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Abstract

X-chromosome inactivation (XCI) epigenetically silences transcription of an X chromosome in 

females; patterns of XCI are thought to be aberrant in women’s cancers, but are understudied due 

to statistical challenges. We develop a two-stage statistical framework to assess skewed XCI and 

evaluate gene-level patterns of XCI for an individual sample by integration of RNA sequence, 

copy number alteration, and genotype data. Our method relies on allele-specific expression (ASE) 

to directly measure XCI and does not rely on male samples or paired normal tissue for 

comparison. We model ASE using a two-component mixture of beta distributions, allowing 

estimation for a given sample of the degree of skewness (based on a composite likelihood ratio 

test) and the posterior probability that a given gene escapes XCI (using a Bayesian beta-binomial 
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mixture model). To illustrate the utility of our approach, we applied these methods to data from 

tumors of ovarian cancer patients. Among 99 patients, 45 tumors were informative for analysis and 

showed evidence of XCI skewed towards a particular parental chromosome. For 397 X-linked 

genes, we observed tumor XCI patterns largely consistent with previously identified consensus 

states based on multiple normal tissue types. However, 37 genes differed in XCI state between 

ovarian tumors and the consensus state; 17 genes aberrantly escaped XCI in ovarian tumors 

(including many oncogenes), whereas 20 genes were unexpectedly inactivated in ovarian tumors 

(including many tumor suppressor genes). These results provide evidence of the importance of 

XCI in ovarian cancer and demonstrate the utility of our two-stage analysis.
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INTRODUCTION

In females, X chromosome inactivation (XCI) is a developmentally regulated process that 

randomly silences transcription of one of the two homologous copies of the X chromosome, 

resulting in equivalent gene expression dosage with males[Ross, et al. 2005]. Unlike the 

active copy of the X chromosome (Xa), the inactive X (Xi) forms a compact heterochromatin 

structure known as the Barr body[Ross, et al. 2005]. This process is epigenetic in nature, 

dictated by up-regulation of the non-coding RNA encoded by XIST and resulting in cis-

acting transcriptional silencing of the chromosome by DNA hypermethylation and 

enrichment of histone modifications. However, an estimated 9%–14% of X-linked genes 

escape XCI and are transcribed on both chromosomes, even beyond the pseudo-autosomal 

regions[Cotton, et al. 2013]. Furthermore, X-linked genes can demonstrate variability in 

escape status across tissue types, as well as variability across individuals at the gene-

level[Cotton, et al. 2015]. Consequently, XCI may contribute to sexual dimorphism and 

female phenotypic diversity through the female-specific epigenetic regulation of X gene 

expression.

The plasticity of XCI may also play a role in disease, particularly women’s cancers. 

Although acquired genomic alterations are often of primary interest in tumorigenesis, recent 

studies have demonstrated that epigenetic changes also occur in the tumor environment, as 

reviewed in [Sharma, Kelly, & Jones 2010]. Relevant to XCI, Barr body loss has been 

observed in ovarian and breast cancer tumors[Barr & Moore 1957; Pageau, Hall, Ganesan, 

Livingston, & Lawrence 2007]. Although the phenomenon of Barr body loss has largely 

been attributed to structural alteration via concomitant deletion of the Xi and duplication of 

Xa, recent breast cell cancer line studies have indicated the epigenetic erosion of XCI and 

local reactivation of genetic transcription on the Xi[Chaligne, et al. 2015]. Aberrant de-

activation of X-linked tumor suppressors and/or re-activation of oncogenes may result in 

substantial dysregulation of cancer-related gene expression and contribute to tumor 

progression. In fact, it is thought that tumor suppressor genes that escape from XCI may 

contribute to the sex bias observed for some cancers[Dunford, et al. 2016]. Moreover, the X 

chromosome is enriched with hormone-related genes, and disruption of XCI could play a 
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role in hormonal carcinogenesis[Henderson & Feigelson 2000]. However, practical analysis 

of XCI is complicated by the complex biology, cell and tissue-specificity, and difficulty in 

obtaining direct measurements, and patterns of potential XCI aberrations in women’s 

cancers are currently understudied[Chaligne & Heard 2014].

While studying XCI in model organisms is possible via marking maternal and paternal 

chromosomes[Berletch, Yang, Xu, Carrel, & Disteche 2011], study in humans is more 

complicated. Outside of cancer, previous methods to study XCI at the gene level in humans 

have utilized rodent/human cell hybrids, total expression or allelic expression data derived 

from a microarray, or DNA methylation data[Carrel & Willard 2005; Cotton, et al. 2013; 

Cotton, et al. 2015]. Single cell sequencing studies have also begun to emerge[Tukiainen, et 

al. 2016]. These previous approaches have several limitations; for example, reliance on cell 

hybrids has limited clinical utility. Methods relying on methylation are problematic because 

it is an indirect method to measure XCI; DNA methylation is one epigenetic mechanism by 

which XIST silences expression of the Xi, but other epigenetic factors are also involved. The 

use of microarray-derived expression data represents a more direct approach to measure the 

genes that are expressed on the Xa; however, these data are subject to potential confounding 

due to batch effects. Previous studies have also utilized male samples as a comparison 

population[Cotton, et al. 2015; Sharp, et al. 2011]; however, female-specific diseases such as 

ovarian cancer necessitate analytical methods that are independent of male samples. 

Additionally, previous approaches do not provide an estimated probability of escape for a 

given gene for a given individual. Furthermore, previous methods cannot distinguish XCI 

from possible copy number deletions or loss of heterozygosity (LOH), where only a single 

copy of the X chromosome remains. Lastly, previous analyses have focused on a single 

genomic data type, whereas the process of XCI is inherently multi-omic, involving genetic, 

epigenetic, and expression components.

The quantification of allele-specific expression (ASE), the relative proportion of transcribed 

mRNA attributable to each homologous copy of each gene, has successfully been utilized in 

association studies by correlating proximal genetic variation with allelic imbalance[Sun 

2012]. Similar principles used to study these cis-acting expression quantitative trait loci on 

the autosomes can be extended to characterize gene-level patterns of XCI. For a given cell, 

mono-allelic expression suggests that the gene undergoes XCI and is not transcribed on the 

Xi; in contrast, evidence of balanced allelic expression of an X-linked gene indicates that the 

gene escapes XCI. In a tissue sample consisting of multiple cells, however, the ability to 

make this distinction is complicated by the potential for cellular heterogeneity. ASE from a 

tissue sample where the maternal chromosome is inactivated in some cells, but the paternal 

chromosome is inactivated in others will not be informative for gene-level XCI, as all genes 

will exhibit relatively balanced allelic expression regardless of XCI status. In contrast, if the 

Xi is heavily skewed toward a specific parental chromosome, discrimination between active 

and inactivated genes may be possible via patterns of ASE imbalance. In addition to XCI, 

ASE imbalance of X-linked genes may also manifest due to overlapping copy number 

alterations (CNAs); for instance, copy-neutral LOH would lead to only a single distinct 

allele being expressed within the impacted segment. Furthermore, an approach to study XCI 

in the tumor needs to be informed by expected XCI patterns in normal tissue. Consequently, 
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chromosome-wide studies of XCI require advanced statistical methods that take these 

properties into consideration.

To address these concerns, we have developed a novel integrative approach that utilizes 

allele-specific expression data to directly measure gene-level patterns of XCI for a given 

tumor sample, relative to expected patterns based on normal tissue, and does not require 

analogous male samples for comparison (Figure 1). Particularly, in this study, we develop 

the statistical framework for a two-stage approach for the evaluation of gene-level patterns 

of XCI that relies on the integration of tumor RNA sequence, CNA, and germline genotype 

data and apply these methods to study XCI tumor escape patterns in a collection of ovarian 

cancers. First, we leverage ASE to identify tumors with evidence of the Xi heavily skewed 

toward one parental chromosome to address potential confounding with XCI heterogeneity. 

We then estimate the tumor XCI escape status for each gene using baseline patterns 

informed by consensus states from multiple tissue types. Finally, we discuss our findings 

and highlight future research directions for investigating XCI in cancer using multi-omic 

applications.

METHODS

Study Participants

Study subjects included a total of N = 99 patients from the Mayo Clinic enrolled into an 

IRB-approved protocol within one year of diagnosis of pathologically confirmed primary 

invasive epithelial ovarian, fallopian tube, or primary peritoneal cancer between 2000 and 

2009 (Table S1). All tissues were snap frozen immediately following surgery and stored at 

−80°C as a source of RNA; a gynecologic oncologist reviewed each sample to confirm 

diagnosis and ensure at least 70% tumor content in tumor samples and the absence of tumor 

in normal samples. Peripheral blood drawn prior to chemotherapy was used as a source of 

germline DNA.

Tissue RNA Sequencing

RNA was sequenced on an Illumina HiSeq2000 with six samples per lane in two batches. 

For 15 samples, 500ng RNA was used to generate polyA libraries using the Illumina TruSeq 

kit, and samples were run with paired end 50bp reads. The remaining 84 samples had 1μg 

RNA treated with riboZero and libraries were made using the Illumina TruSeq Stranded 

Total RNA kit, and samples run with 100bp paired end reads.

Genotyping

Germline DNA was genotyped with Illumina Infinium Beadchips (for all cases, 

OncoArray-500k; additionally for 81 cases, Human610-Quad; for 18 cases, Omni2.5–8), 

and a subset of 80 participants were also genotyped using a customized Affymetrix array 

targeting rare variants[Winham, et al. 2016]. Genotypes were merged at each SNP using the 

most comprehensive array for variants assayed on multiple platforms. In addition, tumor 

DNA was genotyped using the Infinium BeadChip (OncoArray-500k) and was utilized for 

CNA analysis (described below).

Larson et al. Page 4

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Copy Number Aberration Segmentation Analysis

To address potential confounding via structural alterations, we applied OncoSNP[Yau, et al. 

2010] to call large segmental (low resolution) tumor CNAs using the OncoArray 500k data. 

We utilized the paired ‘tumor-normal’ mode, ‘intratumor’ and ‘stromal’ options, and 

assumed normal contamination levels of 0%–30%.

Quantifying Allele-Specific Expression

RNA sequence reads are ASE-informative only if they overlap one or more expressed 

heterozygous single nucleotide polymorphisms (eSNPs). First, germline genotypes were 

chromosomally pre-phased using SHAPEIT2 and imputed using IMPUTE2 with the 1000 

Genomes as a background set, resulting in two phased chromosome-wide haplotypes 

denoted (H1, H2). Imputed genotypes were retained based upon an allele dosage r2 > 0.25, 

minor allele frequency (MAF) ≥ 1%, and genotype posterior probability > 0.5. To quantify 

ASE per sample, haplotype-specific BAM files (one each for H1, H2) of the aligned RNA 

sequence reads were produced for each sample using the asSeq[Sun 2012] package in R 

3.0.2, and gene-level ASE read counts were generated using HTSeq version 0.5.3p9 (mode = 

intersection-nonempty). ASE data for genes that at least partially overlapped with genomic 

segments exhibiting structural alterations (duplications, deletions, and/or loss of 

heterozygosity) for a given sample were excluded. Batch effects were assessed by 

comparing per-sample median ASE across genotyping and RNA sequencing batches.

Statistical Model Assumptions

For a given sample with observed ASE data for G total X-linked genes, let (Yg1, Yg2) 

represent the bivariate vector of ASE reads mapped to the two phased X chromosome 

haplotypes (H1, H2) for gene g ∈ {1, …, G} and define Ng = Yg1 + Yg2. Let GE and GI 

respectively denote the sample-specific subsets of genes that are transcriptionally active (i.e., 

escaping) and inactive on the Xi. We assume Yg1 follows a binomial distribution with size 

Ng and success rate pg, such that

(1)

where we assume pg = 0.5 for all g ∈ GE regardless of XCI skewness, while pg ≠ 0.5 for g ∈ 
GI when the sample corresponds to skewed XCI. Due to random phase switch errors from 

statistical phasing of genotypes[Delaneau, Zagury, & Marchini 2013], we assume the Yg1 

reads mapped to H1 are overall equally likely to correspond to either parental chromosome 

across genes; we also assume Yg1 is subject to extra-binomial variation[Pickrell, et al. 2010]. 

To accommodate over-dispersion and unknown X homolog membership, we assume pg 

follows a mixture of beta distributions (Figure 2), such that
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(2)

where Beta(a, b) is defined as  and B(a, b) is the beta function. 

Note that fpg(p|g ∈ GE) reduces to Beta(aE, aE), unimodal and symmetric about 0.5. For 

modeling purposes, we define Yg = min(Yg1, Yg2) as the ASE of the least expressed allele 

and assume Yg follows a folded distribution[Porzio & Ragozini 2009]. Conditional on XCI 

gene set membership, the probability Yg = y for  can be defined as

(3)

where δ(y, Ng) = 1 if y = Ng − y and 0 otherwise, and (a, b) is equivalent to (aI, bI) or (aE, 

aE) for GI and GE, respectively. To simplify prior specification and improve interpretation, 

we adopt a mode-dispersion parameterization (m, θ) of the beta distribution Beta(a, b), with 

mode  and dispersion parameter θ = a + b, for m ∈ [0,0.5] and θ ≥ 2. Mode 

parameter  simplifies to a fixed constant for genes in GE while mI ≤ 0.5 

indicates skewed XCI. Note that mI can be interpreted as a measure of sample skewness.

Consensus XCI Status Across Multiple Tissues

To leverage prior knowledge of genes that escape XCI, we applied the results of Balaton et 

al.[Balaton, Cotton, & Brown 2015]. In brief, the authors combined analysis results across 

three prior studies [Carrel & Willard 2005; Cotton, et al. 2013; Cotton, et al. 2015] that 

examined XCI across 27 tissue types using multiple genomic approaches (cell hybrids, gene 

expression, DNA methylation). Based on the patterns of XCI across these three studies, 

genes were categorized into eight possible consensus states: escape, mostly escape, variable 

escape, mostly variable escape, subject, mostly subject, discordant, and no call (Table S2). 

As these studies were based on tissue types available in both sexes, XCI patterns for female-

specific tissues, including ovarian epithelium, were not available.

Stage 1: XCI Skewness Testing

ASE from a tissue sample will not be informative for gene-level XCI if the Xa is sufficiently 

heterogeneous in representation by maternal and paternal chromosomes, since all genes will 

exhibit relatively balanced allelic expression ratios (i.e., 0.5 = mE ≈ mI). In contrast, if the 

Xa is heavily skewed toward a specific parental chromosome, discrimination between escape 

and inactive genes may be possible via downstream model-based clustering. To identify 

samples demonstrating evidence of skewed XCI, we evaluate allelic expression ratio 

imbalances of the subset of genes a priori likely to be inactive on the Xi based upon 

consensus XCI gene status calls from Balaton et al.[Balaton, Cotton, & Brown 2015], 

denoted , which encompass genes declared to be “subject” or “mostly subject” to XCI. 
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We similarly define subset  for genes declared to be “escaping” or “mostly escaping” 

XCI. All remaining XCI consensus states (i.e., discordant, variable escape, mostly variable 

escape, no call) are treated equally as unknown.

Under the null condition of random (non-skewed) XCI, the distribution of ASE reads for 

genes  is comparable to genes , equivalent to testing H0: mI = 0.5 versus H1 : 

mI ≤ 0.5. For each sample, we define Y to be the vector of observed Yg for genes  and 

derive the maximum likelihood estimates (m̂I, θ̂I) using box-constrained numerical 

optimization of the log-likelihood function, ℓ(mI, θI; Y) = Σg ln(Pr(Yg; Ng, mI, θI)) under the 

null and alternative hypotheses, with Pr(Yg) = 1 for genes corresponding to Ng = 0. We then 

compute a likelihood ratio test (LRT) statistic Λ = −2(ℓ(m̂I, θÎ; Y) − ℓ(0.5, θ̂I; Y)). Since the 

null condition mI = 0.5 is on the boundary of the support for mI, we estimate the null 

distribution of Λ by computing Λb for b = 1, …, B parametric bootstrap samples under the 

fitted null model[Mclachlan 1987]. The LRT P-value is computed as .

Stage 2: XCI Escape Gene Analysis

Conditional on sample XCI skewness, we expect the two mixture components comprising 

fpg(p)to be identifiable, corresponding to the latent class categories of ‘inactive’ or ‘escape’. 

We opt for a Bayesian approach to inference and fit the model using Markov Chain Monte 

Carlo (MCMC) methods. We assume a flat Uniform(0,0.5) prior distribution on mI. We 

additionally assume θI ≥ θE by modeling , and set priors  and π(θI) to 

vague Gamma distributions. Finally, we left-truncate π(θE) at 3.0 to ensure unimodal 

distributions for pg.

Absent of any prior knowledge, we may define flat independent prior probabilities of a gene 

g ∈ GE, ηg, such that ηg = 0.5. Alternatively, we may leverage the consensus XCI states for 

the genes of interest to assign gene-specific informative priors. For our purposes, we 

assigned ‘subject’, ‘mostly subject’, ‘mostly escape’, and ‘escape’ statuses ηg values of 0.2, 

0.3, 0.7, and 0.8, respectively. All other consensus states were classified collectively as 

unknown and assigned a prior of ηg = 0.5. Under either prior definition, our measure of 

interest is the posterior probability of escape for gene g and sample j, PPjg = P(g ∈ GjE|Yj):

(4)

Data Simulations - Skewness

To generate realistic XCI ASE data, we based our simulations on autosomal ASE data from 

chromosome 22, derived from available normal tissue samples. These data provide 

biological distributions of allelic expression for genes not undergoing epigenetic silencing 

due to XCI (i.e. the null distribution of balanced allelic expression) and allow us to minimize 

distributional assumptions. Briefly, consider an autosomal gene with observed values of 

(Yg1, Yg2), (yg1, yg2), and ng = yg1 + yg2. To simulate data from a hypothetical gene g ∈ GE 
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with total ASE of , we sampled  reads from H1 and H2 at the corresponding 

proportions yg1/ng and yg2/ng. For g ∈ GI with some true skewness level mI, these 

proportions were respectively multiplied by  and  prior to sampling. Data were 

generated such that an observation (yg1, yg2) was randomly selected across all normal 

samples and genes that satisfied ng ≥ 100 for each simulated expression result.

To evaluate Type I error and power for the skewness test under a variety of conditions, we 

considered skewness values of m ∈ (0.1,0.2,0.3,0.4,0.5), ASE expression levels of Ng ∈ 
(10,20,30), and total number of genes evaluated L ∈ (10,20,30), such that mI = 0.5 defines 

the null condition of random XCI. For each unique simulation condition, a total of 1000 

replications were run, with all testing results declared significant at an α-level of 0.05. The 

number of parametric bootstrap samples B was fixed at 500 in all settings. Power for our 

skewness test is also dependent upon the accuracy of  when selecting a subset of genes for 

testing. In practice, GI and  may not be equivalent for a variety of reasons, including 

underlying XCI differences by tissue type as well as discordant XCI gene activity within a 

given sample. To additionally evaluate robustness to the accidental inclusion of escape genes 

in the skewness test due to sample-specific differences between  and GI, we considered 

contamination of 20% of the tested genes to be simulated as truly in GE. We evaluated power 

under the same conditions above for mI ∈ (0.1,0.2,0.3,0.4).

Data Simulations – Escape Gene Analysis

The same simulation principles as described above for skewness testing were applied to 

generate simulated XCI data for XCI escape gene analysis. To generate ASE profiles for 

analysis, we simulated data under conditions Ng ∈ (10,20,30) and mI ∈ (0.1,0.2,0.3). For a 

given sample, ASE data were generated for G = 100 hypothetical genes with a fixed XCI 

escape gene proportion of 15% (i.e., 15 genes in GE). All analyses were conducted using the 

Bayesian software Stan[Carpenter, et al. 2015] via the rstan package and the statistical 

software R 3.3.1, and convergence was evaluated using standard diagnostics and visual 

inspection of posterior samples from two independent chains of 2500 iterations after a burn-

in of 2500. PPg for each eligible gene was calculated based on equation (4) using Monte 

Carlo integration over the combined joint posterior sample of the model parameters.

To investigate the influence of informative priors, we considered two scenarios: lack and 

presence of discordant genes (i.e. genes inconsistent with their assumed prior state). For the 

former, we set the XCI consensus state for the genes in GE to be five each for ‘escape’, 

‘mostly escape’ and ‘unknown’. For the remaining 85 genes in GI, 30 were designated as 

‘subject’, 15 as ‘mostly subject’, and 40 as ‘unknown’. These proportions approximate those 

observed in the XCI consensus state data. To simulate the presence of discordant genes, we 

selected 5 ‘subject’ or ‘mostly subject’ genes to be truly in GE, and 5 ‘escape’ or ‘mostly 

escape’ genes to be truly in GI. Performance was evaluated based on the ability of PPg to 

discriminate between true XCI-E and XCI-S genes, estimated by classification accuracy, 

sensitivity, and specificity of escape gene identification using a threshold of PPjg > 0.5.
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Extensions to Multi-sample Analysis

In practice, many genes may have low expression for a given sample, and the expected 

number of informative XCI escape genes per sample could be small. To improve inference, 

we extend the defined model above in (1) and (2) to a multi-sample approach to borrow 

information across samples and genes, where GjI and GjE respectively represent sample-

specific active and inactive gene subsets for sample j ∈ 1, … J. To accommodate differences 

in XCI skewness across samples, we define

(5)

For XCI escape genes, we assume θjE~Gamma(aθE, bθE) and fpjg(p|g ∈ GjE) = Beta(0.5, 

θjE). For some prior probability that g ∈ GjE, ηg, we define the probability Yjg = y as

(6)

for Θ = {ηg, mjI, θjI, θjE}.

To leverage existing biological knowledge of patterns of XCI while simultaneously 

borrowing information across samples, we model ηg using probit regression. Let X denote a 

G × 4 design matrix where the columns of X are binary dummy variables for previously-

defined consensus XCI states of ‘subject’, ‘mostly subject’, ‘mostly escape’, and ‘escape’ 

status. We define Φ−1(η) = β0 + Xβ + ε, where  correspond to independent and 

identically distributed Gaussian random gene effects with variance  and Φ−1(·) is the 

inverse cumulative density function of the standard Gaussian distribution. The posterior 

probability of escape for gene g and sample j, PPjg = P(g ∈ GjE|Yj) can then be derived as:

Priors for mjI are independent flat Uniform(0,0.5) distributions. An improper prior is applied 

for σG and a vague independent Gaussian prior N(0,10) for β0. Priors on β preserve the 

ordinal nature of the consensus state categories, such that π(β1)~N(0,10), , 

and  for k = 2,3,4. Hyperpriors on aθE and bθE are informative priors of 

π(aθE)~Gamma(10,1) and π(bθE)~Gamma(10,10) based on estimates for autosomal genes 

of eight available normal tissue samples. We also assume θjI ≥ θjE by modeling 

 and  corresponding to a vague Gamma distribution.
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Application to Ovarian Cancer

To investigate patterns of XCI in ovarian cancer, we applied our two-stage XCI analytical 

methods to all ovarian tumor samples that met our inclusion criteria (Figure 3). Samples 

were declared significantly skewed at a Bonferroni-adjusted alpha level of 0.05, with the 

adjustment factor determined by the total number of tested samples. Skewed samples were 

then carried forward for genic XCI escape analyses. All samples with ≥ 5 genes in  and 

Ng ≥ 10 were considered to have sufficient data for XCI skewness testing. All observations 

corresponding to Njg ≥ 10 were considered to have sufficient gene-level information for 

genic XCI escape inference, and classification of XCI status of a given gene was determined 

via a simple decision criterion (i.e., g ∈ GjE if PPjg > 0.5).

Using our multi-sample approach, we again apply MCMC methods to fit the model to the 

data using two independent chains of 5000 iterations after a burn-in of 5000. To investigate 

the influence of the various prior definitions on the final results, we ran single-sample 

analyses using flat and informative priors in addition to our multi-sample approach.

RESULTS

Skewness Test Simulations

As anticipated, statistical power to detect skewed XCI samples was correlated with increased 

degree of skewness, increased ASE levels, and higher total number of genes tested (Table I). 

Our test also demonstrated conservative performance with respect to Type I error control, 

with estimated false positive proportions near 0.01 at the 0.05 α level. This is likely due to 

distributional differences between the assumed beta-binomial distribution and the true ASE 

count data, since we applied a parametric bootstrap approach to characterize the null 

distribution. However, overall statistical power was high for a large proportion of realistic 

data conditions, with nearly 100% power to detect instances of skewness when mI ≤ 0.2 

under the various levels of L and Ng under consideration. We also found our method to be 

robust to the accidental inclusion of true escape genes, particularly when mI was low (Table 

S3). We only observed a substantive loss in power for mI ≥ 0.3 when 20% of the included 

genes were simulated to be escaping XCI, with absolute power differences compared to our 

original simulations (without escape gene contamination) ranging from 0.08 to 0.27.

Escape Gene Analysis Simulations

Performance for escape gene classification was improved as level of skewness and number 

of reads increased (Table II). Accuracy for classifying escape genes was very high when the 

informative prior was correctly specified, ranging from 0.72 to 0.94 based on the number of 

reads and level of sample skewness. Furthermore, the method is robust to prior 

misspecification, with a reduction in accuracy of only 0.01–0.06 when an informative prior 

with 10% error was used. The method also performed well with an uninformative prior, 

especially for highly skewed samples with a large number of reads (accuracy=0.90, 

sensitivity=0.98, specificity=0.98). Performance was lower for samples with a low level of 

skewness (m=0.3), driven primarily by lower levels of specificity for escape gene detection.
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Data Application – Ovarian Cancer

We applied our two-stage approach to the ASE data estimated from the ovarian cancer 

dataset. We did not observe any differences in median ASE due to genotyping platform 

(p610=p2.5M=0.44, pexome=0.15) or RNAseq batch (p=0.99).

CNA filtering

As CNAs are common in ovarian cancer, a large number of tumor samples were excluded 

due to CNAs overlapping the genes in , the set of genes likely to be inactive on the Xi 

based on prior literature, and were excluded from further analysis. Tumors from 52 patients 

exhibited overlapping CNAs for all X-linked genes with expression data or lacked ASE data 

for genes in  after CNA segment filtering, and were excluded from further analysis 

(Figure 3). Many of these excluded samples exhibited aneuploidy, or short or long arm 

aberrations typical of ovarian cancer[Cheng, et al. 1996; Huang, et al. 2012].

Skewness testing

After filtering based on CNAs, 47 tumor samples were adequate for skewness testing, of 

which 45 demonstrated significantly skewed XCI after correction for multiple testing (Table 

S4). Maximum likelihood estimates (from skewness testing) and posterior medians (XCI 

escape analysis) of mjI were highly concordant across the tumor samples (Spearman ρ = 

0.858), and indicated trends toward extremely skewed XCI, with m̂jI < 0.05 for 34/45 

samples under both analyses (Figure 4).

Escape gene analysis

In total, G = 397 X chromosome genes were evaluated for XCI escape in at least one tumor 

sample, of which 318 (80.1%) corresponded to a priori information of escape status in X. 

The number of post-filtering ASE gene measurements analyzed per tumor sample ranged 

from 8 to 142 genes, with a median of 81, while the number of informative samples per gene 

ranged from 1 to 38 (median = 6). The final data were highly sparse due in combination to 

low total gene expression and/or extensive CNA overlap in remaining tumor samples, with a 

missingness rate of approximately 84% across all samples and genes. For all 16 samples 

with sufficient reads to evaluate XCI escape status for XIST, allelic expression ratios were 

close to zero (Supplemental Figure 1) and estimated posterior probabilities of escape 

suggested monoallelic expression as expected (PPjg < 0.05), providing a proof of principle 

for our methods. No genes resided in the pseudo-autosomal region after filtering, so could 

not be evaluated for expected high predicted probabilities of escape.

In comparing posterior escape probabilities across the three analyses, results were overall 

highly concordant (Table S5). The Spearman correlation coefficients of the PPjg across all 

samples and genes ranged from 0.61 to 0.86, with the multi-sample results and the flat prior 

single-sample results being the most correlated. Classifications of XCI escape status based 

upon a decision threshold of 0.50 were also highly similar, with Cohen’s kappa statistics 

ranging from 0.57 to 0.67. The multi-sample analysis tended to produce more extreme 

posterior escape probabilities, with approximately 60% of PPjg values < 0.01 or > 0.99. In 

contrast, the flat and informative prior single-sample analyses, respectively, corresponded to 

Larson et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15.5% and 40% of PPjg values that were similarly extreme. This is likely due to strong prior 

escape probabilities being inferred by consistent gene-level results across the analyzed 

samples in the multi-sample analysis. Incidentally, these strong priors would also require 

greater evidence to identify sporadic instances of discordant gene-level XCI. Results below 

are reported for the multi-sample analysis using an informative prior.

Concordance with XCI consensus states

Examination of results from the escape gene analysis revealed that genes in  demonstrated 

highly concordant escape analysis results across samples and were estimated to be subject to 

XCI; similarly, many genes in  were estimated to escape from XCI (Figure 5A). Example 

gene-level XCI escape analysis results comparing allelic expression ratios to PPjg for 38 

observations of the gene BGN, encoding biglycan, are presented in Figure 5B, which 

illustrates a high correlation between allelic expression ratio and posterior probability of 

escape; while BGN is thought to undergo XCI, many tumor samples showed evidence of 

escaping XCI while some tumor tissue samples exhibited mono-allelic expression (Table 

III). Similarly, Figure 5C shows high correlation between allelic expression ratios and PPjg 

for the gene USP9X, a putative tumor suppressor which is thought to escape XCI, but many 

tumor samples show evidence of silencing (Table IV). Figure 5D displays the posterior 

escape probabilities for all genes in  and  for which at least 10 samples were 

considered informative for XCI escape analyses (i.e., Njg ≥ 10), separated by XCI consensus 

states.

At the sample-level, individual samples also demonstrated high levels of concordance 

between the most likely genic escape status and the consensus states; on average, 10.3% of a 
priori ‘escape/mostly escape’ or ‘subject/mostly subject’ XCI genes were discordant for a 

given sample (Table S6). Of the discordant genes for a given sample, 58.4% were prior XCI 

escape genes now classified as subject to XCI.

Discordant genes

To isolate a high-confidence subset of genes with potentially aberrant XCI states across the 

tumor samples compared to the consensus state, we re-classified gene escape status under 

greater stringency (g ∈ GjE if PPjg >0.90, g ∈ GjI if PPjg < 0.10) and identified the subset of 

genes that corresponded to a gene in  or  and ≥1 tumor sample was predicted to be 

contrary to that state based on the stringent definition (i.e., PPjg > 0.90 and ). This 

analysis identified 37 discrepant genes, including 41 observations for 17 unique genes in 

with evidence of genes in tumor samples putatively escaping XCI (Table III). Review of the 

allele-specific read counts for these genes revealed allelic expression ratios near 0.5, and 5 

genes (CXorf36, SH3BGRL, ELF4, SLITRK4, TAZ) have previously been associated with 

oncogenic properties, and many of these genes reside on the ‘q arm’ of the X. The 

expression of many of these genes are positively correlated with XIST expression (p<0.05 

for all but DMD, ELF4, FHL1, and GABRE; data not shown). Additionally, 88 tumor 

observations of 20 unique genes corresponded to genes classified as subject to XCI in the 

tumor despite belonging to  (Table 4). 7 genes (KAL1, RBBP7, TCEANC, TRAPPC2, 

DDX3X, USP9X, KDM5C) have been previously associated with tumor suppression, and 
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two (CTPS2, RPS4X) have associations with treatment response or prognosis, and many of 

these genes reside on the ‘p arm’ of the X. The expression of all of these were positively 

associated with XIST expression (p<0.05; data not shown). The full gene-level results are 

presented in Table S7.

For many of the genes not classified into  or  based on consensus calls across multiple 

tissue types, our results suggest consistent XCI status in ovarian tumor tissue. For example, 

many genes previously classified as variable escape across multiple normal tissue types 

showed strong evidence of undergoing XCI in more than 10 ovarian tumor samples, such as 

HCFC1, MED14, PLS3, SHROOM2. Furthermore, genes previously labeled as ‘discordant’ 

across tissues (where the gene was consistently escaping in one tissue but not all tissues) 

also showed consistent evidence of undergoing XCI in more than 10 ovarian tumor samples, 

specifically DIAPH2, PIR, PNMA3, REPS2, and TBL1X. Lastly, among genes that 

previously had undetermined XCI status, we observed sufficient allele-specific expression in 

more than 10 ovarian tumor samples, providing evidence to determine XCI status in ovarian 

tissue. In particular, FAM127C and TMSB4X show evidence of undergoing XCI, whereas 

LOC389906 and TLR8 show evidence of escape from XCI and variable escape across 

ovarian tumor tissues, respectively.

DISCUSSION

We have developed a framework for the multi-omic analysis of XCI, have evaluated the 

performance of our method in simulation studies, and have applied our method to estimate 

genes that escape XCI in ovarian cancer. Integrating transcriptome sequence data, genome-

wide genotyping, and copy-number segmentation results, we also characterized 

transcriptional XCI patterns in ovarian carcinoma samples with X-linked allelic expression 

data. In general, we observed allelic expression patterns consistent with the consensus gene-

level XCI classifications, particularly genes subject to XCI. Across tumors, most samples 

corresponded to predicted active Xi transcription for only a small proportion of genes that 

were a priori anticipated to be inactive, indicative of sporadic XCI reactivation for discordant 

genes. Similarly, only a small proportion of genes that were a priori anticipated to escape 

XCI were predicted to be inactivated for most tumor samples, suggesting either deactivation 

of Xi, or possibly tissue-specific differences in XCI patterns.

The two-stage methods developed here to assess XCI skewness and gene-level XCI escape 

status for individual tumor samples have many advantages compared to previous approaches 

to estimate XCI escape genes. Previous approaches have been statistically simplistic, and 

have not utilized formal statistical tests or sophisticated probability models, and instead have 

implemented thresholds of allelic imbalance for escape status classification. We provide a 

statistical framework for modeling allele-specific expression data in the context of X 

chromosome inactivation based on known biological properties. Because most genes 

undergo silencing yet some escape inactivation, we assume a mixture distribution to account 

for the expected distributions under both of these states. Due to the over-dispersion typically 

present in expression data, we assume a beta-binomial model for this mixture distribution. 

Our framework is flexible, and could easily be extended as more is known about X 

chromosome biology; for example, ‘variable escape’ mixture state could be include, or the 
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choice of reference XCI status could be updated based on domain or tissue-specific 

knowledge. Furthermore, this method could be applied to any study of XCI with available 

RNAseq and genotype data, and is not limited to studies of ovarian cancer. For studies of 

phenotypes affecting both males and females, the method could be extended to include male 

samples, and future directions involve incorporating total expression data to improve 

inference.

Using this biologically-driven mixture distribution to model the XCI process and account for 

two possible XCI states, we first developed a formal statistical test for skewness (based on a 

likelihood ratio test), allowing us to determine not only which samples exhibit skewed XCI, 

but also quantify the level of that skewness for a given sample. Furthermore, our second 

stage escape gene analysis provides estimates of the posterior probability of escape for each 

gene, for each individual sample; such estimates have not been provided with other 

approaches, and can aid in follow-up studies to connect the degree of escape from XCI with 

clinical characteristics. Because the process of XCI occurs in multiple latent states (e.g., 

escape and silenced) where prior knowledge about these states is available for many genes 

and a posterior probability of state membership is desired, the Bayesian paradigm is a 

natural fit for XCI escape gene analysis, which has not previously been utilized.

Additionally, our integrative genomic approach based on multiple genomic data types uses a 

direct measure of XCI (allele-specific expression data), as opposed to indirect measures such 

as total expression data or methylation data, and can estimate the degree of XCI 

dysregulation independent from copy number alterations. Furthermore, the use of ASE data 

mitigates the presence of batch effects, as the proportion of reads mapping to a particular 

allele is not dependent on the total coverage. Most importantly, our approach does not rely 

on analogous male samples for comparison, which are not available for female-specific 

disorders (such as gynecological cancers)—the phenotypes for which study of XCI is often 

most relevant. While in this study we applied these methods to a study of ovarian cancer, 

these methods are not cancer-specific and would be applicable to any study of XCI in 

females.

We evaluated the performance of our proposed two-stage approach in a series of simulations 

studies. We examined the type I error and power of the stage 1 test for skewness, and 

observed that the type I error of the likelihood ratio test is somewhat conservative, likely due 

to the use of a bootstrap approximation. However, the conservative nature of the test is offset 

by the extremely high power of the approach to detect moderate to high levels of skewness 

(consistent with what was observed in the ovarian tumor data). We then evaluated the 

classification performance of our approach to detect genes that escape from XCI. Accuracy, 

sensitivity, and specificity were high, especially under the use of an informative prior 

derived from the consensus states published in prior literature, although the method was also 

robust to the choice of a flat prior or misspecification of an informative prior, with 

performance similar for highly skewed samples with even low coverage.

In the stage 1 test for skewness, we observed a large degree of skewed XCI across tumors. 

These results are consistent with the notion that the clonal nature of tumors would 

correspond to relative homogeneity of the Xi in the corresponding tissue sample, and 
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underscore the viability of exploring XCI patterns in tumor expression data. Although not 

evaluated here, a high degree of skewness may also be observed in normal ovarian tissue, 

because silencing of the inactive X occurs early in development at the time of 

gastrulation[van den Berg, et al. 2009], prior to the differentiation of Müllerian tissues. 

Furthermore, the high degree of tumor skewness is also consistent with observed increased 

levels of skewed XCI in lymphocytes of ovarian cancer patients compared to controls[Buller, 

Sood, Lallas, Buekers, & Skilling 1999; Lose, Duffy, Kay, Kedda, & Spurdle 2008], 

although subsequent studies have not observed this phenomenon in blood[Manoukian, et al. 

2013]. This also suggests a lack of patients in our study with substantial chromosome-wide 

reactivation of the inactive X.

In the stage 2 analysis of gene-level XCI escape status, we identified 17 genes escaping XCI 

contrary to consensus patterns of normal XCI, indicating potential somatic alterations to 

XCI status, many of which have noted associations with oncogenic properties in the 

literature. Expression of most of these genes is positively correlated with XIST expression. 

Oncogenes showing evidence of unexpected escape from XCI in ovarian tumors highlights 

their potential for involvement in ovarian tumor initiation and progression due to increased 

gene dosage. Four tumors indicated potential aberrant XCI escape of CXorf36, which is 

highly expressed in ovarian tissue and encodes a protein of unknown function. A recent 

study of renal carcinoma indicated upregulated expression and 5′ regional hypomethylation 

of CXorf36, while similar results were observed in a study of polycystic ovarian 

syndrome[Wang, et al. 2014]. SLITRK4 is a member of the SLITRK transmembrane protein 

family that modulate neurite outgrowth, and overexpression of SLITRK4 mRNA and protein 

products have been noted in primary uterine leiomyosarcomas[Davidson, et al. 2014]. ELF4, 

also known as MEF, is an ETS-family transcriptional activator that has been associated with 

both tumor suppression and oncogenic function, and ELF4 overexpression has been shown 

to increase the oncogenic properties of ovarian cancer cells[Yao, et al. 2007]. Similarly, 

SH3BGRL demonstrates oncogenic activity in mice but tumor suppressive behavior in 

humans[Wang, et al. 2015], with upregulation of SH3BGRL protein observed in triple-

negative breast cancer, a subtype of breast cancer with many biological, epidemiological and 

etiological similarities to high-grade serous ovarian cancer [Muniz Lino, et al. 2014]. 

Furthermore, tafazzin, encoded by TAZ, has been shown to promote the epithelial-

mesenchymal transition and progression and tumorigenesis of many cancer types, including 

ovarian cancer[Chen, Xie, Huang, & Yang 2016; Moroishi, Hansen, & Guan 2015].

In contrast to the above listed genes, some tumor samples indicated XCI silencing of 20 

escape genes, including many potential tumor suppressors. This high level of tumor 

suppressor genes that exhibit unanticipated silencing in ovarian tumors is noteworthy 

because of their potential for involvement in ovarian tumor initiation and progression due to 

reduced gene dosage. For instance, 6 tumors exhibited aberrant deactivation of KAL1, 

Kallman Syndrome sequence 1 gene, has been attributed tumor suppressive properties in 

studies of squamous cell carcinoma[Liu, Cao, Chen, Xu, & Zhang 2015] and hepatocellular 

carcinoma[Tanaka, et al. 2015]. RBBP7 protein RBBP7 (retinoblastoma binding protein 7) 

has been shown to have tumor suppressive properties by interacting with NKX6.1 in 

repressing vimentin and N-cadherin expression[Li, et al. 2016]. Notably, aberrant silencing 

of X-linked genes has previously been observed in studies of XCI in breast tumor cell 
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lines[Chaligne, et al. 2015], indicating epigenetic modification of XCI is possible in either 

direction and may act as a mechanism of disrupting tumor suppressor activity. TCEANC is 

thought to interact with BRCA1 in ovarian tumor suppression[Hill, et al. 2014], and this 

gene was aberrantly silenced in seven samples. TRAPPC2 protein, trafficking protein 

complex 2, also known as MIP-2A, may inhibit tumor proliferation and could be a potential 

drug target[Tokunaga, et al. 2013]. DDX3X, encoding DEAD-box helicase 3 X-linked, is a 

putative tumor suppressor, and has also been associated with escape from XCI that could 

contribute to male sex bias for some cancers[Bol, Xie, & Raman 2015; Dunford, et al. 

2016]. USP9X, encoding ubiquitin specific peptidase 9 X-linked, has been linked to tumor 

suppression in pancreatic and colorectal cancer[Jo, Kim, Yoo, & Lee 2016; Perez-Mancera, 

et al. 2012]. Interestingly, all eight samples evaluated for KDM5C showed evidence of 

inactivation. KDM5C encodes a histone lysine demethylase (KDM), and studies have 

suggested KDMs may act as both oncogenes and tumor suppressors for a variety of 

cancers[Cloos, Christensen, Agger, & Helin 2008]. KDM5C contributes to ovarian 

development[Sun, et al. 2016], is a candidate tumor suppressor in renal cancer[Dalgliesh, et 

al. 2010], and escape from XCI of KDM5C is also associated with cancer male 

bias[Dunford, et al. 2016].

Furthermore, tumor-specific profiles of XCI may not only provide additional information in 

identifying novel cancer genes in ovarian cancer, but could prove clinically useful in 

personalized medicine. Analyses of XIST expression in ovarian carcinoma tissues 

demonstrated significant correlations with chemotherapeutic response[Huang, et al. 2002]. 

In our study, two prior escape genes that showed evidence of silencing in the ovarian tumor 

(CTPS2 and RPS4X) have previously been shown to be associated with treatment response 

and prognosis. In cell lines, increased expression of CTPS2 was associated with reduced 

platinum sensitivity (carboplatin and cisplatin)[Gamazon, et al. 2011], and low expression of 

RPS4X was associated with poor prognosis in serous ovarian cancer [Tsofack, et al. 2013]. 

Furthermore, TRAPPC2 and DDX3X have also been identified as possible drug targets[Bol, 

Xie, & Raman 2015; Tokunaga, et al. 2013].

Interestingly, we also observed regional patterns regarding discrepant XCI states outside of 

the pseudo-autosomal regions. Many of the genes that indicated potential aberrant re-

activation compared to the consensus state (including those with oncogenic properties) are 

located on the short (p) arm of the X chromosome, whereas many of the genes showing 

evidence of aberrant silencing compared to the consensus state (including many with tumor 

suppressive properties) are located on the long (q) arm of the X chromosome. This suggests 

that re-activation may be more likely on the p arm and de-activation may be more common 

on the q-arm, although further studies are needed to validate this finding and determine its 

significance.

There may also be relevant genes of interest to ovarian cancer that do not correspond to 

active or inactive XCI consensus states. TBL1X, denoted “discordant” in Balaton et al., was 

recently identified by Chaligne et al.[Chaligne, et al. 2015] to aberrantly reactivate on the Xi 

in breast cancer cell line ZR-75-1, resulting in increased gene and protein expression dosage. 

In our analyses, 23 tumors had available TBLIX ASE data for XCI escape analysis, of which 

two corresponded to posterior escape probabilities > 0.99. These two observations of TBLIX 
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escaping XCI may be attributable to either somatic alteration in otherwise silenced Xi 

alleles, or normal inter-sample variability of XCI for TBLIX in ovarian epithelial cells. 

These findings highlight the importance of tissue-specific expectations of gene-level XCI 

status as well as paired tumor-normal tissue analyses in cancer studies of XCI, which may 

better inform likely instances of aberrant XCI activity. These analyses relied on consensus 

XCI states across multiple tissues for tumor comparisons, but due to potential tissue-

specificity of ovarian XCI patterns, future studies to examine XCI states in normal ovarian 

tissue are warranted.

In addition to lack of paired normal expression data to characterize normal ovarian XCI 

patterns, there are other limitations to this study. For instance, gene-level inference was 

limited to only a fraction of the total expressed X-linked genes due to the additional data 

burden of RNA-Seq reads overlapping eSNPs, and many genes corresponded to zero read 

counts for ASE. Additional integration of available total expression may make the inclusion 

of more genes in XCI analysis possible; however, analytical complications arise with the 

correlation structure of gene co-expression as well as substantial transcriptomic 

dysregulation in the tumor environment. Furthermore, the detection of skewed XCI samples 

is dependent upon the assumption that the XCI status of the majority of presumably inactive 

genes is preserved, as the skewness testing we conducted cannot discriminate between 

complete reactivation of the Xi and high cellular heterogeneity of XCI. Consequently, tumor 

samples that failed skewness testing may alternatively correspond to full epigenetic erosion 

of the Barr body. Moreover, allelic imbalance for a particular gene could be driven by factors 

unrelated to XCI, such as cis-acting regulatory genetic variation, and genes indicating 

potential aberrant deactivation on the Xi in tumor samples would require confirmation with 

paired normal tissue to exclude this possibility. Further integration of epigenetic markers, 

such as promoter DNA methylation and histone modifications, may provide supporting 

evidence of genic XCI status and strengthen multi-omic XCI analyses. Finally, our analysis 

strategies were dependent upon assumed normal copy number states for the assessed genes, 

and analytical methods that could incorporate the presence of CNAs and LOH would be of 

both biological and clinical interest. Future evaluation of XCI in cancer would especially 

benefit from single-cell analyses, which would be able to circumvent issues of uncertainty 

attributable to potential cellular homogeneity of Xi as well as normal tissue contamination.

CONCLUSIONS

We demonstrate a novel framework that shows dysregulation of XCI in individual ovarian 

tumors for a number of genes across the X chromosome. While general patterns of XCI in 

ovarian cancers were largely consistent with previously identified XCI consensus states, we 

identified discrepant genic XCI status classifications for a number of X-linked genes, 

including many with potential biological relevance to tumorigenesis and tumor suppression. 

These results provide initial evidence of potential somatic alteration to XCI in ovarian 

cancer and highlight an additional mechanism of gene expression dysregulation. Future 

studies using paired tumor-normal tissue analysis, multi-omic integration of epigenetic data, 

and single-cell sequencing may further elucidate the degree of susceptibility of XCI to 

dysregulation as well as its role in the risk, progression, and treatment resistance of ovarian 

cancer.
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Figure 1. 
Measuring XCI with allele expression. (A) For a given cell, either the maternal or paternal X 

is inactivated (top); for XCI Subject genes, only the active copy (Xa) is expressed, whereas 

for XCI Escape Genes, both the Xa and Xi are expressed (bottom). (B) In collections of cells 

under random XCI, the maternal Xa and paternal Xa are in equal proportions, so genes 

subject to XCI show no allelic expression imbalance compared to genes escaping XCI (top). 

Under skewed XCI, either the maternal Xa or paternal Xa is present in higher proportions, 

leading to allelic expression imbalance for genes subject to XCI (bottom).
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Figure 2. 
Depiction of beta-mixtures corresponding to underlying allelic expression ratios (AERs) for 

genes escaping XCI (red) or silenced by XCI (blue), with degree of skewness (mI) indicated 

by vertical black lines at the respective modes of the component symmetric beta 

distributions (dashed blue lines).
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Figure 3. 
Study Flowchart.
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Figure 4. 
Scatterplot of point estimates of mjI from the skewness test (x-axis) compared with posterior 

medians from the XCI escape analyses (y-axis) for all 45 skewed XCI ovarian samples.
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Figure 5. 
(A) Stacked barplots of XCI escape analysis results for tumor tissue samples, separated by 

XCI consensus status. ‘E’=escape, ‘VE’=variable escape, and ‘S’=subject, as in Balaton et 

al. (B) Scatterplot of AERs (x-axis) compared to XCI posterior escape probabilities (PPjg) 

for XCI subject gene BGN. Sizes of plotted points are indicative of total number of allele-

specific reads (Njg). (C) Scatterplot of AERs (x-axis) compared to XCI posterior escape 

probabilities (PPjg) for XCI escape gene USP9X. Sizes of plotted points are indicative of 

total number of allele-specific reads (Njg). (D) Tileplot of the posterior escape probabilities 

organized by XCI consensus state (Escape, Mostly Escape, Mostly Subject, Subject), with 

each column corresponding to a unique sample. Coloration is correspondent to calculated 
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PPjg, with gradient of cyan-to-magenta corresponding to the spectrum of low-to-high values 

of PPjg on the scale of 0.00 – 1.00. For samples where there were no data for a given gene, 

the tile is left blank.
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