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Abstract

Early life stress (ELS) is a significant risk factor for the emergence of internalizing problems in 

adolescence. Beginning in adolescence, females are twice as likely as males to experience 

internalizing disorders. The present study was designed to examine sex differences in the 

association between ELS and internalizing problems in early pubertal adolescents, and whether 

and how corticolimbic function and connectivity may underlie these associations. Fifty-nine early-

pubertal males and 78 early-pubertal females, ages 9–13 years (all Tanner Stage 3 or below) 

underwent fMRI as they performed an emotion label task that robustly interrogates corticolimbic 

function. Participants were also interviewed about their experience of ELS. Females exhibited a 

positive association between ELS and internalizing problems, whereas males exhibited no such 

association. Whole-brain and amygdala region-of-interest analyses indicated that whereas females 

exhibited a positive association between ELS and ventrolateral prefrontal cortex (vlPFC) during 

implicit emotion regulation, males showed no such association. Activation in these regions was 

positively associated with internalizing problems in females but not males; however, activation in 

these regions did not mediate the association between ELS and internalizing problems. Finally, 

both boys and girls exhibited an association between ELS and increased negative connectivity 

between right vlPFC and bilateral amygdala. Using a carefully characterized sample of early 

pubertal adolescents, the current study highlights important sex differences in the development of 

corticolimbic circuitry during a critical period of brain development. These sex differences may 

play a significant role in subsequent risk for internalizing problems.
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Introduction

The experience of early life stress (ELS) is associated with mental health difficulties such as 

depression and anxiety (Andersen & Teicher, 2008; Heim & Nemeroff, 2001; Lupien, 

McEwen, Gunnar, & Heim, 2009; Teicher & Samson, 2016). In fact, exposure to ELS 

accounts for nearly one-third of all mood and anxiety disorders in the United States, 

underscoring the critical role of ELS as a risk factor for the onset of internalizing 

psychopathology (Green et al., 2010; McLaughlin et al., 2012). ELS has been theorized to 

confer risk for the emergence of psychopathology through several stress-related 

neurobiological pathways. Specifically, ELS may affect functioning of the hypothalamus-

pituitary-adrenal (HPA) axis and consequently influence the development of neural 

structures with high densities of corticotropin-releasing factor (CRF) neurons, including 

portions of the prefrontal cortex (PFC) and amygdala (Heim et al., 2002; Lupien et al., 2009; 

Malter Cohen, Tottenham, & Casey, 2013; Nemeroff, 2004). ELS-induced alterations in the 

development of neural regions involved in this corticolimbic stress regulatory system may 

contribute to risk for psychopathology (for a review see Heim & Binder, 2012 and Lupien et 

al., 2009).

For instance, researchers have found that adults with a history of ELS exhibit both 

heightened amygdala response and positive functional connectivity, or temporal correlation, 

between right ventrolateral PFC (right vlPFC) and amygdala while labeling threatening (i.e., 

fearful and angry) faces, compared to adults without histories of adversity (Taylor, 

Eisenberger, Saxbe, Lehman, & Lieberman, 2006). Negative functional connectivity 

between PFC and amygdala during the processing of threat-related stimuli is typically found 

in adults and is posited to reflect adaptive emotion regulation by the PFC (Gee, Humphreys, 

et al., 2013). In contrast, the positive functional connectivity of PFC and amygdala in adults 

with ELS suggests that stress leads to atypical emotion regulation, presumably through 

ineffective PFC regulation of amygdala responses (Taylor et al., 2006). It is important to 

note, however, that most of the studies that have found altered corticolimbic function 

following exposure to ELS have been conducted with adult samples and have used 

retrospective reports of ELS obtained many years after exposure to stress (Burghy et al., 

2012; Dannlowski et al., 2012; Fan et al., 2014; Heim & Binder, 2012; Herringa et al., 2013; 

Herringa et al., 2016; Taylor et al., 2006; van Harmelen et al., 2013, 2014). Thus, it is 

difficult to assess whether these neurobiological changes are a direct consequence of having 

experienced adversity early in development or, alternatively, are a signature of adult-onset 

psychopathologies.

Given the significant consequences of exposure to ELS, combined with the growing 

recognition that many of these effects are not observed until adolescence (Gee & Casey, 

2015; Kessler et al., 2005; Lee et al., 2014), researchers have begun to focus on elucidating 

the psychological and neurobiological consequences of ELS during this developmental 

period (see Tottenham & Galván [2016] for a review). Investigators have posited that 

exposure to ELS alters the development of neural structures and connections that underlie 

emotion processing and regulation, including the PFC and amygdala, that, in turn, increases 

adolescents’ risk for developing internalizing disorders (Burghy et al., 2012; Eiland & 

Romeo, 2013; Maughan & Cicchetti, 2002; Pechtel & Pizzagalli, 2011; Tottenham et al., 
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2010). This is particularly salient in adolescence when these neural systems are undergoing 

dramatic reorganization (Casey, Jones, & Hare, 2008). Supporting this formulation, 

researchers have found that children and adolescents who have experienced high levels of 

ELS exhibit heightened activation to emotionally evocative faces and images in brain 

regions that are involved in processing salient stimuli (i.e., amygdala, anterior insula, dorsal 

anterior cingulate cortex (Garrett et al., 2012; Gee, Gabard-Durnam, et al., 2013; Marusak, 

Martin, Etkin, & Thomason, 2014; McCrory et al., 2013; McLaughlin, Peverill, Gold, Alves, 

& Sheridan, 2015; Suzuki et al., 2014; Tottenham, Hare, Millner, et al., 2011). Fewer 

investigators have examined how ELS may affect PFC regulation of the processing of 

emotional stimuli.

The PFC may be particularly sensitive to exposure to ELS given its high density of 

glucocorticoid receptors and its protracted development into adulthood (Giedd, 2004; 

McEwen & Morrison, 2013; Pechtel & Pizzagalli, 2011; Sanchez, Young, Plotsky, & Insel, 

2000; Teicher et al., 2003). For example, McLaughlin et al. (2015) used a cognitive 

reappraisal task to examine fMRI responses of 13- to 19-year-old participants as they 

attempted to explicitly regulate their affective responses to emotionally salient images. 

Although previously maltreated adolescents showed the typical increased response in 

regions involved in processing salient stimuli to viewing negative images, they also showed 

increased activation in superior frontal gyrus and frontal pole when downregulating their 

negative affect to a negative image, relative to nonmaltreated adolescents. Similarly, 

Marusak et al. (2014) found that adolescents exposed to childhood trauma exhibited elevated 

dorsolateral PFC (dlPFC) activation when performing an emotional conflict task, suggesting 

early adverse experiences may have important consequences on the development of the PFC 

in adolescence.

In addition to the effects of ELS on activation to salient stimuli in the amygdala and the 

PFC, researchers have documented that ELS affects the functional connectivity between 

these two structures (Burghy et al., 2012; Gee, Gabard-Durnam, et al., 2013; Marusak et al., 

2014; Wolf & Herringa, 2016). Using task-based connectivity analyses, researchers have 

found that adolescents exposed to ELS show stronger negative amygdala–PFC connectivity

—a more mature, adult-like pattern of connectivity—while viewing negative stimuli (Gee, 

Gabard-Durnam, et al., 2013; Wolf & Herringa, 2016). These findings may reflect adaptive 

functioning in the face of adversity – children exposed to ELS may develop more adult-like 

patterns of connectivity at an earlier age in order to deal more effectively with environmental 

adversity. In fact, Gee et al. (2013) showed that among previously institutionalized children 

and adolescents, having a negative pattern of amygdala–medial PFC connectivity was 

associated with lower separation anxiety, indicating that this adult-like pattern may be 

protective following experiences of early adversity. However this pattern may also represent 

a premature end to a sensitive period for the development of this circuit. The long-term 

consequences of this earlier maturation are unclear, as are the developmental trajectories of 

the effects of ELS on this circuitry from childhood to adulthood.

Although researchers have now demonstrated that ELS affects the development of 

corticolimbic circuitry in childhood and adolescence, they have not examined possible sex 

differences in this association. ELS has, among females, been found to be a particularly 
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important risk factor in the development of Major Depressive Disorder (MDD; Ge, Conger, 

& Elder, 2001; Ge, Lorenz, Conger, Elder, & Simons, 1994; Rudolph & Flynn, 2007; Weiss, 

Longhurt, & Mazure, 1999). Females also differ from males in their perceptions of stressful 

life events (Raffaelli et al., 2016), in their biological response to both acute and chronic 

stressors, and in their neural responses to negative stimuli (Bourke, Harrell, & Neigh, 2012; 

Kajantie & Phillips, 2006; for reviews see (Bangasser & Valentino, 2014; Novais, Monteiro, 

Roque, Correia-Neves, & Sousa, 2016; Ordaz & Luna, 2012; Stevens & Hamann, 2012). 

Given striking sex differences in the incidence of internalizing disorders—including 

evidence that females are twice as likely as males to develop MDD in adolescence and 

adulthood (Hankin & Abramson, 1999)—there may be sex-specific mechanisms, including 

sex-specific effects on corticolimbic circuitry, through which ELS contributes to 

vulnerability for internalizing problems in adolescence (Teicher et al., 2003).

In this context, the age at which sex differences in internalizing disorders become most 

pronounced corresponds to the complex developmental period of puberty; moreover, there is 

evidence that pubertal status is a stronger predictor of the onset of depression than is 

chronological age (Angold, Costello, & Worthman, 1998; Hayward, Gotlib, Schraedley, & 

Litt, 1999; Oldehinkel, Verhulst, & Ormel, 2011). Thus, puberty is a critically important 

period to study in order to understand neurobiological differences between males and 

females that may underlie sex differences in internalizing problems. It is important to note, 

however, that males and females differ significantly in pubertal timing; females typically 

experience the onset of puberty 1.5 years earlier than do males (Negriff & Susman, 2011). 

These sex differences in pubertal timing mean that age-matched samples of adolescent males 

and females are almost certain to be confounded by sex differences in pubertal stage. 

Similarly, given the difficulties inherent in recruiting and studying high-risk samples such as 

adolescents who have been exposed to maltreatment or who have experienced institutional 

care, many studies are simply not sufficiently powered to detect sex differences in the 

neurobiological effects of ELS during the narrow developmental window of early puberty 

during which sex differences in internalizing problems begin to emerge. Significant puberty-

related changes occur in corticolimbic circuitry in adolescence (Peters, Jolles, 

Duijvenvoorde, Crone, & Peper, 2015; Spielberg, Forbes, et al., 2014; Spielberg, Olino, 

Forbes, & Dahl, 2014). Therefore, it is critical that we examine sex differences in 

corticolimbic development in carefully characterized samples of adolescent males and 

females, matched for pubertal development.

The present study was designed to address these issues by examining how ELS differentially 

affects male and female corticolimbic activation and connectivity during early puberty, a 

period in which sex differences in rates of internalizing problems begin to emerge. We also 

examined how corticolimbic circuitry is associated with internalizing disorders in 

adolescence. Given significant differences between males and females in pubertal timing 

(Negriff & Susman, 2011) and the documented impact of pubertal stage on corticolimbic 

circuitry (Peters et al., 2015; Spielberg, Forbes, et al., 2014; Spielberg, Olino, et al., 2014), 

in this study we used a puberty-matched sample of early adolescent boys and girls. We 

examined fMRI activation as boys and girls labeled emotion faces compared to matching 

emotion faces. Previous findings using this task suggest that labeling versus matching 

emotional face stimuli recruits implicit emotion regulation processes and elicits strong 

Colich et al. Page 4

Dev Psychopathol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activation in the PFC, particularly in the ventrolateral PFC (Gee et al., 2012; Lieberman et 

al., 2007; Taylor et al., 2006). This design allows us to examine emerging differences in the 

effects of ELS on corticolimbic circuitry during a period of development in which sex 

differences in internalizing problems are beginning to emerge. Based on evidence of sex 

differences in rates of internalizing symptoms in this age group, we hypothesized that early-

pubertal females will show a stronger association between exposure to ELS and internalizing 

problems than will their male counterparts. We predicted further that the association 

between ELS and internalizing problems in females would be mediated by increased 

amygdala activation and PFC activation during implicit emotion regulation. Finally, we 

expected to find greater negative connectivity between amygdala and PFC in individuals 

who were exposed to more severe ELS and, further, that this negative connectivity would 

mediate the association between ELS and internalizing problems. We also explored sex 

differences in patterns of PFC-amygdala connectivity, but made no directional hypotheses.

Methods

Participants and Procedure

A total of 137 participants met criteria for inclusion in this study and analyses: 59 early-

pubertal males and 78 early-pubertal females, ages 9–13 years (M=11.42, SD=1.08). An 

additional thirty-nine participants were excluded from the analyses due to excessive motion 

(n=35) or incomplete scans (n=4). The participants were part of a larger study examining the 

effects of ELS on brain structure and function across early adolescence. After completing a 

brief phone interview to determine eligibility, participants were invited to the laboratory to 

complete parental consent and child assent forms. In this session, parents and children also 

completed interviews and questionnaires assessing their experience of ELS and measures of 

their cognitive and emotional functioning. Males and females were matched on pubertal 

development based on self-report Tanner Stage and exposure to ELS (see Table 1 for 

descriptive statistics by child sex). Participants were recruited from the San Francisco Bay 

area through a combination of print and online advertisements. Exclusion criteria included: 

1) self-reported Tanner pubertal stage greater than 3 and the experience of menarche in 

female participants; 2) nonfluent English speakers; 3) contraindications to scan (e.g., metal 

implants, braces, etc.); 4) history of major neurological disorder or illness; and 5) 

intellectual delay or learning difficulties. Upon confirming eligibility, participants were 

invited to return within one month to complete the fMRI portion of the study. This study was 

approved by the Stanford University Institutional Review Board and all participants were 

compensated for their participation in the study.

Measures

Early Life Stress—We assessed levels of ELS severity and the impact of early life 

stressors using a modified version of Traumatic Events Screening Inventory for Children 

(TESI-C; (Ribbe, 1996)). In this interview we assessed 30+ types of stressful life 

experiences. For each type of ELS endorsed, interviewers followed up with general and 

specific probes in order to gather detailed information about the severity of the experience 

and the child’s perceived severity of the stressor (e.g., relationship of persons involved, 

duration of experience, consequences of experience). A panel of three coders, blind to the 
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child’s subjective severity ratings and reactions and behaviors during the interview, rated the 

objective severity of each type of stressor based on a modified version of the UCLA Life 

Stress Interview coding system (Rudolph et al., 2000; Rudolph & Hammen, 1999). Coders 

made objective severity ratings on a 5-point scale (0 = non-event or no impact [e.g., 

witnessed debris from car crash]; 4 = extremely severe impact [e.g., experienced sexual 

abuse]; ICC=0.99). For each child, objective ratings for each type of ELS endorsed were 

summed to create an index of the cumulative severity of ELS.

Pubertal Status—Pubertal stage was determined using self-reported Tanner staging 

(Marshall & Tanner, 1969, 1970). Using schematic drawings of two secondary sex 

characteristics (pubic hair and breast/testes development), each participant reported on 

his/her developmental stage on a scale of 1–5. A Tanner staging of 1 signifies that no 

pubertal development has begun, and a staging of 5 signifies that adult levels of pubertal 

maturation have been achieved. To be included in this study, all participants rated themselves 

at stage 3 or below on measures of both pubic hair and breast/testes development. Tanner 

staging scores have been found to correlate with physicians’ physical examinations of 

pubertal development (Coleman & Coleman, 2002; Slora et al., 2009, see also Shirtcliff, 

Dahl, & Pollak, 2009).

Internalizing Problems—Participants completed the Youth Self Report (YSR; 

(Achenbach, 1991; Achenbach & Rescorla, 2001) measure, which assesses a broad array of 

behavioral problems in children and adolescents. For this study we examined total scores on 

the Internalizing Problems subscale of the YSR. One male participant did not complete this 

questionnaire.

Magnetic Resonance Imaging

Implicit Emotion Regulation fMRI Task—We used a modified emotion label task to 

examine the neural correlates of implicit emotion regulation (see (Hariri, Bookheimer, & 

Mazziotta, 2000; Lieberman et al., 2007). This task was designed based on the formulation 

that linguistic processing of an emotional expression (e.g., labeling an emotional face) 

requires greater downregulation of regions responsible for processing salient information 

than does perceptual processing of the same emotional expression (e.g., matching emotional 

faces), potentially serving as a marker of the neural correlates of implicit emotion regulation 

(Lieberman et al., 2007). This task requires participants to identify, or label, a target 

emotional expression (emotion label) or to match a target emotional expression to two other 

emotional expressions (emotion match). We also included a sensorimotor control condition 

in which participants were required to match a target shape to two other shapes (shape 

match). For the label conditions, participants were instructed to make a button press to 

indicate whether the appropriate label for the target figure was located on the bottom left or 

the bottom right of the screen. For all match conditions, participants were instructed to make 

a button press to indicate whether the target figure at the top of the screen was more similar 

to the figure below it on the left or on the right. Each face/label set was presented on the 

screen for 5000 ms, and each block of stimuli consisted of 10 trials. All task blocks were 

interspersed with rest blocks (lasting 15000 ms) in which participants were instructed to 

focus on a fixation cross in the middle of the screen. Each run consisted of one block of each 
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task condition (Positive Label, Positive Match, Negative Label, Negative Match, Shape 

Match) as well as interspersed rest blocks. Presentation of conditions was randomized across 

participants, and all participants completed two complete runs of the task.

The task was presented using E-Prime software Version 2.0. A total of 50 trials were divided 

across two emotion conditions (positive, negative) and two response conditions (match and 

label) in addition to the control shape match condition. The positive and negative emotional 

expressions were facial displays from the NimStim picture set (Tottenham et al., 2009). Ten 

actors (5 female, 5 male) were displayed showing positive or negative emotional 

expressions. Positive emotional expression blocks included both high and low arousal 

positive displays including happy, excited, surprised, and calm facial expressions. Negative 

emotional expression blocks included both high and low arousal negative displays including 

sad, angry, and fearful facial expressions. To optimize power in testing our hypotheses, our 

analyses focused on the contrast of all emotion label relative to all emotion match 

conditions.

MRI acquisition—Participants who met eligibility criteria completed an fMRI scan. All 

scans were conducted on a 3 Tesla GE whole-body scanner (GE Healthcare Systems, 

Milwaukee, Wisconsin). Foam padding was used to minimize head movement. Two T2*-

sensitive gradient echo-planar pulse sequences were used for functional imaging (TR = 2000 

ms, TE = 30 ms, flip angle = 77°, matrix size = 70×70, 43 axial slices, FOV = 22.4 cm, 3 

mm thick), each run lasting 5 minutes and 54 seconds. An automated high-order shimming 

procedure was used to reduce B0 inhomogeneity. Additional high-resolution structural 

images were acquired with an axial 3D FSPGR sequence with T1 contrast (TR = 6.0 ms, TE 

= 2 ms, flip angle = 12°, matrix size = 256×256, 186 axial slices, FOV = 23 cm, 0.9 mm) for 

spatial registration.

fMRI data analysis—Analyses were conducted in FSL Version 6.0.0 (FMRIB’s Software 

Library, www.fmrib.ox.ac.uk/fsl), using FEAT (FMRI Expert Analysis Tool). The first four 

volumes of each participant’s functional scan were discarded to allow for stabilization of 

longitudinal magnetization. The remaining images were preprocessed using standardized 

procedures, including motion correction to the mean image using MCFLIRT (Motion 

Correction FMRIB’s Linear Image Registration Tool) (Jenkinson, Bannister, Brady, & 

Smith, 2002), slice-timing correction using Fourier-space time-series phase shifting, spatial 

smoothing using a Gaussian kernel of FWHM 5mm, grand-mean intensity normalization of 

the entire 4D dataset by a single multiplicative factor, and high pass temporal filtering 

(Gaussian-weighted least squares straight line fitting, with sigma=50.0s). Functional data 

were linearly registered to a common stereotaxic space by first registering the in-plane T2 

image to the T1-weighted structural image (6 degrees of freedom), transforming the T1-

weighted structural image to the MNI152 T1 brain, and then applying that deformation 

matrix and resampling to 2 mm resolution onto the functional images using FLIRT (12 

degrees of freedom; FMRIB’s Linear Image Registration Tool; Jenkinson, Bannister, Brady, 

& Smith, 2002; Jenkinson & Smith, 2001). All fMRI analyses were therefore performed in 

MNI space at 2 mm3 resolution.
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Time series statistical analysis was conducted using FILM with local autocorrelation 

correction (Woolrich, Ripley, Brady, & Smith, 2001). The voxel-wise general linear model 

(GLM) included regressors for each block condition (positive/match, positive/label, 

negative/match, negative/label, and shape match) as well as their temporal derivatives. 

Twelve motion correction parameters, as well as an indicator function to identify volumes as 

having excessive motion according to framewise displacement of 0.9mm, were included as 

covariates of non-interest. Participants with absolute motion > 3mm or > 20% of volumes 

with framewise displacement > 0.9mm were excluded from the analyses (n=35). Both 

within-subject runs were combined in a fixed-effects model for each participant, which 

averaged the contrast estimates over runs within participant by setting the random effects 

variance to zero in FLAME (FMRIB’s Local Analysis of Mixed Effects) (Beckmann, 

Jenkinson, & Smith, 2003; Woolrich, 2008; Woolrich, Behrens, Beckmann, Jenkinson, & 

Smith, 2004). All participants were then combined in a higher-level mixed effects model to 

investigate within and between-group differences. Prior to thresholding, we used a binarized 

gray matter mask (obtained from https://canlabweb.colorado.edu/wiki/doku.php/help/core/

brain_masks). Higher-level group analyses were conducted using FLAME (FMRIB’s Local 

Analysis of Mixed Effects State) stage 1 (Beckmann et al., 2003; Woolrich, 2008; Woolrich 

et al., 2004). Given significant age differences between males and females, we included age 

as a covariate in all analyses.

Whole-Brain Analyses: Effects of Sex and ELS—We examined the effects of sex and 

ELS severity on BOLD response during contrasts of interest in whole-brain analyses. 

Statistical images were thresholded using clusters determined by Z>2.3 and a corrected 

cluster significance threshold of α=.05 (Worsley, 2001).

Region of Interest Analysis of Amygdala—We also examined amygdala activation 

during implicit emotion regulation using a region-of-interest (ROI) analysis. A bilateral 

amygdala ROI was created using the Harvard-Oxford subcortical Atlas in FSL (25% 

threshold).

Psychophysiological Interaction (PPI) Analyses to Assess PFC-Amygdala 
Functional Connectivity—We used psychophysiological interaction (PPI) analyses to 

examine functional connectivity during implicit emotion regulation between the bilateral 

amygdala ROI and the two PFC regions that showed a significant interaction of ELS and sex 

(Friston et al., 1997; O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 2012). This 

analysis identifies regions in the brain that are correlated most strongly with the significant 

prefrontal ROIs during emotion label relative to emotion match conditions. For each PFC 

ROI, the GLM analysis was conducted in FSL and included regressors for each task 

condition, the ROI timeseries, and the interaction of the task contrast (emotion label vs. 

emotion match) and the ROI timeseries. Again, both within-subject runs were combined in a 

fixed-effects model for each participant, which averaged the contrast estimates over runs 

within participant by focusing the random effects variance to zero in FLAME (FMRIB’s 

Local Analysis of Mixed Effects; Beckmann et al., 2003; Woolrich, 2008; Woolrich et al., 

2004). All participants were then combined in a higher-level mixed effects model to 

investigate connectivity patterns across both groups. Higher-level group analyses were 
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conducted using FLAME (FMRIB’s Local Analysis of Mixed Effects State) stage 1 

(Beckmann et al., 2003; Woolrich, 2008; Woolrich et al., 2004). Statistic images were 

thresholded using clusters determined by Z>2.3 and a corrected cluster significance 

threshold of α=0.05 (Worsley, 2001). We then extracted parameter estimates from the 

bilateral amygdala ROI (as defined above) and used linear regression in SPSS (version 23) 

to examine the effect of sex, ELS, and the interaction between sex and ELS on connectivity 

patterns between bilateral amygdala and the two PFC regions that showed a significant 

interaction effect with sex and ELS severity, after covarying for chronological age. We used 

simple slope analyses to probe significant interactions (Aiken & West, 1991).

Demographics and Behavioral Analyses

All statistical analyses reported below were conducted with SPSS (version 23) using two-

tailed tests (α=.05). Independent samples t-tests or chi-squared tests were used to compare 

males and females on demographic variables, exposure to ELS severity, and scores on the 

YSR Internalizing Problems subscale. We conducted analyses of covariance (ANCOVAs) to 

compare task performance between males and females, after covarying for chronological 

age. Finally, we conducted correlational analyses to test whether ELS severity was 

associated with task performance.

Mediation Analyses

Based on our findings (described below), we tested whether BOLD responses to emotion 

label relative to match in regions that showed a significant interaction between ELS severity 

and sex mediated the association between ELS severity and YSR Internalizing scores in 

females. To do this, we used a single-step nonparametric resampling procedure (1,000 

samples with replacement) for testing indirect effects (Hayes, 2013). Mediation is supported 

when the indirect effect is statistically significant. To assess the indirect effect, we calculated 

95% confidence intervals (CIs) for coefficients; if the CI does not include zero, the indirect 

effect is considered to be statistically significant.

Results

Demographic and Clinical Characteristics

Participant demographic and clinical characteristics are presented in Table 1. As shown in 

this Table, boys and girls did not differ significantly in Tanner stage, medication use, 

handedness, race/ethnicity, or family income. As expected, however, given that we matched 

boys and girls on pubertal status, the two sexes did differ in chronological age 

(t(135)=5.115, p<.001).

Sex Differences in the Effects of ELS on Internalizing Problems

There were no significant sex differences in ELS severity or in internalizing problems in our 

sample (see Table 1). In examining the contributions of sex and ELS severity to self-reported 

internalizing problems after controlling for chronological age, a linear regression indicated 

that sex moderated the association between ELS severity and internalizing problems (B=.

903, SE=.306, t(131)=2.953, p=.004). Post-hoc simple slopes analyses within each sex 
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controlling for age indicated that ELS was significantly associated with internalizing 

problems in females (r(75)=.476, p<.001), but not in males (r(55)=.079, p=.559).

fMRI Task Behavioral Performance

We conducted analyses of covariance (ANCOVAs) to compare task performance between 

males and females, controlling for age. Males and females did not differ on task accuracy or 

response time (RT; Table 2). ELS severity was associated with longer RT to match emotions 

(r(134) =.174, p=.042). ELS severity was not associated with RT to label emotions r(134)=.

069, p=.425) or with task accuracy (|rs|<.048, ps>.576).

Whole-Brain Analysis: Main Effect of ELS

We conducted whole-brain correlational analyses to examine the effect of ELS severity, 

controlling for the effects of chronological age, on brain regions involved in implicit 

emotion regulation (i.e., labeling emotion faces versus matching emotion faces). These 

analyses yielded a significant cluster that was negatively correlated with ELS severity: right 

lateral occipital cortex/precuneus cortex (k=1088; peak voxel: x=18, y=−72, z=42; Z=3.95).

We also conducted a linear regression to examine the effect of ELS severity, controlling for 

the effects of chronological age, on activation in a bilateral amygdala ROI during implicit 

emotion regulation. There was no association between ELS severity and bilateral amygdala 

activation (r(134)=−.049, p=.575).

Whole-Brain Analysis: Main Effect of Sex

We conducted whole-brain t-tests to examine sex differences, controlling for the effects of 

chronological age, in regions involved in labeling emotion faces versus matching emotion 

faces. Direct comparisons between males and females yielded one significant cluster in left 

lingual gyrus in which males showed significantly greater activation than did females 

(k=580; peak voxel: x=−12, y=−70, z=−6; Z=3.38). There were no clusters in which females 

showed greater activation than did males.

We also conducted an analysis of covariance to examine sex differences in activation in a 

bilateral amygdala ROI, controlling for the effects of chronological age. There were no 

significant differences between males and females in amygdala activation when labeling 

emotion faces relative to matching emotion faces (F(1,134)=.034, p=.855).

Whole Brain Analysis: Interaction of ELS and Sex

Finally, we conducted a whole brain interaction model to examine whether the linear 

association between ELS severity and brain regions involved in labeling emotion faces 

versus matching emotion faces differed by sex, controlling for the effects of chronological 

age. This interaction model yielded three significant clusters (Figure 1). Compared with 

males, females showed a significantly greater association between ELS and activation in left 

vlPFC (k=606; peak voxel: x=−36, y=48, z=−4; Z=3.8), right dlPFC/vlPFC (k=784; peak 

voxel: x=44, y=44, z=26; Z=4.1) and bilateral intracalcarine cortex (k=1999; peak voxel: x=

−18, y=−72, z=12; Z=4.18).
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ROI Analysis of Amygdala: Interaction of ELS and Sex

We also conducted a linear regression to examine the interaction between ELS severity and 

sex in predicting bilateral amygdala ROI response to labeling emotion faces relative to 

matching emotion faces. This interaction was not significant (B=.488, SE=1.147, t(132)=.

426, p=.671).

Associations between Brain Regions and Internalizing Symptoms

We next examined the association between self-reported internalizing problems and 

parameter estimates extracted from the ROIs defined by the interaction of ELS and sex, 

including left vlPFC, right dlPFC/vlPFC, and bilateral intracalcarine cortex, separately for 

males and females (Figure 1). Females showed a positive association between all three ROIs 

and YSR Internalizing Problems total score, such that greater activation in left vlPFC, right 

dlPFC/vlPFC, and intracalcarine cortex was associated with greater internalizing problems 

(left vlPFC: r(78)=.237, p=.037; right dlPFC/vlPFC: r(78)=.232, p=.041; intracalcarine 

cortex: r(78)=.260, p=.021). In contrast, males showed a positive association between 

internalizing problems and activation only in intracalcarine cortex (intracalcarine cortex: 

r(58)=.320, p=.014); there was no significant relation in males between internalizing 

problems and activation in left vlPFC or in right dlPFC/vlPFC (left vlPFC: r(58)=−.070, p=.

601; right dlPFC/vlPFC: r(58)=.141, p=.293).

Mediation Analysis: Testing whether Brain Activation Mediates the Association between 
ELS Severity and Internalizing Symptoms in Females

Because there was a significant positive association between activation during implicit 

emotion regulation in left vlPFC, right dlPFC/vlPFC, and intracalcarine cortex and 

internalizing symptoms in females only, we tested whether activation in these regions 

mediated ELS severity and internalizing symptoms. Activation during implicit emotion 

regulation in these three regions did not mediate the association between ELS and 

internalizing problems in females; that is, the indirect effect did not differ significantly from 

zero (left vlPFC: point estimate=.010 [.018], 95% CI [−.011, .070]; right dlPFC/vlPFC: 

point estimate=.025 [.034], 95% CI [−.023, .117]; intracalcarine cortex: point estimate=.076 

[.081], 95% CI [−.057, .270]).

PPI Analysis to Assess PFC-Amygdala Functional Connectivity

We also conducted PPI analyses to examine task-dependent functional connectivity between 

the two prefrontal regions that showed a significant interaction of ELS severity and sex and 

the bilateral amygdala ROI. We tested the main effects of ELS severity and sex and their 

interaction on the strength of these connections during emotion label relative to emotion 

match conditions. The main effects of ELS and sex, and the interaction of ELS and sex, on 

the strength of connectivity between left vlPFC and bilateral amygdala were not significant. 

There was a significant main effect of ELS severity on the strength of connectivity between 

right dlPFC/vlPFC and bilateral amygdala (B=−.002, SE=.001, t(132)=−2.352, p=.020), 

such that greater ELS severity is associated with more negative amygdala–PFC connectivity 

for emotion label relative to emotion match conditions (Figure 2).
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Associations between PFC-Amygdala Functional Connectivity and Internalizing Symptoms

Functional connectivity between bilateral amygdala and left vlPFC and right dlPFC/vlPFC 

was not associated with internalizing symptoms across all participants (left vlPFC: r(133)=−.

138, p=.110; right dlPFC/vlPFC: r(133)=−.084, p=.334) or in each sex separately (males: 

left vlPFC: r(58), p=.776, right dlPFC/vlPFC: r(58)=.162, p=.225; females: left vlPFC: 

r(78)=−.181, p=.112, right dlPFC/vlPFC: r(78)=−.210, p=.065). Given null associations 

between functional connectivity and internalizing symptoms, we did not conduct follow-up 

mediation analyses.

Discussion

In a sample of puberty-matched early adolescent males and females, we documented 

differential associations between ELS severity and internalizing problems. Among girls, 

there was a significant association between ELS severity and internalizing problems, 

whereas among boys there was no such association. In attempting to understand the 

neurobiological bases of emerging sex differences in the effects of ELS on internalizing 

problems, we conducted whole-brain and a priori ROI analyses of brain activation while 

participants were performing an emotion label task designed to measure implicit emotion 

regulation. We found a significant interaction of ELS severity and sex in left vlPFC, right 

dlPFC/vlPFC, and bilateral intracalcarine cortex. Among girls, there was a positive 

association between ELS severity and activation in these regions during implicit emotion 

regulation, and as above, among boys there was no association between ELS severity and 

activation in these regions. Moreover, greater activation in these three regions was associated 

with higher levels of internalizing problems in girls. Nonetheless, this activation did not 

statistically mediate the association between ELS severity and internalizing problems. We 

also found a significant effect of ELS severity on right lateral occipital/precuneus cortex and 

a significant main effect of sex in left lingual gyrus during emotion label relative to emotion 

match conditions. Contrary to our hypothesis, ROI analyses yielded no significant main 

effects or interactions of ELS severity and sex on amygdala response during emotion label 

relative to emotion match conditions. When we examined patterns of PFC–amygdala 

functional connectivity, we found greater negative association between ELS severity and 

connectivity in both sexes combined between right dlPFC/vlPFC and bilateral amygdala 

during implicit emotion regulation; this did not mediate the relation between ELS and 

internalizing symptoms.

The vlPFC is largely involved in cognitive responses to negative emotions, including 

cognitive reappraisal and emotion regulation (Ochsner, Silvers, & Buhle, 2012) and thus 

plays a significant role in modulating negative affect (Forbes, Phillips, Silk, Ryan, & Dahl, 

2011; Phan et al., 2005). Although there are no known direct anatomical connections 

between vlPFC and the amygdala, vlPFC is posited to modulate amygdala response through 

activation in the medial PFC (Pessoa, 2010; Pessoa, Kastner, & Ungerleider, 2002; Silvers et 

al., 2016). Cognitive reappraisal has been associated with a negative correlation between 

vlPFC and amygdala activation (Silvers et al., 2016). The vlPFC does, however, share direct 

anatomical connections with the dlPFC; research suggests that both these regions support 

executive function and inhibitory processes (Pessoa, 2010; Pessoa et al., 2002). Given our 
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finding that greater vlPFC activation is associated with higher levels of ELS severity in early 

pubertal females, several possible interpretations can be generated. For example, heightened 

PFC activation in response to affective stimuli has been interpreted as reflecting 

immaturities in regulating an affective response (see Pfeifer & Blakemore (2012) for a 

review of this literature in adolescence). In this context, it is plausible that early pubertal 

females require additional neural engagement to label the facial emotion and, in turn, to 

downregulate amygdala response. Given the nonsignificant results of our mediation 

analyses, however, it is not clear how increased activation in these brain regions during this 

implicit emotion regulation task gives rise to heightened internalizing symptoms in early 

pubertal females. It is possible that increased neural recruitment at this point in early puberty 

contributes to maladaptive cognitive processes and risk for disorder in the future (i.e., late 

puberty when first depressive episodes commonly occur and sex differences in depressive 

symptoms peak); it is important that this possibility be examined longitudinally in future 

research.

One additional theoretical explanation for our finding that greater exposure to ELS is 

associated with greater recruitment of PFC in early pubertal females is the stress 

acceleration hypothesis. Integrating evidence from both animal and human studies of 

exposure to early adversity, the stress acceleration hypothesis posits that experiencing ELS 

leads to a faster maturation of neural circuits involved in emotional functioning, primarily 

the corticolimbic circuit. Callaghan and Tottenham (2016) argue that in the face of high 

levels of stress, accelerated development of neural circuitry involved in emotion functioning 

is adaptive in the short-term, as it facilitates earlier independence from a potentially unstable 

or harmful environment. Indeed, Gee et al. (2013) found a more mature pattern of 

amygdala–mPFC functional connectivity (i.e. more negative connectivity) in previously 

institutionalized children and adolescents relative to never-institutionalized children and 

adolescents, which was in turn associated with reduced separation anxiety in the previously 

institutionalized group only. However, this accelerated development could have later 

consequences and researchers have yet to explore this possibility longitudinally. Increasing 

age in adolescence has been associated with greater vlPFC activation both in an emotion 

regulation context and during passive viewing of fearful faces (McRae et al., 2012; 

Yurgelun-Todd & Killgore, 2006; see also Forbes, Phillips, Silk, Ryan, & Dahl, 2011). 

Given typical developmental increases in the recruitment of dorsal and lateral PFC (Cohen-

Gilbert & Thomas, 2013; Somerville, Hare, & Casey, 2011; Tottenham, Hare, & Casey, 

2011) in support of emotion regulation, the increased recruitment of left vlPFC and right 

dlPFC/vlPFC that we found in our sample of early adolescent females who were exposed to 

high levels of ELS may represent a more developmentally mature pattern of neural function. 

Indeed Gee et al. (2013) found heightened activation in the amygdala and in prefrontal and 

superior temporal gyrus when viewing fear faces in a sample of previously institutionalized 

children and adolescents, but no difference in mPFC activation between children with and 

without a history of adversity. When we examined functional connectivity of prefrontal ROIs 

that exhibited significant interactions of sex and ELS severity, we also found that ELS 

severity was associated with greater negative connectivity of right dlPFC/vlPFC and bilateral 

amygdala for emotion label relative to emotion match conditions. Although sex did not 
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moderate this association, we believe that this is nonetheless an important demonstration of 

the stress acceleration hypothesis.

Contrary to our hypothesis, we did not find significant effects of stress, sex, or their 

interaction on amygdala activation during implicit emotion regulation. Activation in the 

amygdala increases in response to salient (both positive and negative) stimuli in the 

environment; amygdala activation is posited to serve as a motivating signal to guide learning 

and memory for emotional material. Our nonsignificant findings for the effect of ELS on 

amygdala activation during implicit emotion regulation stand in contrast to a large body of 

work suggesting that individuals exposed to ELS show heightened amygdala reactivity to 

emotion face stimuli (including angry, happy, fearful, sad and neutral faces; Garrett et al., 

2012; Gee et al., 2013; Tottenham et al., 2011; Marusak et al., 2014; McCrory et al., 2013; 

Suzuki et al., 2014), as well as to negative images (McLaughlin et al., 2015). In 

understanding these discrepant findings, it is instructive to note that because of the block 

design of this task, we combined a range of emotional face stimuli, including happy, 

surprised, sad, angry, and fearful faces. The block design of the task prevents us from being 

able to assess reliably amygdala activation to each emotion. It is possible that the effects of 

ELS on amygdala activation are selective to fearful or angry faces or specific to task 

demands (i.e., passively attending to facial stimuli or performing a cognitive task involving 

emotional face stimuli). Future research should investigate the specificity of this effect 

across a range of emotional faces and task conditions.

Similarly, the majority of existing work examining the effects of ELS on amygdala 

activation to threat-related stimuli in adolescence uses an extreme-group approach to 

examine brain function in individuals exposed to severe and homogenous forms of ELS, 

including early institutional care and severe maltreatment, relative to healthy controls 

(McLaughlin et al., 2015; Mueller et al., 2010; Tottenham, Hare, Millner, et al., 2011). Less 

work has focused on the neurobioloical consequences of more commonly experienced forms 

of ELS such as those reported by the young participants in this study, including witnessing 

an injury or an accident and moving homes. It is possible that heightened amygdala 

reactivity as a consequence of ELS occurs only after exposure to extreme forms of early 

adversity or to specific types of ELS, such as exposure to severe threat or harmful input from 

caregivers early in development (Humphreys & Zeanah, 2015; McLaughlin, Sheridan, & 

Lambert, 2014; Teicher & Samson, 2016). The measure of ELS severity that we used in this 

study includes both more severe forms of ELS such as physical and sexual abuse, as well as 

less severe stressors. Thus, heightened amygdala reactivity may occur only after exposure to 

specific types of extreme ELS, a possibility that should be examined more explicitly in 

future research.

In summary, this is the first study to carefully assess sex differences in corticolimbic 

activation and connectivity during implicit emotion regulation in a unique sample of early 

pubertal youth as a function of exposure to ELS severity. In addition to the strengths of this 

investigation, there are three important limitations of this investigation. First, although we 

used careful coding systems to evaluate the cumulative effects of objectively rated ELS 

severity on corticolimbic development, we use the term ELS broadly to include multiple 

forms of adverse childhood experiences, ranging from maltreatment and neglect to 
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residential moves and exposure to marital disagreements. As we noted above, researchers 

have suggested that different forms of early adverse experiences have different 

psychobiological consequences (Humphreys & Zeanah, 2015; McLaughlin & Sheridan, 

2016; Teicher & Samson, 2016; Teicher, Samson, Anderson, & Ohashi, 2016). Future 

research should examine the differential effects of types of stress exposure, including 

exposure to threat and neglect, on neural functioning. Second, we did not examine effects of 

the timing of ELS severity or its chronicity in this study. Researchers have developed coding 

systems to describe more fully experiences of maltreatment; one notable example of this is 

the Maltreatment Classification System (MCS; Barnett, Manly & Cicchetti, 1993). Given 

our use of child-reported stressors and objectively-rated severity of stressors (as opposed to 

obtaining both child and parent reports, or reports from Child Protective Services for more 

severe stressors), we did not have sufficient details in our stress assessment to explore 

specific and differential effects of onset, chronicity, or developmental timing. It will be 

important in future research to elucidate how exposure to ELS at different points in 

development, as well as chronicity of adverse experiences, differentially affect corticolimbic 

circuitry, given that this system is still maturing through adulthood. In the present study, we 

defined ELS as any adverse experience prior to participating in the study, when adolescents 

were in early pubertal development. There is evidence in both human and rodent models, 

however, to suggest that the effects of adverse experiences on different neural systems 

depends on the individual’s developmental stage at the time of exposure (Andersen et al., 

2008; Andersen & Teicher, 2008; Lupien et al., 2009; Pechtel, Lyons-Ruth, Anderson, & 

Teicher, 2014). Finally, it is important to mention the limitations of cross-sectional 

investigations such as the present study, which precludes our ability to draw causal 

inferences. It will be important in future research to understand how corticolimbic 

development across puberty differs in males and females, particularly with respect to its 

temporal relation to ELS and risk for internalizing problems. Elucidating deviations from 

normative neural development in individuals who are exposed to ELS will lead to a better 

understanding of the etiology of internalizing problems and will highlight potential ways to 

intervene in the association between ELS and internalizing problems.

Despite these limitations, this study documents the effects of a wide range of ELS exposure 

on corticolimbic function in early puberty, and elucidates how sex moderates the effects of 

ELS on corticolimbic function. These results are important in refining models describing the 

impact of ELS on development, and highlight the need to study homogenous samples of 

well-characterized individuals at specific points in development. Understanding how ELS 

affects psychobiological development over time will facilitate the generation of a model 

describing the emergence of internalizing disorders, and will help to identify specific points 

or sensitive periods at which intervention may be most effective.
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Figure 1. 
A whole brain interaction model examining whether the linear association between ELS 

severity and brain regions involved in labeling emotion faces versus matching emotion faces 

differed by sex yielded three significant clusters in left vlPFC, right dlPFC/vlPFC and 

bilateral intracalcarine cortex. Activation maps are thresholded at Z>2.3 and corrected for 

multiple comparisons using a cluster-based p<.05. MNI coordinates are indicated for slice 

distance (in mm). Parameter estimates (showing the amount of signal change measured in 

arbitrary units) of BOLD signal response were extracted from each significant cluster and 

plotted in the bar graph. Parameter estimates were also related to internalizing problems in 

males and females separately. vlPFC = ventrolateral prefrontal cortex; dlPFC = dorsolateral 

prefrontal cortex.
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Figure 2. 
Strength of connectivity between right dlPFC/vlPFC and bilateral amygdala was negatively 

associated with ELS severity across males and females. vlPFC = ventrolateral prefrontal 

cortex; dlPFC = dorsolateral prefrontal cortex.
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Table 2

Task Performance

Males Females

Response Time (RT)

Emotion Label 1847.172 (276.215) 1857.447 (260.699) F(1,134)=.092, p=.762

Emotion Match 1950.548 (315.084) 2001.075 (295.768) F(1,134)=.174, p=.678

Accuracy (% Correct)

Emotion Label Accuracy 72.966 (15.246) 72.308 (12.714) F(1,134)=.102, p=.750

Emotion Match Accuracy 83.517 (14.74) 83.75 (14.83) F(1,134)=.576, p=.449

Standard deviations are presented in parentheses.
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