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Background.  Human pegiviruses (HPgV)—formerly known as hepatitis G virus or GB virus C (GBV-C)—are common sin-
gle-stranded RNA viruses that may have a beneficial impact on slowing HIV disease progression. The data on HPgV in resource-lim-
ited regions such as Sub-Saharan Africa are scarce. Thus, we conducted the first study of HPgV in Botswana as part of a natural 
history study of HIV subtype C disease progression.

Methods.  Plasma samples from 133 HIV-positive adults were evaluated for HPgV RNA, and the 5’UTR was sequenced to deter-
mine the HPgV genotype.

Results.  HPgV RNA was detected in 41 (30.8%) individuals. While the presence of HPgV RNA had no impact on baseline HIV 
viral load, a significant difference in baseline CD4 cell count was observed. HPgV genotypes were determined for 27 individuals and 
included 5 individuals (18.5%) with genotype 1 and 22 (81.5%) with genotype 5. Baseline CD4 cell counts were significantly higher 
for persons infected with HPgV genotype 5 compared with genotype 1.

Conclusions.  These data suggest that HPgV infection is common among HIV-positive individuals in Botswana and has a 
significant impact on CD4 cell count. This difference in CD4 cell count based on HPgV genotype suggests that HPgV genotype 
should be evaluated as a possible predictor of HIV disease progression and highlights the need for additional studies of this virus in 
resource-limited settings.
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The human pegivirus (HPgV)—originally described as hepatitis 
G virus or GB virus C (GBV-C)—is a positive-strand RNA virus 
that is distantly related to hepatitis C virus. HPgV has gained 
notoriety due to its possible beneficial impact on HIV disease pro-
gression. The prevalence of HPgV RNA ranges from 14% to 45% 
in HIV-positive persons (reviewed in [1]). Several groups have 
reported beneficial effects of HPgV viremia on HIV disease pro-
gression, as indicated by higher CD4 cell counts, lower HIV viral 
loads, and longer AIDS-free survival times [2–6]. In contrast, loss 
of HPgV RNA is associated with accelerated HIV disease [3, 7, 
8]. In vitro studies demonstrate that HIV replication is inhibited 
by HPgV co-infection in peripheral blood mononuclear cell cul-
tures [2]. Nevertheless, this beneficial effect of HPgV has not been 
observed in all studies [7–11]. Other studies conducted during the 
highly active antiretroviral therapy (HAART) era observed that a 

complete virologic response was more frequent in patients co-in-
fected with HPgV, independent of CD4 cell count and HIV RNA 
level, although this was not uniformly found [12–14].

Country-specific data on HPgV are available from 13 Sub-
Saharan African countries; the majority reported prevalence 
data and/or analysis of HPgV diversity [15]. Data regarding 
the impact of HPgV on HIV disease in this region are limited. 
Among HIV-positive women in Gambia, HPgV had no signif-
icant impact on HIV load, CD4 cell count, or mortality [16]. 
However, in HIV-positive South Africans, HPgV co-infection 
was associated with higher CD4 cell counts and lower HIV 
viral loads before HAART initiation, as well as faster viral load 
declines during HAART [17]. In Uganda, HIV/HPgV co-in-
fected participants experienced slower CD4 cell decline and 
increased survival compared with HIV-positive adults who 
were HPgV-negative [18]. These data suggest that the benefi-
cial effect of HPgV is not limited to the HIV subtypes predom-
inant in the United States and Western Europe. Therefore, in 
resource-limited settings in which many HIV-infected indi-
viduals may not have access to antiretroviral therapy, a better 
understanding of the anti-HIV effects of HPgV infection may 
ultimately result in novel therapeutic strategies. Botswana has 
one of the highest HIV prevalence rates in the world [19, 20]. 
Thus, we evaluated the impact of HPgV infection in a natural 
history cohort of HIV disease progression in Botswana.
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METHODS

Study Participants

In 2005, the Botsogo Study was established among HIV-infected 
antiretroviral therapy (ART)–naïve individuals in Gaborone, 
Botswana, to observe disease progression among individu-
als infected with HIV subtype C who did not qualify for ART 
according to the Botswana national guidelines (CD4+ T cell 
count ≥200 per mm3 and a World Health Organization clinical 
stage I or II) at the time of enrollment [21]. Exclusion criteria 
included any AIDS-defining illness requiring the initiation of 
HAART or previous ART use or exposure, except for use as part 
of the prevention of mother-to-child transmission program, 
the presence of an AIDS-related malignancy, patients requir-
ing chronic corticosteroid use, less than 3 months postpartum, 
and/or participation in any study that provides immune-mod-
ulating agents. During follow-up, participants visited clinics 
quarterly, including 1 month after enrollment. The study was 
approved by the Human Research Development Committee at 
the Botswana Ministry of Health and Wellness (protocol num-
ber HRDC #00667) and the Harvard School of Public Health’s 
Office of Human Research Administration (protocol number 
10366-127).

Detection of HPgV and Classification of HPgV Genotype

A secondary analysis of HPgV was performed in a conveni-
ence sampling of individuals enrolled in the Botsogo Study. 
As reported previously [22, 23], viral RNA was extracted from 
serum with the QIAmp Ultrasens Virus Kit (QIAGEN, Valencia, 
CA). HPgV RNA was detected by amplification of the 5’ 
untranslated region (UTR) with the antisense primer 5’ – ATG 
CCA CCC GCC CTC ACC CGA A – 3’ (nucleotides [nt] 494–
473 according to GenBank accession number AY196904) and 
the sense primer 5’ – AAA GGT GGT GGA TGG GTG ATG 
– 3’ (nt 67–87) via OneStep RT-PCR (QIAGEN). Amplification 
conditions were 50°C for 59 minutes, 10 minutes at 94°C, then 
35 cycles of 30 seconds at 94°C, 1 minute at 55°C, and 1 minute 
at 72°C, followed by 20 minutes at 72°C. First-round polymer-
ase chain reaction (PCR) products were used in nested PCR 
with the antisense primer 5’ – CCC CAC TGG TCY TTG YCA 
ACT C – 3’ (nt 362–341) and sense primer 5’ – AAT CCC GGT 
CAY AYT GGT AGC CAC T – 3’ (nt 107–131). After 35 cycles 
of 30 seconds at 94°C, 30 seconds at 55°C, and 1 minute at 72°C, 
PCR products were analyzed by agarose gel electrophoresis for 
the presence of a 256-nt band. Population-based sequencing of 
amplicons was conducted, and 5’UTR sequences were aligned 
with GenBank accession numbers U59540, U59543, U59549, 
and U59555 (genotype 1); HGU59518, D90600, HGU59534, 
and HGU59535 (genotype 2); U59538 and U59539 (geno-
type 3); AB018667 and AB021287 (genotype 4); AY949771, 
AF092894, LT009490, KC618398, KC618400, KC618401, 
AY032965, AF172508, and KP710606 (genotype 5); AB003292 
and AF177619 (genotype 6); and HQ331234 and HQ331235 

(genotype 7). Phylogenetic inference was performed using a 
Bayesian Markov chain Monte Carlo (MCMC) approach exe-
cuted in the Bayesian Evolutionary Analysis by Sampling Trees 
v1.8.4 [24] with an uncorrelated log-normal relaxed molecular 
clock, generalized time reversible model, and nucleotide site 
heterogeneity estimated with a gamma distribution. MCMC 
analysis was run for a chain length of 1 000 000 000. All effec-
tive sample sizes were >200, indicating sufficient sampling. The 
maximum clade credibility tree was selected from the poste-
rior tree distribution after a 10% burn-in using TreeAnnotator 
v1.8.4. HPgV sequences were deposited in GenBank using 
accession numbers MF398545–MF398571.

Assessment of Liver Injury

The aspartate aminotransferase (AST) to platelet ratio index 
(APRI) and fibrosis 4 (FIB-4) score represent 2 noninvasive 
indices of liver damage (reviewed in [25]). APRI is equal to 100 
* (AST/40) / platelet, while FIB-4 is calculated as age [years] × 
AST [IU/L] / √ (PLT [109/L] × (ALT [IU/L]). The APRI and 
FIB-4 indices were validated initially for hepatitis C virus and 
are now utilized during HIV mono-infection and chronic HBV 
as well [26–29].

Statistical Analysis

Sociodemographic and clinical data available at baseline were 
evaluated for the Botsogo Study. Fisher’s exact test was used 
to evaluate the difference in proportions for dichotomous var-
iables, and the Wilcoxon rank sum test was used to compare 
select categories. All statistical analyses were performed using 
STATA 14.1 (College Station, TX).

RESULTS

The Botsogo Study followed 436 participants for 5  years, of 
whom 356 (82%) were female [21]. The median age was 33 years 
(interquartile range [IQR], 27–39 years); 133 participants had 
baseline plasma available for the current analysis of HPgV. 
HPgV RNA was detectable in 41 (30.8%). HPgV-positive and 
HPgV-negative individuals did not differ with respect to age or 
gender (Table 1). ALT levels were lower for HPgV-positive com-
pared with HPgV-negative individuals (15.4 vs 16.5 cells/uL; 
P < .001), although AST levels were not significantly different.

While HIV is known to impact liver disease progression 
in the presence and absence of viral hepatitis, the effect of 
HPgV infection on liver disease is unknown. Using 2 nonin-
vasive indices of liver damage—APRI and FIB-4—there were 
no observed differences in liver disease between the 2 groups 
based on HPgV status. As shown in Figure 1A, the presence of 
HPgV RNA had no statistically significant impact on HIV viral 
loads. Baseline viral loads were 4.23 log10 copies/mL in HPgV-
positive individuals and 4.15 log10 copies/mL in HPgV-negative 
individuals. However, the median CD4 cell count was higher for 
HPgV-positive compared with HPgV-negative individuals (589 
cells/uL vs 501 cells/uL; P = .0173) (Figure 1B).
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HPgV genotypes were available for 27 individuals (65.9% 
of those with detectable HPgV RNA) and included 5 (18.5%) 
with genotype 1 and 22 (81.5%) with genotype 5 (Figure  2). 
Individuals with HPgV genotype 5 had significantly higher 
baseline CD4 cell counts than those with HPgV genotype 1 (617 
cells/uL vs 428 cells/uL; P = .0084) (Figure 3).

DISCUSSION

These data represent the first study of HPgV prevalence con-
ducted in Botswana. Data on HPgV are scarce in Sub-Saharan 
Africa and largely limited to small prevalence studies (reviewed 
in [15]). Cross-sectional studies conducted in South Africa 
demonstrate a prevalence range of 10.2% to 41.2% in blood 
donors, hemodialysis patients, transplant patients, hemophil-
iacs, or patients with chronic liver disease [30–34]. Thus, the 
current finding of an HPgV prevalence of 30.8% is in agreement 
with other studies conducted in southern Africa.

Multiple HPgV genotypes have been described at the popula-
tion level [35, 36]. Genotypes 1 and 2 are common throughout 
the Americas and northern and central Africa. Genotypes 3 and 
4 are present in Asia. Genotype 5 circulates within central and 

southern Africa. Genotype 6 has been identified in Southeast 
Asia, while a putative genotype 7 has only been reported in 
China [36]. This study is the first to evaluate HPgV genotypes 
in Botswana and suggests that genotype 5 is the predominant 
circulating genotype. HPgV genotype 5 has also been reported 
in Uganda, the Democratic Republic of the Congo, Tanzania, 
and Ethiopia [37–43]. In South Africa, HPgV genotype 5 is most 
common, although genotypes 1 and 2 have also been reported 
[34, 40–42, 44, 45]. However, several limitations require cautious 
interpretation of these findings, including a modest sample size 
and lack of genotype data for all HPgV-positive individuals. The 
lack of a statistically significant difference in HIV viral load by 
HPgV genotype could have been due to low sample size. As with 
other studies, there is no information about the mode of HPgV 
transmission or the timing of infection. While the correlation 
between HPgV RNA levels and CD4 cell count or HIV viral load 
was not evaluated in this analysis, previous studies have reported 
an inverse correlation between HPgV and HIV levels [4, 46].

The possible impact of distinct HPgV genotypes on HIV dis-
ease progression has been evaluated in other studies outside 
of Africa. For instance, Muerhoff et al. reported that CD4 cell 

Table 1.  Baseline Demographic and Clinical Data for HPgV-Positive and HPgV-Negative Individuals Enrolled in the Botsogo Study

HPgV-Positive
(n = 41)

HPgV-Negative
(n = 92) P Value

Age, median (Q1, Q3), y 34 (29, 41) 32 (28, 41) .444

Male gender, n (%) 10/23 (43.5) 13/23 (56.5)

Female gender, n (%) 31/110 (28.2) 79/110 (71.8) .213*

Platelets, 109/L 267 (227, 310) 252 (224, 303) .778

Hemoglobin, median (Q1, Q3), g/dL 12.8 (12.1, 13.7) 12.5 (11.3, 13.5) .306

ALT , median (Q1, Q3), U/L 15.4 (12.3, 21.5) 16.5 (11.1, 24.6)  <.001

AST, median (Q1, Q3), U/L 22.0 (16.5, 27.3) 23.0 (18.3, 28.5) .444

FIB-4 score, median (Q1, Q3) 0.71 (0.525, 0.931) 0.74 (0.58, 0.98) .589

APRI score, median (Q1, Q3) 0.19 (0.15, 0.29) 0.22 (0.18, 0.31) .342

The data represent medians (interquartile ranges in parentheses) except as noted. *Comparisons are made between the HPgV-positive and HPgV-negative groups using the Wilcoxon rank 
sum test, with the exception of male gender and HPgV status, for which the chi-square test was used.

Abbreviations: ALT, alanine aminotransferase; APRI, AST to platelet ratio index; AST, aspartate aminotransferase; FIB-4, fibrosis 4.
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Figure 1.  (A) Baseline HIV viral load (log10 copies/mL) and (B) CD4 cell count (cells/uL) were evaluated for human pegivirus (HPgV)–positive and HPgV-negative individuals. 
P values are shown for the Wilcoxon rank sum test.
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counts tended to be lower in HIV-positive patients co-infected 
with HPgV genotype 2a compared with those with HPgV gen-
otype 2b [47]. In US patients with HIV/HCV/HPgV triple 
infection, higher CD4 cell counts were associated with HPgV 
genotype 2 compared with genotype 1 [23]. Similar findings 
were observed in Brazil, although no difference in CD4 cell 
count based on HPgV genotype was reported in Australia 
[48, 49]. In Brazil, HPgV RNA levels also differed by genotype 
[50]. Unfortunately, studies designed to evaluate the poten-
tial influence of HPgV genotype on HIV disease progression 
have not been conducted in Africa to date. To date, only a sin-
gle functional study has included HPgV genotype 5 isolates. 
Xiang et  al. evaluated South African samples and found that 
genotype 1 and 5 isolates replicated in lymphocyte cultures, 
inhibited X4 and R5 HIV isolates, and induced the chemok-
ines RANTES/CCL5 and stromal-derived factor–1 (SDF-1) 
in vitro [34]. However, too few HPgV isolates were included 
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Figure  3.  Baseline CD4 cell count (cells/uL) was evaluated for HPgV-positive 
individuals with genotypes 1 and 5. Closed circles represent outliers. The P value 
shown is for the Wilcoxon rank sum test.

Figure 2.  Bayesian phylogenetic analysis of the 27 HPgV 5’UTR sequences from this study (indicated by a 6-digit study ID + a 2- to 3-digit sequence number) compared with 
GenBank references (indicated by their accession numbers and genotype). Full-length HPgV sequences with evidence of recombination are denoted by an asterisk. Posterior 
probability values >0.90 are indicated at tree nodes.
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to compare their ability to suppress HIV replication based on 
HPgV genotype.

The high prevalence of HPgV in Botswana, its beneficial 
impact on HIV disease progression, and the impact of HPgV 
genotype on CD4 cell count all suggest an immediate need to 
expand significantly the research on HPgV in resource-limited 
settings such as Sub-Saharan Africa.
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