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Abstract

Three papers in this issue focus on the role of calibration in model fit statistics, including the net 

reclassification improvement (NRI) and integrated discrimination improvement (IDI). This 

commentary reviews the development of such reclassification statistics along with more recent 

advances in our understanding of these measures. We show how the two-category NRI and the IDI 

are affected by changes in the event rate in theory and in an applied example. We also describe the 

role of calibration and how it may be assessed. Finally, we discuss the relevance of the event rate 

NRI for clinical use.
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The notion of clinical risk reclassification is now at least ten years old, and discussion on 

how to evaluate biomarkers for risk model improvement continues. In an influential paper in 

2004 Pepe et al [1] pointed out that a high odds ratio for a biomarker does not necessarily 

translate into an important change in the area under the receiver operating characteristics 

(ROC) curve, or AUC. This led to discussion about whether biomarker research could prove 

fruitful [2, 3]. Subsequently, using an application examining the addition of C-reactive 

protein to traditional risk markers in predicting cardiovascular disease, Cook et al suggested 

using risk reclassification within clinically important strata as a method to help guide 

decision-making for new biomarkers [4]. In 2007 the limitations of the ROC curve and its 

use in judging biomarkers were described by Cook, and the concept of clinical risk 

reclassification was explored further [5]. Pencina et al [6] then proposed several related 

metrics, including the net reclassification improvement (NRI) and integrated discrimination 

improvement (IDI). These were extended to survival data [7], and the continuous NRI 

(NRI(>0)) and a modification of the categorical NRI based on the margins of the table [8] 

were introduced. Some of these, particularly the NRI(>0), have become popular in the 

medical literature.

There is now a plethora of measures of model improvement and biomarker effects to 

consider. Recent methodologic literature has expanded our understanding of these metrics. 

We now know, for example, that tests of the change in the AUC are too conservative in the 

null situation [9], and that the NRI(>0) can be positively biased in the null setting [10]. 
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Bootstrap standard errors are preferable for use with the NRI and IDI [11, 12]. In addition, 

some work has focused on interpreting levels of these metrics and deciding what values may 

be high enough to be clinically important [8, 13]. Because of the different costs of 

misclassifying cases and non-cases, a weighted version of the NRI, or at least reporting the 

separate components for cases and non-cases, may be important. To be useful in practice, 

besides improving model fit, a new biomarker must be cost-effective and balance benefits 

and harms. An alternative to a full cost-effectiveness analysis is the more simple net-benefit 

or decision curve [14]. This examines the net benefit over a range of risk thresholds, so can 

compare models using various cost and preference assumptions. Note that distinction can be 

made between the net benefit of a new model, and the net benefit of treatment [15], which is 

often more relevant to medical decision-making. Additionally, confidence intervals for the 

change in net benefit should be presented along with confidence intervals for the NRI or 

other measures.

Some recent work, including three papers in this issue [16–18], focuses on the role of 

calibration in these metrics. Model calibration is essential to estimates of absolute risk and 

for correct interpretation of the NRI and IDI [19, 20] as well as the net benefit curve [21]. In 

the first paper Pencina et al [16] develop and discuss a two-category NRI with a single cut-

point at the event rate of the study population, or NRI(p). The authors elegantly describe its 

properties and its relation to many other global measures of model improvement and 

decision analytic measures. They show that in contrast to other variations of the NRI, the 

NRI(p) is not affected by mis-calibration.

Since the NRI(p) relies on the within-study event rate p, however, care must be taken when 

translating to other settings. This measure may be useful when clinically relevant thresholds 

do not exist. In previous work, we have also suggested thresholds that are one-half, equal to, 

and double the event rate if more risk categories are preferred [22]. These measures, though, 

may have limited applicability for a separate data set with a different event rate. Since the 

NRI is intended to be a transportable measure of impact, a better choice might be a broader 

population-based estimate of event rate. This could be used for both development and testing 

of a model and would have more intuitive clinical utility. While these thresholds will not 

have the same properties, they will, arguably, be more useful and less prone to confusion 

across papers and model validation settings.

As noted in the paper by Pencina et al [16], the NRI(p) is not a function of p as long as the 

threshold is set to the within study event rate. If we transport this two-category NRI, keeping 

the initial threshold, to another study with a different event rate, this is no longer the case. 

Similarly, the IDI will also change if evaluated in a study with a different event rate. It would 

be important to know how much the two-category NRI and IDI vary by the within-study 

event rate. We explore the relationship between the within study event rate and these 

measures in Figures 1 and 2 below. We used explicit formula [23] for the two-category NRI 

(2cNRI) and IDI under normality of the predictor variables:
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(1)

(2)

where  are squared Mahalanobis distances for the new and old (nested) models; 

 is the standard Normal CDF;  is the threshold for the two-category NRI and r is the 

within study event rate.

Under normality of the predictor variables there is a one-to-one correspondence between the 

Mahalanobis distance and the AUC [24], which allows us to express the NRI and IDI in (1) 

and (2) given the AUC values. We assumed here that we are comparing two nested models 

with AUC of 0.70 and 0.80. We used a fixed cutoff of 10% for the two-category NRI and 

plotted the two-category NRI and IDI for a range of event rates in Figures 1 and 2.

The two-category NRI steeply increases at low event rates. The two-category NRI calculated 

for two studies, one with an event rate of 3% and another one with event rate of 5%, varies 

from 0.07 in one to 0.17 in the other. The IDI for an event rate of 5% is 0.05; it can be 0.10 

in a study with an event rate of 10%. Of note, Michaescu [25] used simulations to observe a 

similar relationship between the two-category NRI and the threshold c. They varied the 

threshold and fixed the event rate, while we did the opposite. The event rate and the 

threshold enter the formula (2) in a symmetric fashion; therefore the shape of the 

relationship should be very similar. Michaescu et al also observed a shape similar to the one 

in Figure 1, with a dip in the middle and zero at the boundaries of the x -axis. Unlike the 

event-rate NRI, both the two-category NRI and IDI vary substantially with the event rate. 

This illustrates the implications of comparing values of the IDI and the two-category NRI 

across studies with varying event rates.

An applied example is provided in Table 1. This compares two models predicting 

cardiovascular disease over 8 years in the Women’s Health Study, both including standard 

risk factors but with and without systolic blood pressure. Various versions of the NRI are 

compared, and conclusions can vary depending on the number and value of cut points used. 

Cook et al. Page 3

Stat Med. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As previously shown [26], the value of the NRI typically increases with the number of 

categories, with the NRI>0 equivalent to using category cut points at each observed value 

and much higher in absolute level. Two versions of the two-category NRI are shown, one 

using a cut point of 0.06 for 8-year risk (equivalent to 7.5% 10-year risk), which is of 

clinical importance for prescription of statin medication [27]. The other is the NRI(p), which 

is evaluated at 0.023, the observed 8-year risk in the cohort. While the first version is 

positive and suggests some net improvement, the second version is closer to the null, 

especially among cases. However, it is important to consider whether crossing a threshold of 

0.023 (equivalent to 2.9% 10-year risk) or 0.06 (7.5% 10-year risk) is a more useful measure 

of clinical impact. In such a low-risk population, crossing the event-rate threshold has far 

less meaning.

The use of standardized thresholds and the impact of the study event rate become especially 

important when aggregating performance measures across multiple studies. Pennells et al 

[28] describe some of these challenges and bring up the possibility of weighting the study 

results in comparison to the risk distribution in a target population. While meta-analyses 

using pooled data can standardize their approach, papers attempting to compare categorical 

measures across studies have had difficulty due to differences in methods, definitions, and 

risk categories used [29]. They also lacked sufficient data to generate bias-corrected 

measures for intermediate risk groups. Use of study specific thresholds alone will only 

exacerbate this difficulty.

In the second paper, Chipman and Braun [17] also consider model calibration and present 

the interesting situation of the IDI evaluating a dichotomous predictor that is unbalanced 

between events and non-events. They describe several cases of Simpson’s paradox where the 

overall IDI is inconsistent with results obtained from subgroups defined by the predictor. 

They find that this can occur even when the model displays good calibration overall and 

argue that stratum-level calibration is needed.

In the third paper Pencina et al [18] discuss the IDI and its associated discrimination (Yates) 

slope. They further describe the properties of these and their relationships to other well-

known measures of model fit, including the Brier score, R2 measures, and expected regret. 

They identify sufficient conditions for the discrimination slope and IDI to be proper scoring 

rules. This occurs if the model has calibration-in-the-large and a linear slope equal to 1 in a 

regression of event status on model-based risk, which can be accomplished with a simple 

recalibration. They also found that all measures, including the Brier score, R2 measures and 

even the AUC, are susceptible to mis-calibration, particularly if the mis-calibration is non-

monotone.

The authors suggest that differences among the R2 measures may be used to signal 

calibration problems. This is especially important in the setting of non-monotone mis-

calibration, which may not be apparent through simple regression. On the other hand, 

calibration could be assessed directly. While the calibration plot or even deciles of risk can 

point to gross violations across the range of estimated risk, it is also possible to directly 

examine and compare calibration for two models. The first descriptions of clinical risk 

reclassification compared the observed and predicted event rates, or calibration, within 
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cross-classified risk strata [4, 5]. This was later formalized as the reclassification calibration 

statistic, which compares the observed to the average predicted risk within each cell in a 

manner similar to the Hosmer-Lemeshow statistic [30]. The properties of this statistic were 

found to have appropriate test characteristics [22]. While not identical, this statistic also fits 

into Van Calster’s third level of calibration [21]. Instead of having the same predicted risks, 

the groups are defined as having predicted risk within the same range, with 3 or 4 cross-

classified strata. This can demonstrate whether there is a lack of calibration within risk strata 

that are useful clinically. The definition of the risk strata is not as critical as for the NRI [26], 

though the range of risks should be clinically relevant.

Overall, these three papers provide important context for the presentation and interpretation 

of risk prediction measures. The concerns about model calibration running throughout speak 

to ongoing discussions in model validation and development in medical applications. Further 

clarification around when recalibration should be performed and what type, how 

recalibration differs from model development, and the effect of the recalibration process 

itself on model performance in future data would be helpful. The ability to compare and 

aggregate measures and results across multiple studies is also critical. Ultimately, for clinical 

use, care must be taken to use models and measures which are comparable across studies 

and are relevant to the intended setting and the individual patient.

Acknowledgments

This work was supported by grant HL113080 from the National Heart, Lung, and Blood Institute.

References

1. Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging 
the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol. 2004; 159:882–
890. [PubMed: 15105181] 

2. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, Jacques PF, Rifai N, Selhub J, 
Robins SJ, Benjamin EJ, D’Agostino RB, Vasan RS. Multiple biomarkers for the prediction of first 
major cardiovascular events and death. N Engl J Med. 2006; 355:2631–2639. [PubMed: 17182988] 

3. Ware JH. The limitations of risk factors as prognostic tools. N Engl J Med. 2006; 355:2615–2617. 
[PubMed: 17182986] 

4. Cook NR, Buring JE, Ridker PM. The effect of including C-reactive protein in cardiovascular risk 
prediction models for women. Ann Intern Med. 2006; 145:21–29. [PubMed: 16818925] 

5. Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. 
Circulation. 2007; 115:928–935. [PubMed: 17309939] 

6. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive 
ability of a new biomarker: from area under the ROC curve to reclassification and beyond. Stat 
Med. 2008; 27:157–172. [PubMed: 17569110] 

7. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement 
calculations to measure usefulness of new biomarkers. Stat Med. 2011; 30:11–21. [PubMed: 
21204120] 

8. Pencina KM, Pencina MJ, D’Agostino RB Sr. What to expect from net reclassification improvement 
with three categories. Stat Med. 2014; 33:4975–4987. [PubMed: 25176621] 

9. Demler OV, Pencina MJ, D’Agostino RB Sr. Misuse of DeLong test to compare AUCs for nested 
models. Stat Med. 2012; 31:2577–2587. [PubMed: 22415937] 

10. Pepe MS, Janes H, Li CI. Net risk reclassification p values: valid or misleading? J Natl Cancer Inst. 
2014; 106:dju041. [PubMed: 24681599] 

Cook et al. Page 5

Stat Med. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Kerr KF, McClelland RL, Brown ER, Lumley T. Evaluating the incremental value of new 
biomarkers with integrated discrimination improvement. Am J Epidemiol. 2011; 174:364–374. 
[PubMed: 21673124] 

12. Kerr KF, Wang Z, Janes H, McClelland RL, Psaty BM, Pepe MS. Net reclassification indices for 
evaluating risk prediction instruments: a critical review. Epidemiology. 2014; 25:114–121. 
[PubMed: 24240655] 

13. Pencina MJ, D’Agostino RB, Pencina KM, Janssens AC, Greenland P. Interpreting incremental 
value of markers added to risk prediction models. Am J Epidemiol. 2012; 176:473–481. [PubMed: 
22875755] 

14. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. 
Med Decis Making. 2006; 26:565–574. [PubMed: 17099194] 

15. Vickers AJ, Kattan MW, Sargent DJ. Method for evaluating prediction models that apply the 
results of randomized trials to individuals patients. Trials. 2007; 8

16. Pencina MJ, Steyerberg EW, D’Agostino RB Sr. Net reclassification index at event rate: properties 
and relationships. Stat Med. 2016

17. Chipman J, Braun D. Simpson’s paradox in the integrated discrimination improvement. Stat Med. 
2016

18. Pencina MJ, Fine JP, D’Agostino RB Sr. Discrimination slope and integrated discrimination 
improvement – properties, relationships and impact of calibration. Stat Med. 2016

19. Hilden J, Gerds TA. A note on the evaluation of novel biomarkers: do not rely on integrated 
discrimination improvement and net reclassification index. Stat Med. 2014; 33:3405–3414. 
[PubMed: 23553436] 

20. Leening MJ, Steyerberg EW, Van Calster B, D’Agostino RB Sr, Pencina MJ. Net reclassification 
improvement and integrated discrimination improvement require calibrated models: relevance 
from a marker and model perspective. Stat Med. 2014; 33:3415–3418. [PubMed: 25042215] 

21. Van Calster B, Vickers AJ. Calibration of risk prediction models: impact on decision-analytic 
performance. Medical Decision Making. 2015; 35:162–169. [PubMed: 25155798] 

22. Cook NR, Paynter NP. Performance of reclassification statistics in comparing risk prediction 
models. Biom J. 2011; 53:237–258. [PubMed: 21294152] 

23. Pencina MJ, D’Agostino RB Sr, Demler OV. Novel metrics for evaluating improvement in 
discrimination: net reclassification and integrated discrimination improvement for normal variables 
and nested models. Stat Med. 2012; 31:101–113. [PubMed: 22147389] 

24. Demler OV, Pencina MJ, D’Agostino RB Sr. Equivalence of improvement in area under ROC curve 
and linear discriminant analysis coefficient under assumption of normality. Stat Med. 2011; 
30:1410–1418. [PubMed: 21337594] 

25. Mihaescu R, van Zitteren M, van Hoek M, Sijbrands EJ, Uitterlinden AG, Witteman JC, Hofman 
A, Hunink MG, van Duijn CM, Janssens AC. Improvement of risk prediction by genomic 
profiling: reclassification measures versus the area under the receiver operating characteristic 
curve. Am J Epidemiol. 2010; 172:353–361. [PubMed: 20562194] 

26. Cook NR, Paynter NP. Comments on ’Extensions of net reclassification improvement calculations 
to measure usefulness of new biomarkers’ by M. J. Pencina, R. B. D’Agostino, Sr. and E. W. 
Steyerberg. Stat Med. 2012; 31:93–95. author reply 96–97. [PubMed: 21344474] 

27. Stone NJ, Robinson J, Lichtenstein AH, Merz CNB, Conrad B, Blum CB, Eckel RH, Goldberg 
AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith JSC, Watson 
K, Wilson PW. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce 
Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/
American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 129:S1–S45. 
[PubMed: 24222016] 

28. Pennells L, Kaptoge S, White IR, Thompson SG, Wood AM, Emerging Risk Factors C. Assessing 
risk prediction models using individual participant data from multiple studies. Am J Epidemiol. 
2014; 179:621–632. [PubMed: 24366051] 

29. Lin JS, Olson CM, Johnson ES, Whitlock EP. The ankle-brachial index for peripheral artery 
disease screening and cardiovascular disease prediction among asymptomatic adults: a systematic 

Cook et al. Page 6

Stat Med. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2013; 159:333–341. 
[PubMed: 24026319] 

30. Cook NR, Ridker PM. Advances in measuring the effect of individual predictors of cardiovascular 
risk: the role of reclassification measures. Ann Intern Med. 2009; 150:795–802. [PubMed: 
19487714] 

Cook et al. Page 7

Stat Med. Author manuscript; available in PMC 2018 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Value of the two-category NRI using event rate of 0.10 by new study event rate comparing 

two nested models, one with AUC = 0.7 and the second with AUC = 0.80.
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Figure 2. 
Value of the IDI by study event rate comparing two nested models, one with AUC = 0.7 and 

the second with AUC = 0.80.
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