cross-validation. Briefly, 9 patients were used as atlases, and 1 was used for testing 

purposes. This process was iterated until all 10 patients were tested. We compared the 

synthetic CT images with the real x-ray CT images in terms of the mean absolute HU error 

within the patient head. Further, we evaluated the ability of the proposed method to correctly 

identify air (HU < −500), soft tissue (HU between −500 and 200), and bony anatomy (HU > 

200), using receiver operating characteristic (ROC) analysis. Area under the ROC curve, 
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along with specificity, sensitivity, and accuracy were computed to quantify the performance 

for bone detection. In addition, we evaluated the robustness of our method to image noise, 

by simulating the scenario of a reduced signal to noise ratio when patients are imaged in the 

treatment position. We added 20 dB Gaussian noise to the original MR images and repeated 

the whole analysis procedure to estimate electron density to recalculate the mean absolute 

HU error.

Comparison with existing approaches

We compared the proposed method with 3 conventional approaches, which are geometry-

based, intensity-based, and our previous Bayesian approach using T1-weighted MRI. For the 

geometry approach, deformable registration was used to establish the spatial relation 

between the atlas and test patient based on T1-weighted MRI. For the intensity approach, the 

mean CT intensities of the voxels with matching T1-weighted MRI intensity were used as 

the intensity map. For our previous Bayesian approach, the information of spatial location 

and T1-weighted MRI intensity was combined to obtain an electron density map (32). To 

demonstrate the advantages of the proposed multi-atlas and anatomic MRI approach, the 

atlas with the best match to the test patient on T1-weighted MR images was used for all 

previous approaches.

Results

Figure 2 shows the axial images of true CT of a test patient, composite atlas CT, and original 

atlas CT images. The number of atlases was chosen heuristically according to results that the 

image intensity differences decreased when more atlases were used, but reached a plateau 

beyond 4. As expected, significant structural differences exist between the true CT and 

original atlas CT images (B1–B4 and C1–C4). Importantly, our multi-atlas approach 

generated a composite atlas (A2–4), which had the best match with the true CT at most local 

regions, thereby significantly reducing the anatomic differences between the true and atlas 

CT images. For the axial images shown in Figure 2, the mean absolute HU error between the 

composite atlas and true CT was 139, compared with 173, 212, 166, and 191 for the original 

atlases (B1–B4). The MR images at both field strengths (1.5 T and 3.0 T) were selected as 

atlas for a certain test case (Table E1; available online at www.redjournal.org). Overall, the 

multi-atlas approach significantly reduced the structural variations from the true CT in all 10 

cases, with 47 HU lower than the original atlas on average (Fig. E1; available online at 

www.redjournal.org). However, there are still some structural differences between the 

composite atlas and true CT (A3 in Fig. 2), suggesting deformable registration alone cannot 

eliminate the anatomic variations among patients.

Figure 3 shows the true CT image of a test patient and estimated synthetic CT images using 

different approaches. Not surprisingly, the registration-based method had some gross 

misalignment of bony anatomy due to interpatient anatomic differences. Although structural 

details were preserved with the T1-weighted intensity method, air and bone were not 

distinguished well owing to their similar MRI intensity values. On the other hand, the 

proposed method had much-improved results, as can be seen in the difference images. In the 

last row of Figure 3, 4 voxels (C, D, E, and F) in different anatomic regions were chosen to 
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illustrate the performance of different approaches in more details. The proposed approach 

correctly estimated the electron density for all 4 voxels, whereas the other approaches made 

at least 1 erroneous estimation, suggesting the robustness of our approach.

The results for electron density estimation are summarized in Table 1, with the proposed 

method outperforming others in every case. On average, our multi-atlas approach 

significantly reduced the mean absolute HU estimation error by 16 (P=.0004, paired Student 

t test, same below), 21 (P<.0001), and 25 (P<.0001), compared with our previous Bayesian, 

intensity-based, and geometry-based approaches, respectively. When noise was added to the 

MR images (Fig. E2; available online at www.redjournal.org), all methods performed worse 

as expected, with an increase of approximately 10 HU in terms of estimation error. The 

proposed method outperformed others as before and also seemed to be least affected by 

noise, although the differences were quite small (Table E2; available online at 

www.redjournal.org).

The mean ROC curves for the detection of bone, air and soft tissue are shown in Figure 4. 

Table 2 lists the numerical results of ROC analysis for bone detection in all 10 patients using 

different methods. In general, our multi-atlas approach outperformed all others by any 

measure. On average, the proposed approach achieved improvements of 9% or more in terms 

of area under the curve (AUC), accuracy, sensitivity, and specificity, compared with 

conventional geometry or intensity-based methods. Notably, for detection of bony anatomy, 

the proposed method achieved an 89% AUC, 86% sensitivity, 88% specificity, and 90% 

accuracy, which improved upon intensity and geometry-based approaches with AUC of 79% 

and 80%, respectively.

Discussion

We have presented a unifying multi-atlas approach for electron density estimation by 

leveraging the differential contrast of anatomic MRI. Our method effectively integrated all 

relevant information (spatial location and MR image intensity) in a unifying Bayesian 

framework. We applied our method to estimate electron density in the patient’s head, which 

is a challenging site given its highly heterogeneous anatomy. Our approach produced more 

accurate and robust estimates of electron density compared with 3 competing approaches. 

Further, our method demonstrated superior bone detection, suggesting its potential of 

generating useful setup images for image guidance. Importantly, these promising results 

were achieved on the basis of standard-of-care T1- and T2-weighted MR sequences. If 

validated, our method can be readily translated to the clinic.

Our method can incorporate additional MR sequences, such as UTE, to further improve 

accuracy in challenging cases. Using conventional T1- and T2-weighted MR images, our 

approach achieved similar or higher accuracy compared with other approaches based on 

multiple MRI sequences, including UTE. For example, a previous study using T1-, T2-

weighted, and UTE MR sequences showed a mean absolute HU error of 137 for 5 patients 

based on a Gaussian mixture regression model (24), compared with an HU error of 119 for 

10 patients in our study. Thus, the inclusion of UTE MR sequence is expected to further 

improve the performance of our approach.
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Several previous studies have investigated the idea of combining both geometry and 

intensity information for electron density mapping using MRI (31, 33). The main distinction 

from our work lies in the methodologic formalism adopted in the study, which used a 

deterministic regression-based approach (31). In contrast, here we adopted a probabilistic 

Bayesian approach, which derived a posterior probability density function and gave an 

optimal estimate of electron density in the mean squared error sense. Although all studies 

used multiple atlases, we further constructed a composite atlas by prioritizing closely 

matched atlases and excluding irrelevant and potentially confounding ones. There are 2 main 

differences between our method and that of Johansson et al (33), which may be interpreted 

as a probabilistic approach. First, Johansson et al used a parametric Gaussian mixture model 

for estimating probability density function, whereas we used a nonparametric approach 

based on kernel density estimation. Second, the work differs in the way that spatial 

information is incorporated: Johansson et al included the Cartesian coordinates as covariates 

in the regression model, whereas we constructed the conditional probability density function 

given the spatial location of a particular voxel. Another difference is that we used both T1- 

and T2-weighted MRI, whereas previous studies used a single MR sequence, although the 

regression approach can in principle be extended to incorporate anatomic data.

A number of technical factors can influence the accuracy of the proposed technique, 

including geometric distortion of MRI, streak artifacts in CT, and patient motion during 

scanning. Reducing various artifacts in MRI (37) and limiting patient motion should 

improve the accuracy of electron density estimation. In our study we applied histogram 

matching to facilitate comparison of MR images between patients. In a multi-institutional 

setting, more sophisticated preprocessing techniques may be used to minimize the effects of 

different imaging acquisition protocols (38).

The computational time of our algorithm can be broken down into 3 major parts: (1) Elastix-

based deformable registration, which can be finished in 1 to 2 minutes for each registration 

of image pairs; (2) construction of composite atlas, which can be finished within 1 minute; 

(3) calculation of PDF, which may take approximately 30 minutes for a typical case. 

Compared with our previous single-atlas approach, the increase in computation is marginal 

(30 vs 40 minutes). Because the PDF calculation can be done independently, the efficiency 

could be improved by using cloud-based parallel computation.

Our work is limited by a relatively small size of the study population, and the results need to 

be validated on a larger population. We anticipate the performance of our multi-atlas 

approach to improve by including an increased number of patients as atlases, because more 

data would benefit Bayesian learning that naturally incorporates all available information.

Future study will focus on validation using more clinically relevant metrics in the context of 

radiation treatment planning, such as for dose calculation (39) and generation of reference 

images (40). In our previous work (32), we have shown that an HU error on the order of 

approximately 100 did not affect the dosimetric accuracy of intensity modulated radiation 

treatment planning based on synthetic CT. Nevertheless, this issue should be systematically 

investigated on a larger population in future.
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Conclusion

We have developed a unifying multi-atlas approach for estimating electron density based on 

standard-of-care anatomic MR imaging. By integrating information of both spatial location 

and image intensity on T1- and T2-weighted MRI, we achieved robust electron density 

estimation and bone detection. Our work could enable the using of MRI as a primary 

modality for radiation treatment planning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary

We developed a unifying multi-atlas approach for electron density mapping based on 

standard-of-care T1- and T2-weighted MRI. The proposed method achieved robust 

electron density estimation and bone detection in 10 patients. Our work could provide the 

enabling tools for using MRI as a primary modality for radiation treatment planning.
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Fig. 1. 
Schematic flow of the proposed unifying multi-atlas approach for estimating electron 

density based on anatomic magnetic resonance (MR) imaging. Abbreviations: CT = 

computed tomography; Def. MR = deformed MR; D.I.R. = deformable image registration; 

MAP = maximum a posteriori; PDF = probability density function; SOS = sum of square; 

[T] = transformation matrix.
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Fig. 2. 
Axial images of true computed tomography (CT) (A1) of a test patient, composite atlas and 

difference image from true CT (A2–3), and color map (A4) indicating composite atlas was 

generated from multiple atlases. The original atlas CT and difference from true CT images 

are shown in B1–4 and C1–4, respectively. The arrows point to the regions where one of the 

original atlases has similar appearance with the true CT. Overall, large anatomic variations 

can be observed between original atlases and true CT (C1–4), which are significantly reduced 

using the composite atlas (A3).
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Fig. 3. 
Axial images of true computed tomography (CT) for a test patient, and estimated synthetic 

CT using the proposed, geometry, T1-weighted (T1w) intensity, and our previous Bayesian 

approaches (first row A1–5). The difference images from true CT are shown in the second 

row (B1–5). Arrows indicate the regions where conventional approaches failed to identify 

the correct tissue. Probability density functions of the proposed approach correctly identified 

the electron density at all voxels (C, D, E, and F), with true value indicated as dashed 

vertical line. On the other hand, conventional approaches based on geometry (C, E, and F), 

T1w intensity (D and F), and our previous Bayesian approach (D and E) produced erroneous 

estimations (last row). Abbreviation: HU = Hounsfield unit.
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Fig. 4. 
Receiver operating characteristic curves for detection of (a) air, (b) bone, and (c) soft tissue 

using conventional geometry-based, intensity-based, Bayesian approaches, and the proposed 

method. Abbreviation: T1w = T1-weighted.
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Table 1

Mean absolute Hounsfield unit errors for all 10 cases using different methods

Case no. Geometry Intensity T1-weighted Bayesian geometry and T1-weighted Proposed

1 171.77 166.08 160.71 138.23

2 118.06 120.50 113.36 101.80

3 149.76 149.33 143.30 120.86

4 136.80 134.53 126.63 118.72

5 124.15 137.81 119.15 112.30

6 142.51 123.65 126.46 113.38

7 133.23 129.32 125.92 125.31

8 156.35 146.09 143.14 126.14

9 153.89 156.23 148.56 118.72

10 150.06 138.54 139.94 118.48

Mean ± SD 144 ± 16 140 ± 14 135 ± 15 119 ± 10

P <.0001 <.0001 .0004 –
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Table 2

Numerical results of ROC analysis for bone detection in 10 cases using different approaches

Methods
AUC
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Proposed 89 ± 2.8 86 ± 2.4 88 ± 3.6 90 ± 1.5

Bayesian geometry and T1w 85 ± 3.0 79 ± 3.4 82 ± 4.3 83 ± 1.4

Intensity T1w 79 ± 3.0 76 ± 4.7 77 ± 5.2 81 ± 2.2

Geometry 80 ± 2.7 70 ± 5.2 75 ± 6.3 79 ± 2.6

Abbreviations: AUC = area under the curve; ROC = receiver operating characteristic; T1w = T1-weighted.

The sensitivity and specificity were determined at the optimal accuracy level.
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