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Abstract

Economic choice behavior entails the computation and comparison of subjective values. A central 

contribution of neuroeconomics has been to show that subjective values are represented explicitly 

at the neuronal level. With this result at hand, the field has increasingly focused on the difficult 

question of where in the brain and how exactly subjective values are compared to make a decision. 

Here we review a broad range of experimental and theoretical results suggesting that good-based 

decisions are generated in a neural circuit within the orbitofrontal cortex (OFC). The main lines of 

evidence supporting this proposal include the fact that goal-directed behavior is specifically 

disrupted by OFC lesions, the fact that different groups of neurons in this area encode the input 

and the output of the decision process, the fact that activity fluctuations in each of these cell 

groups correlate with choice variability, and the fact that these groups of neurons are 

computationally sufficient to generate decisions. Results from other brain regions are consistent 

with the idea that good-based decisions take place in OFC, and indicate that value signals inform a 

variety of mental functions. We also contrast the present proposal with other leading models for 

the neural mechanisms of economic decisions. Finally, we indicate open questions and suggest 

possible directions for future research.

Introduction

Neuroeconomics has been a lively area of research since the early 2000s. The ultimate goal 

of this field is to understand the brain mechanisms underlying economic choices. A core 

idea rooted in economic theory is that choosing entails two mental stages – values are first 

assigned to the available options and a decision is then made by comparing values. Thus for 

the first generation of studies, the central question was whether the construct of value is 

valid at the neural level. The most important result of that season was to demonstrate that 

subjective values are explicitly represented in the brain during choice behavior (Bartra et al., 

2013; Clithero and Rangel, 2014; O’Doherty, 2014; Padoa-Schioppa, 2011; Wallis, 2012). 
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With this fundamental result at hand, the field increasingly turned to the question of how 

subjective values are compared to make a decision.

In the past few years, different research groups have pursued different working hypotheses 

on the neural mechanisms generating the decision and on the brain regions participating in 

this process. Research foci have included the posterior parietal cortex (Glimcher et al., 2005; 

Louie et al., 2013), the hippocampus (Shadlen and Shohamy, 2016), and the role of visual 

attention (Hare et al., 2011; Krajbich et al., 2010). While these lines of investigation remain 

active, a series of recent breakthroughs links good-based decisions specifically to the activity 

of different neuronal populations in the OFC. The most notable findings have come from 

experiments in non-human primates and from computational modeling. Lesion studies 

dissociated the contribution of the OFC from that of neighboring ventromedial prefrontal 

cortex (vmPFC), while neurophysiology studies established strong links between the activity 

of neurons in the OFC and the generation of economic decisions. Complementing these 

results, computational models suggested that the groups of neurons identified in this area are 

necessary and sufficient to generate decisions. Taken together, these lines of evidence 

suggest that good-based decisions emerge from a neural circuit within the OFC. The purpose 

of this article is to review this growing literature, to discuss the proposed role of OFC in 

relation to other models of economic decision making, and to indicate open questions for 

future research.

The article is organized as follows. The first three sections review the notion of value in 

neuroeconomics, discuss anatomy and lesion studies implicating OFC in economic choices, 

and describe the neuronal representation of goods and values in this area. The next three 

sections describe the evidence supporting the proposal that good-based decisions (i.e., value 

comparisons) are generated within the OFC. One section reviews the possible contributions 

of other brain regions. Two other sections review other models of economic decisions, 

namely the distributed consensus model and the attentional drift-diffusion model. The 

concluding section summarizes the main points of the article and suggests directions for 

further investigation.

The notion of value in neuroeconomics

In the past decade, a large number of studies have provided direct or indirect evidence for an 

explicit neuronal representation of subjective values during economic choice behavior. Value 

signals have been found in numerous brain regions, most notably OFC and vmPFC 

(reviewed in (Bartra et al., 2013; Clithero and Rangel, 2014; O’Doherty, 2014; Padoa-

Schioppa, 2011; Wallis, 2012)). Without revisiting that literature in detail, we limit this 

section to a few considerations that are particularly relevant for the rest of this article.

Work on the neuronal representation of economic value has antecedents in economics and 

psychology. Classic economists such as Adam Smith and Jeremy Bentham rooted their 

economic theories in psychological concepts of pleasure and pain. Subsequent generations 

of economists, however, gradually emancipated their models from psychological constructs 

– a process that culminated with the formulation of neoclassic, or standard, economic theory 

(Niehans, 1990). Standard economics is (almost) completely divorced from psychology: the 

Padoa-Schioppa and Conen Page 2

Neuron. Author manuscript; available in PMC 2018 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



theory is entirely constructed on “revealed preferences” and it is agnostic about whether 

values (or utilities) are real psychological or neuronal entities. The standard theory limits 

itself to noting that, under well-defined conditions, choices are made “as if” based on 

assigned values (Kreps, 1990). In this conception, the notion of value is rather weak. Yet, 

economic theory offers a powerful framework to which behavioral and physiological facts 

can be securely anchored.

Other antecedents can be found in learning theory, an area of psychology focused on 

associative learning. Modern learning scholars distinguish between two concepts of value. 

The first, sometimes termed “cached value” (McDannald et al., 2014), drives relatively 

simple learning processes such as those described in classic behaviorism. Resulting 

behaviors, referred to as “habitual”, are well accounted for by mathematical models of 

reinforcement learning that define the “value” of a state as the total amount of reward the 

agent can expect to accumulate starting from that state (Rescorla and Wagner, 1972; Sutton 

and Barto, 1998). Importantly, cached values are learned as such and thus fixed. Hence, 

cached values cannot account for flexible behavior such as that observed in reinforcer 

devaluation experiments. In these experiments, subjects initially learn to perform a task to 

obtain a particular reward (e.g., a particular food). Prior to testing, experimental subjects 

undergo a devaluation procedure, for example through selective satiation of that food. As a 

result, during testing, the performance of experimental subjects is degraded compared to that 

of control subjects (Balleine and Dickinson, 1998; Colwill and Rescorla, 1985). The drop in 

performance following reinforcer devaluation implies that subjects compute the value of the 

reward on the fly at the time of testing. This value is not learned as such; it depends on the 

environmental conditions, including the motivational state of the animal. Behaviors affected 

by reinforcer devaluation are referred to as “goal-directed” (Balleine and Dickinson, 1998; 

Daw et al., 2005; McDannald et al., 2014).

The notion of value in neuroeconomics is rooted in economic concepts and is closely related 

to that defined for goal-directed behaviors. The focus of neuroeconomics is choice behavior 

(not learning). While a large number of natural behaviors can be construed as entailing a 

choice, scholars in neuroeconomics generally restrict the domain of interest to a class of 

choices defined somewhat intuitively. Specifically, it is generally understood that economic 

choices depend on subjective preferences (i.e., there is no intrinsically correct choice) and 

normally require some trade-off between desirable dimensions (e.g., quantity and 

probability). Furthermore, it is generally understood that economic choices entail two 

distinct mental processes: values are first assigned to the available options (offers) and a 

decision is then made by comparing these values (Kable and Glimcher, 2009; Padoa-

Schioppa, 2007; Rangel et al., 2008). With these premises, neuroeconomics experiments 

typically let subjects choose between different goods. In many cases, two offers vary on two 

dimensions. An operational measure for the relative subjective value of the goods is derived 

from the observed choice pattern, and specifically from the indifference point. For example, 

if a subject offered one apple versus two bananas chooses either good equally often, it can be 

said (assuming linearity) that the value of the apple equals 2 times the value of the banana. 

This measure of value is then used to interpret neural activity. Neuroeconomics studies 

typically define variables that neurons or neural populations might conceivably encode, such 

as the value of individual offers (offer value), the value of the chosen offer (chosen value), 
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the value of other offer (other value), the value difference (chosen value – other value), etc. 

These variables are used as regressors. If a particular value variable explains the neural 

activity better than other variables (including non-value variables), it can be concluded that 

the neural activity “encodes” or “represents” that value variable (Kable and Glimcher, 2007; 

Padoa-Schioppa and Assad, 2006; Plassmann et al., 2007). (For further discussion, see 

Padoa-Schioppa (2011).)

The relation between the notions of value in neuroeconomics and in goal-directed behavior 

emerges from an additional – and crucial – layer of analysis. If a neuron or a brain area 

really encodes economic value, then its activity should reflect the subjective nature of value. 

In particular, subjective values generally vary depending on the environmental conditions, 

including the motivational state of the agent. This variability should also be present in the 

neural signal. Hence the most compelling evidence for a neural representation of subjective 

values comes from studies that derived a neural measure for value and showed that the 

neural measure and the behavioral measure co-varied (Kable and Glimcher, 2007; Padoa-

Schioppa and Assad, 2006; Raghuraman and Padoa-Schioppa, 2014; Valentin et al., 2007). 

This condition – the identity between neural and behavioral measures of value in the face of 

individual and contextual variability – highlights the close relation between values driving 

economic choices and values driving goal-directed behaviors. (For further discussion on this 

issue, see O’Doherty (2014) and Padoa-Schioppa and Schoenbaum (2015).)

Anatomy and lesion studies

A clear link between economic choices and the OFC has historically been established by 

anatomy and lesion studies. The orbital surface of the frontal lobe includes a network of 

distinct but densely interconnected areas termed the “orbital network”. In this article, “OFC” 

refers to the central part of the orbital network, namely areas 13 m/l and 11l (Ongur and 

Price, 2000). Anatomically, OFC receives input from visual, somatosensory, olfactory and 

gustatory regions, from limbic regions, and from the dorsal raphe (Ongur and Price, 2000; 

Way et al., 2007). This pattern of connectivity seems ideally suited to compute subjective 

values, which require integrating sensory and motivational signals. Concurrently, OFC sends 

output to the lateral prefrontal cortex (Petrides and Pandya, 2006; Saleem et al., 2013), 

which projects widely to motor and premotor areas (Lu et al., 1994; Takada et al., 2004; 

Takahara et al., 2012). Thus OFC can influence a variety of mental functions including 

action planning and execution (Figure 1).

Starting with the classic case of Phineas Gage (Damasio et al., 1994), an extensive literature 

found that OFC dysfunction in human patients is associated with choice deficits in various 

domains (Cavedini et al., 2006; Heyman, 2009; Hodges, 2001; Rahman et al., 1999; Strauss 

et al., 2014; Volkow and Li, 2004). Notably, deficits following OFC lesions include 

increased violations of preference transitivity (Camille et al., 2011; Fellows and Farah, 

2007). In non-human primates and rodents, numerous studies found that OFC lesions 

impaired performance in goal-directed behaviors. More specifically, the effects of reinforcer 

devaluation was significantly reduced following OFC lesions (Gallagher et al., 1999; Gremel 

and Costa, 2013; Izquierdo et al., 2004; West et al., 2011). These results indicate that, absent 

the OFC, animals fail to compute subjective values on the fly.
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Building on this background, lesion studies conducted in recent years shed light on two key 

points. First, earlier work had not clarified whether the area most relevant to value 

computation is OFC proper or neighboring vmPFC. More recently, however, it was shown 

that goal-directed behavior is specifically impaired after lesions of OFC (Rudebeck and 

Murray, 2011) or the amygdala (Baxter et al., 2000; Wellman et al., 2005; West et al., 2012). 

In contrast, goal-directed behavior is not affected by lesions of vmPFC (area 14) (Rudebeck 

and Murray, 2011), lateral prefrontal cortex (Baxter et al., 2008, 2009), prelimbic cortex 

(Rhodes and Murray, 2013), or the hippocampus (Chudasama et al., 2008) (Figure 2). 

Second, earlier work had also indicated that OFC lesions disrupt performance in reversal 

learning tasks (McDannald et al., 2014), which seem conceptually different from value-

based behaviors. However, recent studies using excitotoxic agents (as opposed to aspiration) 

found that OFC lesions alone do not affect reversal learning, and that performance drops 

observed previously were likely due to the fact that lesions procured through aspiration 

damaged fibers of passage (white matter) located above the OFC (Rudebeck et al., 2013).

In summary, lesion studies indicate that OFC and the amygdala are the only regions strictly 

necessary for goal-directed behavior. At the same time, lesion studies do not clarify whether 

economic decisions (i.e., value comparisons) take place in either of these areas.

The representation of goods and values in OFC: flexible but stable

This section summarizes current notions on the neuronal encoding of goods and values in 

OFC, including ways in which this representation adapts and does-not-adapt to the 

behavioral context of choice.

Early neurophysiology work on the primate OFC had found neurons responding to the 

delivery of particular foods or juices in a way that depended on the motivational state of the 

animal or on the behavioral context (Rolls et al., 1989; Thorpe et al., 1983; Tremblay and 

Schultz, 1999). Other experiments found that the activity of the same neurons was 

modulated both by the quantity of juice and by the delay, in a way qualitatively consistent 

with time-discounted values (Roesch and Olson, 2005). Along similar lines, studies in other 

brain regions had found neuronal activity modulated by the type, quantity or probability of 

rewards (Barraclough et al., 2004; Kawagoe et al., 1998; McCoy and Platt, 2005; Platt and 

Glimcher, 1999). The first clear evidence for neurons encoding subjective values came from 

a study in which monkeys chose between different juices offered in variable amounts 

(Padoa-Schioppa and Assad, 2006). Choice patterns presented a quality/quantity trade-off, 

and the relative value of the two juices was inferred from the indifference point. The study 

identified three groups of neurons in the OFC: offer value cells encoding the value of one of 

the two juices, chosen juice cells encoding the binary choice outcome, and chosen value 
cells encoding the value of the chosen offer (Figure 3). This neuronal representation was 

found to be “good-based”, meaning that individual neurons were associated with different 

juice types and firing rates did not depend on the spatial contingencies of the choice task. 

Subsequent work built on these seminal findings.

As one contemplates economic choices made in different behavioral contexts, it becomes 

apparent that the neural circuit underlying this behavior must satisfy two competing 
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demands. On the one hand, the same subject might be faced with a potentially infinite 

variety of goods at different times, with values varying by many orders of magnitude. Hence, 

the neural circuit underlying economic choices must be flexible and adapt to the current 

circumstances. On the other hand, moving from one context to another, preferences should 

be (somewhat) consistent. Furthermore, the architecture of the neural circuit cannot change 

arbitrarily on a short time scale. Hence, the neural circuit underlying economic choices must 

be stable in the face of contextual variability. A number of studies in the past few years 

revealed several ways in which the neuronal representation of goods and values in OFC 

meets these two demands.

Two traits of offer value cells – menu invariance and range adaptation – make these neurons 

particularly well suited to support economic choices. Menu invariance is the property of 

neurons encoding the value of a particular good independently of the identity or value of the 

other good offered in alternative. It was observed in a study where monkeys chose between 

three juices (A, B, C) offered pairwise. Trials with the three juice pairs (A:B, B:C, C:A) 

were interleaved. The activity of OFC neurons associated with a particular juice (e.g., offer 
value B cells) did not depend on the other juice offered concurrently (Padoa-Schioppa and 

Assad, 2008). Menu invariance is closely related to a fundamental property of economic 

behavior, namely preference transitivity. By definition, preferences are transitive if for any 

three goods A, B and C, A>B and B>C imply A>C, where “>” means “is preferred to”. To 

appreciate the importance of preference transitivity, consider an individual who initially 

owns C and pays $1 to get B, then pays $1 to get A once he has B, then pays $1 to get C 

once he has A. After the last transaction, the individual owns C as he did initially, but has 

lost $3 in the process. Furthermore, the individual could loose any amount of money if he 

continued to repeat this catastrophic sequence of choices. Hence, a decision circuit that 

ensures preference transitivity fulfills a fundamental ecological demand. Importantly, if the 

value assigned to a good does not depend on the good offered in alternative, preferences are 

necessarily transitive (Grace, 1993; Tversky and Simonson, 1993). Thus if economic 

decisions are based on the activity of offer value cells in OFC, preference transitivity follows 

from the fact that this representation is menu invariant.

Range adaptation refers to the fact that the gain of value-encoding cells is inversely related 

to the range of values contextually available (Cox and Kable, 2014; Kobayashi et al., 2010; 

Padoa-Schioppa, 2009; Saez et al., 2017). Neuronal adaptation is a ubiquitous phenomenon 

observed in sensory, cognitive and motor regions. In OFC, range adaptation was observed in 

the juice choice experiments described above (Figure 3). In each session, the value offered 

for each juice varied from trial to trial within a fixed range, and value ranges varied across 

sessions. The tuning of offer value and chosen value cells was always linear. However, a 

population analysis revealed that tuning slopes were inversely proportional to the range of 

values available in any given session. Thus the same range of firing rates represented 

different value ranges in different sessions (Padoa-Schioppa, 2009). Prima facie, range 

adaptation seems to provide an efficient neuronal representation. However, uncorrected 

adaptation in offer value cells would induce arbitrary choice biases (Padoa-Schioppa and 

Rustichini, 2014). Subsequent experiments indicated that the decision circuit corrects for the 

effects of range adaptation, raising the question of whether adaptation is at all advantageous 

to the decision (Rustichini et al., in press). To address this fundamental question, Rustichini 
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et al (in press) recently developed a new theory of optimal coding in economic decisions. 

The core idea is that the representation of offer values is optimal if it ensures maximal 

expected payoff. Their study shows that for linear tuning functions corrected range 

adaptation is indeed optimal. Interestingly, linearity in itself was not optimal given the sets 

of offers presented in the experiments, indicating that linearity is a rigid, non-adapting 

property of offer value coding. However, it was shown that the benefits of range adaptation 

outweigh the cost of functional rigidity. In other words, a linear but range adapting 

representation of offer values ensures close-to-optimal behavioral performance.

In addition to menu invariance and range adaptation, there are other ways in which the 

representation of goods and values in OFC adapts and does-not-adapt to the behavioral 

context of choice. First, as noted above, choices may involve a large variety of different 

goods. To examine how the neuronal representation in OFC adjusts to this aspect of context 

variability, a recent study let monkeys choose between different pairs of juices in two blocks 

of trials (A:B, C:D design). The functional role of each neuron (offer value, chosen juice, 

chosen value) was assessed separately in each trial block. Neurons encoding the identity or 

the subjective value of particular goods in a given context “remapped” and became 

associated with different goods when the context changed. Concurrently, the functional role 

of individual cells and the overall organization of the decision circuit remained stable across 

contexts. In other words, offer value cells remained offer value cells, and two neurons 

supporting the same choice in one context also supported the same choice in different 

contexts (Xie and Padoa-Schioppa, 2016).

Second, it has often been noted that neurons in the OFC represent options and values in a 

good-based reference frame (Grattan and Glimcher, 2014; Padoa-Schioppa and Assad, 2006; 

Roesch and Olson, 2005). For example, neurons in the juice choice study described above 

(Figure 3) were associated with different juice types. Possible alternative reference frames 

included those in which cells are associated with different locations in space (location-

based), with different actions (action-based), or with different numbers (number-based). All 

of these representations would have been equally valid, but for reasons that are not well 

understood the actual reference frame was good-based. However, the reference frame in 

which OFC neurons represent options and values might in fact be flexible. Such a possibility 

first emerged from studies in which options were defined spatially and neuronal responses 

appeared to be spatial in nature ((Abe and Lee, 2011; Tsujimoto et al., 2009); for discussion, 

see (Padoa-Schioppa and Cai, 2011)). More recently, Blanchard et al (2015) used a choice 

task in which animals traded-off some amount of juice to obtain earlier information about 

the trial outcome. Options were presented sequentially, and the authors analyzed data in an 

order-based reference frame. Yet, some aspects of their data suggest that the neuronal might 

have been information-based (or color-based). (This scenario would partly explain their 

negative results on value coding.) In any case, the study points to the possibility that 

reference frames are flexible.

Neuronal remapping and changes of reference frames can be thought of as “discrete” forms 

of context adaptation (is contrast, range adaptation is “continuous”). The presence of such 

discrete forms of adaptation resonates with a recent proposal in learning theory, according to 

which OFC plays a role in building a representation of task “states”. This representation, or 
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cognitive map, would support the actual learning, which is thought to take place in other 

brain regions. By this account, OFC would be especially important when task states are only 

partly observable, as is the case in reinforcer devaluation experiments (Lopatina et al., 2017; 

Schuck et al., 2016; Wilson et al., 2014). The notion of state in learning theory is germane to 

that of reference frame discussed here in the sense that adopting a particular frame of 

reference to describe an economic choice is analogous to adopting a particular set of states 

to describe a learning task. In this respect, the experimental results described above support 

the cognitive map hypothesis. At the same time, the role played by OFC in economic choice 

seems broader than that discussed in relation to task states (Wilson et al., 2014). According 

to the present proposal, neurons in OFC do not merely build a reference frame to represent 

goods and values; different groups of cells in OFC, organized in a neural circuit, execute a 

decision process that takes as input the values of individual offers and returns the choice 

outcome. The next three sections describe the evidence supporting this view.

A neural circuit for economic decisions

The proposal that good-based decisions (i.e., value comparisons) take place within OFC 

originates from a simple observation: the three groups of neurons identified in this area 

(Figure 3) capture both the input (offer value) and the output (chosen juice, chosen value) of 

the decision process. This fact suggests that these groups of cells form a neural circuit in 

which decisions are generated. This working hypothesis has motivated a substantial research 

effort in the past few years. This and the following two sections review the most notable 

results emerging from this work.

An important proof of concept supporting the idea that good-based decisions are generated 

within the OFC came from computational modeling. Specifically, Rustichini and Padoa-

Schioppa (2015) showed that a biophysically realistic neural network comprised of the three 

groups of cells identified in OFC can generate binary economic decisions (Figure 4A). The 

model was adapted from a neural network previously used to describe the activity of parietal 

neurons during motion perception (Wang, 2002; Wong and Wang, 2006). The model is 

biophysically realistic in the sense that neurons are either excitatory or inhibitory and all the 

parameters (synaptic weights, time constants, etc.) have values derived from or compatible 

with experimental measures (Brunel and Wang, 2001). Remarkably, in addition to 

recapitulating the groups of cells identified in OFC, the model reproduces various 

experimental observations, including the behavioral phenomenon of choice hysteresis, the 

“predictive activity” of chosen juice cells, and the “activity overshooting” of chosen value 
cells (see below). Corroborating results were also obtained using a reduced version of the 

model (Hunt et al., 2012; Jocham et al., 2012).

The study described above, where monkeys chose between different juice pairs in 

subsequent trial blocks (Xie and Padoa-Schioppa, 2016) provided empirical support for a 

neural decision circuit within OFC. As already noted, neurons maintained their functional 

role but became associated to one of the juices available in each behavioral context 

(remapping). Perhaps most importantly, the composition of neuronal pools persisted across 

trial blocks. In other words, two neurons supporting the same (opposite) choice in one block 
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also supported the same (opposite) choice in the other block. These observations validate the 

understanding that different groups of neurons in OFC form a stable decision circuit.

Neuronal fluctuations and choice variability

The most important lines of evidence linking the activity of neurons in OFC to economic 

decisions come from the analysis of firing rates in relation to choice variability. Consider in 

a juice choice task offer types for which choices are split (e.g., 3B:1A in Figure 3C). What 

makes it so that the monkey chooses one particular juice on a given trial? Several 

phenomena link the choice made by the animal to trial-by-trial fluctuations in the activity of 

specific groups of cells.

First, taking an approach frequently used for perceptual decisions (Britten et al., 1992), the 

relation between fluctuations in the activity of offer value cells and the choice outcome can 

be quantified with an ROC analysis, which returns a “choice probability” (CP). In essence, 

CP is the probability with which an ideal observer would infer the choice outcome from the 

activity of one neuron. Interestingly, the CPs of offer value cells were found to be rather 

small (Figure 5A–C) (Conen and Padoa-Schioppa, 2015; Padoa-Schioppa, 2013) and 

substantially lower than the CPs typically measured for sensory neurons during perceptual 

decisions (Britten et al., 1996; Britten et al., 1992; Cohen and Newsome, 2009; Liu et al., 

2013; Nienborg and Cumming, 2006, 2014; Romo et al., 2002). Importantly, the CP of any 

given neuron reflects not only the cell’s contribution to the choice (read-out weight), but also 

the structure and intensity of correlated variability across the neuronal population (noise 

correlation) (Haefner et al., 2013; Shadlen et al., 1996). Thus a follow-up study examined 

correlations in neuronal variability in OFC (Conen and Padoa-Schioppa, 2015). It was found 

that noise correlations in this area are much lower than typically measured in sensory areas 

during perceptual decisions (Cohen and Kohn, 2011; Nienborg and Cumming, 2006; Smith 

and Kohn, 2008; Smith and Sommer, 2013; Zohary et al., 1994) but see (Ecker et al., 2014; 

Ecker et al., 2010). Furthermore, computer simulations showed that noise correlations 

measured in OFC, combined with a plausible read-out of offer value cells, reproduce the 

experimental measures of CPs. In other words, measures of noise correlations and measures 

of CPs taken together support the hypothesis that economic decisions are primarily based on 

the activity of offer value cells (Conen and Padoa-Schioppa, 2015).

Second, evidence linking activity fluctuations in offer value cells and choice variability also 

emerges from a recent study on optimal coding (Rustichini et al., in press). Consider the 

session in Figure 3B. The choice pattern may be described by a sigmoid function and the 

payoff is defined as the chosen value averaged across trials. Given a set of offers, the 

expected payoff is an increasing function of the sigmoid steepness or, equivalently, a 

decreasing function of choice variability. The theory developed by Rustichini et al (in press) 

links the choice outcome to the activity of offer value cells. In this construct, choice 

variability is due to a combination of neuronal noise, finite maximum firing rates, and non-

zero value ranges. The theory describes the conditions that maximize the expected payoff, 

and thus makes several predictions. First, offer value cells should undergo range adaptation. 

Second, choice variability should increase as a function of the offer values ranges. Data from 

two experiments confirmed this prediction (Figure 5D–F).

Padoa-Schioppa and Conen Page 9

Neuron. Author manuscript; available in PMC 2018 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Third, the choice made by the animal in split trials is correlated with the activity of chosen 
juice cells in the time window preceding the offer presentation (“predictive activity”) 

(Padoa-Schioppa, 2013). This phenomenon is interpreted with the understanding that the 

pre-offer activity of chosen juice cells represents the state of the neural circuit prior to the 

offer. If one of the two offer values dominates, the animal chooses it independently of the 

initial state. However, if the two offers are close in value, the initial state effectively imposes 

a choice bias (Figure 5G–I). Importantly, the predictive activity of chosen juice cells is 

closely related to the behavioral phenomenon of choice hysteresis – the fact that other things 

equal, monkeys tend to choose on any given trial the same juice chosen in the previous trial 

(Padoa-Schioppa, 2013). The two phenomena are closely related, because the predictive 

activity of chosen juice cells is almost entirely accounted for once the outcome of the 

previous trial is controlled for. In other words, the predictive activity of chosen juice cells is 

largely a tail activity from the previous trial. This last observation suggests that the 

predictive activity of chosen juice cells may be the cause underlying choice hysteresis, 

although this hypothesis awaits testing. As already noted, choice hysteresis and the 

predictive activity of chosen juice cells are naturally reproduced by the neural network 

model illustrated in Figure 4A (Bonaiuto et al., 2016; Rustichini and Padoa-Schioppa, 

2015).

The fact that choice variability is accounted for partly by activity fluctuations in offer value 
cells and partly by activity fluctuations in chosen juice cells suggests that both of these 

populations are part of the neural circuit generating economic decisions. Another 

phenomenon, termed “activity overshooting”, suggests that the decision circuit also includes 

chosen value cells. This phenomenon is observed by examining the activity of these neurons 

for given chosen value as a function of the other, non-chosen value. During the decision time 

window, firing rates present a transient overshooting reflecting the decision difficulty (Figure 

5J–L) (Padoa-Schioppa, 2013). If chosen value cells did not participate in the decision 

process (e.g., if their firing rates simply reflected the logical product of offer value and 

chosen juice), their activity would presumably depend only on the chosen value and not on 

the decision difficulty. Conversely, the activity overshooting may be accounted for if chosen 
value cells are within the decision circuit, as demonstrated by the neural network model in 

Figure 4A (Rustichini and Padoa-Schioppa, 2015).

Finally, a powerful way to assess the relation between neuronal activity and the decision 

process is to examine ensembles of many neurons over the course of individual trials. A 

significant step in this direction was recently taken by Rich and Wallis (2016). In their 

experiments, juice was made available to monkeys in four value levels. In training trials, 

only one value level was offered; in choice trials, the animals chose between two value 

levels. The authors recorded simultaneously from ensembles of ~10 neurons in OFC. In the 

analysis, they trained a linear classifier to decode the value level (the “state”) in training 

trials. Then they used the classifier to decode the state of the neuronal ensemble in choice 

trials. They thus obtained several interesting results. First, the decoded state alternated 

between the chosen and the unchosen value over the course of each trial, as though the 

neuronal ensemble reflected an internal deliberation (Figure 6AB). Second, behavioral 

response times correlated with the relative time spent by the neuronal ensemble in the 

unchosen versus chosen state (Figure 6C). Third, controlling for the offer value levels and 
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for the choice outcome, the authors compared trials in which the decision was quick versus 

deliberative, as revealed by the pattern of eye movements (Figure 6DE). Averaging decoded 

states across trials, they also obtained an estimate for how strongly the chosen value was 

represented compared to the unchosen value. They thus found that the strength of that 

representation was significantly higher in easy compared to difficult decisions (Figure 6F). 

Notably, this analysis did not attempt to classify cells in different groups. Nonetheless, the 

results support the understanding that decisions are formed within the OFC.

Computational models of goal-directed behavior

The neural network model described above (Figure 4A) indicates that the three groups of 

cells identified in OFC are sufficient to generate economic decisions. Other modeling work 

suggests that these groups of cells may also be necessary. In one study, Solway and 

Botvinick (2012) introduced a neuro-computational theory of goal-directed behavior. In their 

conception, each task is represented by a computational structure, the elements of which are 

states, actions, policies and rewards. Rewards are stochastic variables and the computational 

structure amounts to a probabilistic generative model for the rewards. In this formulation, 

goal-directed behavior involves the inversion of the generative model (i.e., an inverse 

probabilistic inference). The authors implemented their theory with a neural network. They 

then examined the activity of network units and the emerging performance in various tasks. 

For binary economic choices, the activity of network units closely resembled the firing rates 

of offer value and chosen value cells found in the OFC. Furthermore, the network 

reproduced the sigmoid shape of choice patterns and the relation between reaction time and 

value ratio (i.e., decision difficulty) measured in a food choice study in capuchin monkeys 

(Padoa-Schioppa et al., 2006).

Friedrich and Lengyel (2016) obtained similar results with a different approach. First, they 

showed that a biologically plausible neural network of spiking neurons can implement goal-

directed behavior by solving Bellman’s optimality equation. In their network, synaptic 

weights are learned given an internal model of the task. As a result, the network can 

calculate the optimal value of each option online. The authors trained the network in several 

tasks, including sequential decision tasks. They specifically examined the neuronal tuning 

curves and the performance of the network in a binary choice task and found striking 

similarities with the experimental measures. Specifically, the tuning of neurons in the 

network closely resembled that of offer value and chosen value cells in OFC. Furthermore, 

neuronal activity profiles depended on the offered values in subtle ways as indeed observed 

in experimental data (Padoa-Schioppa, 2013). Finally, the network reproduced the sigmoid 

shape of choice patterns and the relation between reaction times and value ratio observed at 

the behavioral level.

More recently, Song et al. (2017) took a very different route but ultimately reached similar 

conclusions. In essence, they trained a recurrent neural network (RNN) to perform various 

cognitive and value-based tasks. Importantly, the structure of their network was general and 

not designed to match any particular task (Figure 4B). The RNN consisted of two modules 

organized in an actor-critic architecture, namely a decision module trained to select actions 

that maximizes rewards and a value module that predicted future rewards and guides 
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learning. Most relevant here, the authors trained the RNN to perform binary economic 

choices, providing as teaching signals choice patterns similar to those of Figure 3. 

Remarkably, they found that after training the activity of units in the value module 

recapitulated the three groups of neurons identified in the primate OFC, namely offer value, 

chosen value and chosen juice. Similar results were also obtained by Zhang et al (2017).

Of course, each of the models discussed here builds on a particular set of assumptions. 

However, the fact that multiple computational models based on very different premises all 

recapitulate the findings illustrated in Figure 3 and other experimental results suggests that 

the three groups of neurons identified in OFC might be necessary – and not just sufficient – 

to generate good-based economic decisions.

Contributions of other brain regions

The previous sections emphasize the role of OFC but do not address whether or how other 

brain regions might participate in value computation, economic choice and choice-guided 

behavior. As often noted, value signals inform a variety of cognitive functions beyond 

economic choice, including emotion, autonomic responses, associative learning, perceptual 

attention and motor control. Thus not surprisingly, value signals have been identified in a 

large number of cortical and sub-cortical regions (for review see (O’Doherty, 2014; Padoa-

Schioppa, 2011; Schultz, 2015)). In this section we will focus specifically on recent results 

that shed light on the neural mechanisms underlying economic choices.

Outside OFC, the brain region most likely to host neural processes necessary for economic 

decisions is arguably the amygdala. Indeed, the amygdala is the only other brain area where 

lesions affect performance in reinforcer devaluation tasks – an effect observed in monkeys 

(Malkova et al., 1997; Rhodes and Murray, 2013; Wellman et al., 2005) and rodents 

(Ostlund and Balleine, 2008; Pickens et al., 2003; West et al., 2012). More specifically, 

Baxter et al (2000) found that performance in a reinforcer devaluation task depends on the 

interaction between OFC and the amygdala. Other studies found that amygdala lesions were 

effective before but not after devaluation, while OFC lesions were effective either before or 

after devaluation (Johnson et al., 2009; Ostlund and Balleine, 2008; Pickens et al., 2003; 

Wellman et al., 2005; West et al., 2011; West et al., 2012). Notably, amygdala and OFC are 

anatomically connected (Carmichael and Price, 1995a; Ghashghaei et al., 2007). Several 

neurophysiology studies in monkeys (Belova et al., 2007; Bermudez and Schultz, 2010; 

Grabenhorst et al., 2012; Paton et al., 2006; Sugase-Miyamoto and Richmond, 2005) and 

rodents (Roesch et al., 2010; Schoenbaum et al., 1998) found neuronal activity broadly 

consistent with a neuronal representation of goods and subjective values in the amygdala. 

However, these studies did not analyze the large number of value- and choice-related 

variables tested in studies of OFC (Padoa-Schioppa and Assad, 2006), and thus did not 

establish whether amygdala neurons encode the same variables identified in OFC and/or 

other variables. Also, the relation between neuronal activity in the amygdala and choice 

variability has not yet been examined at the level of granularity discussed above for the 

OFC. In conclusion, further work is necessary to ascertain how neurons in the amygdala 

contribute to economic decisions.
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Another strong candidate is the vmPFC. In this case, however, the evidence suggesting 

participation in economic decisions is not unanimous. On the one hand, the majority of 

functional imaging studies in humans have found subjective value signals in the vmPFC as 

opposed to the OFC (Bartra et al., 2013; Clithero and Rangel, 2014). In fact, some imaging 

studies found in this area neural signal correlated with the value difference (Boorman et al., 

2009; Lim et al., 2011), which in the framework of drift-diffusion models is the variable 

driving the decision (more on this below). On the other hand, single-cell recordings in non-

human primates indicate that the fraction of value-encoding neurons and the intensity of 

value modulations are lower in vmPFC than in OFC (Bouret and Richmond, 2010; Monosov 

and Hikosaka, 2012; Rich and Wallis, 2014; Strait et al., 2014). Furthermore, as discussed 

above, vmPFC lesions do not affect performance in goal-directed behavior (Rudebeck and 

Murray, 2011). The discrepancy between human imaging and primate neurophysiology 

studies is particularly striking because vmPFC and OFC are part of separate brain networks, 

with very different patterns of anatomical connectivity and scarce direct interconnections 

(Ongur et al., 2003). Possible explanations have been discussed elsewhere and include 

differences between species, differences in behavioral tasks, susceptibility artifacts in fMRI, 

and the heterogeneous nature of neuronal responses in OFC (Wallis, 2012). In addition to 

these considerations, it is worth noting that several imaging studies did in fact find value 

signals in the OFC (Arana et al., 2003; Chaudhry et al., 2009; Gottfried et al., 2003; Hare et 

al., 2008). These include in particular recent studies that focused on signals associated with 

individual goods or options (Howard et al., 2015; Howard and Kahnt, 2017; Klein-Flugge et 

al., 2013). Furthermore, a distinction recently drawn by San Galli et al. (2016) seems 

potentially revealing. In their experiments, monkeys had to squeeze a bar (3 effort levels) to 

obtain a juice reward (3 quantity levels). On any given trial, the animal could choose to 

perform or not perform the task. Unsurprisingly, the willingness to work varied as a function 

of the reward level, the effort level and the trial number (a proxy for fatigue and satiety). 

Above and beyond these parameters, the animal’s willingness to work also presented slow 

fluctuations across trials (e.g., the animal might be unwilling to work for 20 trials before re-

engaging in the task). The activity of neurons in vmPFC was weakly correlated with reward 

and effort levels, and more strongly correlated with the trial number. Most strikingly, firing 

rates were highly correlated with the willingness to work. In other words, neuronal activity 

in vmPFC seemed best explained in terms of the overall engagement in the task, as opposed 

to the values available for choice on any given trial (San Galli et al., 2016). Corroborating 

this perspective, vmPFC activity has also been linked to affective regulation (Delgado et al., 

2016), and vmPFC dysfunction has been implicated in mood disorders including major 

depression (Price and Drevets, 2010; Ressler and Mayberg, 2007). In summary, it remains 

unclear whether and how neurons in vmPFC contribute to economic decisions.

Parietal regions including the lateral intraparietal area have long been hypothesized to play a 

central role in economic choices (Glimcher et al., 2005; Kable and Glimcher, 2009). 

However, it has also long been noted that parietal lesions do not affect economic choices per 

se, and that value modulations measured in these areas might be attributed to perceptual 

attention and/or motor planning, as opposed to economic decision making (Leathers and 

Olson, 2012; Maunsell, 2004; Padoa-Schioppa, 2011). These issues have not been resolved.
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Neurophysiology studies in monkeys have found neurons encoding the chosen value in 

anterior cingulate cortex (ACC) (Cai and Padoa-Schioppa, 2012; Hosokawa et al., 2013; 

Kennerley and Wallis, 2009a), dorsal striatum and ventral striatum (Cai et al., 2011). 

However, these neurons become active later than neurons encoding the same variable in 

OFC, suggesting that these areas do not directly contribute to good-based decisions per se. 

Other work indicates that ACC lesions disrupt performance in tasks that include a learning 

component and where options are defined by actions (Kennerley et al., 2006; Rudebeck et 

al., 2008). Importantly, these observations may be explained, at least partly, with animals 

becoming less motivated to undertake physical effort, as opposed to lacking the capability to 

compare values (Walton et al., 2002; Walton et al., 2007).

Value signals were also found in ventro- and dorso-lateral prefrontal cortex (LPFCv and 

LPFCd) (Hosokawa et al., 2013; Kennerley and Wallis, 2009b; Kim et al., 2012; Kim et al., 

2008; Kim et al., 2009). Notably, the fact that most decisions ultimately lead to some action 

implies that choice outcomes must be transformed from the space of goods to the space of 

actions. OFC is not directly connected with motor regions (Carmichael and Price, 1995b), 

but there are anatomical projections from OFC to LPFCv, to LPFCd, to motor areas 

(Petrides and Pandya, 2006; Saleem et al., 2013; Takahara et al., 2012). A recent study 

showed that neurons in LPFCv and LPFCd reflect the good-to-action transformation. 

Furthermore, response latencies indicated that information about the choice outcome flowed 

from OFC to LPFCv to LPFCd (Cai and Padoa-Schioppa, 2014). Thus economic decisions 

taking place in the OFC might be implemented through this circuit (Figure 2).

In summary, our understanding of other brain regions is consistent with good-based 

decisions taking place within the OFC. At the same time, current notions do not exclude 

additional or alternative scenarios, and research on the role played by other cortical and sub-

cortical areas remains active.

The distributed-consensus model

The results reviewed so far suggest that economic decisions are generated in a neural circuit 

within the OFC. In the final section of the article, we will indicate aspects of this working 

hypothesis that await experimental testing. Before doing so, however, we shall discuss other 

models of economic decisions put forth in recent years. Two of them, viewed as the most 

serious contenders, are the distributed-consensus model (DCM, discussed in this section) 

and the attentional drift-diffusion model (ADDM, discussed in the next section).

Early models held that all decisions take place in premotor or motor regions through 

processes of action selection (Cisek, 2007; Glimcher et al., 2005). Subsequent work noted 

that neurons in areas involved in economic choices – most notably the OFC – represent 

options and values in a good-based reference frame. This observation led to the proposal that 

economic decisions take place in a good-based representation (Padoa-Schioppa, 2011). The 

notion of good-based decisions has been widely embraced, in the sense that most scholars 

agree that economic decisions can be dissociated from action planning (Cai and Padoa-

Schioppa, 2014; Cisek, 2012; Glimcher, 2011; Rushworth et al., 2012; Wunderlich et al., 

2010). At the same time, several authors have argued that motor systems likely participate in 
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some types of value-based decisions (Cisek, 2012; Glimcher, 2011; Klein-Flugge and 

Bestmann, 2012; Rushworth et al., 2012). The DCM is essentially a unifying model that 

includes good-based decisions and action-based decisions as special cases. Several variants 

of this idea have been put forth (Hunt et al., 2014; Hunt and Hayden, 2017; Pezzulo and 

Cisek, 2016). Here we discuss in particular the original proposal elaborated by Cisek (2012).

In his lucid analysis, Cisek starts by pointing out that many decisions “have nothing to do 

with actions”. He then summarizes three arguments suggesting the existence of action-based 

decisions. These include (i) the fact that neurons in sensorimotor regions represent multiple 

target locations before the decision is completed, (ii) the fact that many decisions are 

influenced by action costs, and (iii) the fact that decision variables – in particular, subjective 

values – often modulate neuronal activity in motor regions. Cisek recognizes that these 

arguments do not necessarily invalidate good-based decisions. In particular, motor systems 

might well contribute to the computation of action costs and/or action preparation, without 

participating in value comparison (i.e., the decision itself). Put more bluntly, current 

empirical evidence does not rule out that economic decisions are always made in an abstract 

(i.e., good-based) representation. However, Cisek argues that dissociating between abstract 

and motor representations is not desirable from an ecological perspective. He presents two 

lines of reasoning to support this contention. First, he notes that while experimental tasks 

typically present offers simultaneously, foraging in nature often involves decisions between 

exploiting a known and easily accessible resource and exploring unknown and more distant 

options. Second, he points out that many natural settings require fast decisions between 

options that vary over time (non-static), that depend on the behavioral context, and that are 

partly defined by their spatial configuration. He concludes that “the challenges of a 

continuously changing environment demanded the evolution of a functional architecture in 

which the mechanisms specifying possible actions and those which evaluate how to select 

between them can operate in parallel” (Cisek, 2012).

These considerations motivate a unifying model, the DCM, in which the decision process 

takes place at multiple levels in parallel. In this view, neurons in lower levels represent 

specific actions (leftward saccade, rightward saccade, etc.); neurons in higher levels 

represent goods (one apple, two bananas, etc.). The competition happens at each level, but 

different levels are reciprocally interconnected and thus influence each other’s dynamics. In 

some cases, for example when choosing between different actions that yield the same good, 

the competition entirely takes place at lower levels. In other cases, for example when 

choosing between different dishes on a restaurant menu, the competition entirely takes place 

at higher levels. More generally, the competition may take place at multiple levels at once. A 

decision outcome eventually emerges through a distributed consensus dominated by 

connections within and across levels (Cisek, 2012; Pezzulo and Cisek, 2016).

One obvious merit of the DCM is that it reconciles the evidence for good-based decisions 

with the popular belief that motor systems participate in the decision process. Furthermore, 

the DCM captures the intuition that brains are highly connected machines and that no brain 

area operates in complete isolation. With these premises, two sets of comments are in order.
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First, the lines of reasoning offered by Cisek (2012) to motivate the DCM are not quite 

conclusive. Specifically, the fact that natural foraging often involves exploration/exploitation 

decisions does not exclude that these decisions might take place in an abstract 

representation. Furthermore, while it is true that natural conditions often require making 

rapid decisions in non-static environments, the time scale of neuronal computations is short. 

Even for a case such as that discussed by Cisek – a lion chasing a dazzle of zebras that splits 

while fleeing – decisions could plausibly be made with a modular architecture. (In that 

particular case, behavior might also be driven by simple ad hoc heuristics.) More generally, 

different evolutionary considerations support different conclusions. For example, it is true 

that our brains are the product of evolution and that abstract representations seem less 

prevalent in lower species. However, it is also true that modular organizations are 

computationally more efficient (Pinker, 1997; Simon, 1962). Consequently, evolution likely 

favored modular organizations. Furthermore, for all the evolutionary continuity, species do 

vary from each other, and there are qualitative differences between primates and other 

species. For all these reasons, it seems difficult to derive any model of economic decision 

making on the basis of evolutionary considerations alone.

Second and most important, the proposal discussed in this article is in fact compatible with 

the DCM. Indeed, decisions taking place in OFC are good-based. The DCM, which includes 

good-based decisions as a particular case, is consistent with the hypothesis that such 

decisions are generated within OFC. If one accepts the DCM framework, it becomes 

interesting to ascertain under what circumstances exactly decisions are good-based, action-

based, or distributed. As emphasized by several authors, addressing this question is not easy 

because the fact that neural activity in a brain region is modulated by decision variables does 

not imply its participation in the decision process (Cisek, 2012; Klein-Flugge and Bestmann, 

2012). Furthermore, in tasks that dissociate offer presentation from the indication of the 

action associated with each offer, subjects make their decision shortly after the offer, and 

thus in goods space (Cai and Padoa-Schioppa, 2014; Wunderlich et al., 2010). Hence 

gathering unequivocal evidence for a direct participation of motor systems in economic 

decisions has proven difficult so far. Looking forward, one promising direction might be to 

design tasks that dissociate offer presentation and action indication while also varying action 

costs. Indeed, choices under variable action costs are viewed as most likely to directly 

engage the motor systems (Klein-Flugge et al., 2016; Rangel and Hare, 2010; Rushworth et 

al., 2012). Another way to test the DCM would be to use optogenetics to selectively excite 

or inhibit neurons associated to a particular action. If motor regions and the OFC are truly 

part of a distributed decision network, then manipulating the activity of neurons in motor 

regions should predictably affect the neuronal responses in the OFC, and also predictably 

affect behavioral measures.

In summary, it is uncontroversial that many economic decisions are good-based and 

dissociated from action planning. Conversely, the decision processes underlying action 

selection undoubtedly engage motor systems. The DCM is a unifying model that includes 

good-based decisions and pure action selection as special cases. In general, the DCM 

predicates that decisions take place at multiple levels in parallel. In this respect, the DCM 

reconciles a broad range of view points. However, it is not easy to assess exactly under what 

conditions motor systems do or do not participate in the decision process. Most importantly 
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for the present purposes, the DCM is consistent with the proposal that good-based decisions 

take place within the OFC.

The attentional drift-diffusion model

According to the ADDM, economic decisions take place through a drift-diffusion process 

guided by visual attention. During the decision, subjects switch the gaze or the attention 

focus back and forth between the options and, at any given time, a comparator increments a 

decision variable in favor of the attended option (Krajbich et al., 2010). The comparator is 

thought to reside in the dorso-medial prefrontal cortex (dmPFC) (Hare et al., 2011). The 

decision ends when the decision variable reaches some threshold.

The ADDM is attractive for several reasons. First, it captures the simple intuition that 

choosing any particular option requires some degree of mental focus on that option. For 

example, an individual seeking a means of transportation in the city is unlikely to choose an 

Uber car over a taxi if she is not aware of (or not thinking about) the existence of Uber cars. 

Second, drift-diffusion models generate joint distributions of accuracy and reaction times. If 

the model is sufficiently parameterized, the correspondence with empirical measures can be 

very good (Milosavljevic et al., 2010). Third, the ADDM formally unifies economic 

decisions with perceptual decisions, which have been often modeled as drift-diffusion 

processes (Bogacz et al., 2006; Brunton et al., 2013; Gold and Shadlen, 2001; Mazurek et 

al., 2003). However, a careful evaluation reveals that the empirical evidence supporting the 

ADDM is not conclusive and that several of the results presented in support of the model 

afford alternative interpretations.

At the behavioral level, the main argument for the ADDM comes from studies showing that 

aspects of the fixation data recorded in free viewing choice tasks – e.g., the fact that subjects 

tend to spend more time looking at the option they eventually choose – are well explained by 

the ADDM (Krajbich et al., 2010; Krajbich and Rangel, 2011). However, as the authors 

emphasize in their discussion, those data do not demonstrate a causal link between fixation 

and choice. In fact, causality might well be in the opposite direction, in the sense that 

subjects in any trial might tend to look longer at the good they are leaning towards. In one 

study, the same authors sought to address the issue of causality by forcing subjects to fixate 

specific goods at specific times (Lim et al., 2011). However, once gaze direction was 

mandated, the relation between fixation times and choices vanished almost completely. Thus 

a simple interpretation of their original results (Krajbich et al., 2010) is that the decision 

takes place through yet unknown mechanisms, and that fixation only introduces a relatively 

small bias.

Other behavioral observations seem to undermine the ADDM. In particular, considering 

decisions made in the absence of gaze shifts, it is hard to reconcile the ADDM with 

established notions on visual attention. Current views concur that visual attention can be 

entirely focused on one item or divided between two or more items, depending on the 

behavioral circumstances and the task demands. In the ADDM, subjects are assumed to 

focus their attention entirely on one item at any given time, and to switch the focus of 

attention multiple times in the course of a decision. Indeed, the ADDM is a random walk 
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where each step corresponds to an endogenously driven attentional switch. Thus the serial 

sampling assumption is not accessory in the model; it is a foundational aspect of the ADDM. 

The problem becomes apparent if one considers measures of decision times. An extensive 

literature in experimental psychology examined the dynamics of focused attention. Robust 

evidence indicates that whenever attention is shifted endogenously, shifts are slow, with 

dwell times typically in the order of 250–500 ms (Buschman and Kastner, 2015; Duncan et 

al., 1994; Fiebelkorn et al., 2013; Muller et al., 1998; Theeuwes et al., 2004; Ward et al., 

1996). Thus the ADDM should predict relatively slow decision times – it seems reasonable 

to estimate that the fastest decisions made through an ADDM would take 500 ms or more. In 

contrast, behavioral and physiological measures indicate that economic decisions can be 

significantly faster. For example Milosavljevic et al. (2010) found that subjects could 

reliably choose the preferred option with reaction times ranging 401–433 ms depending on 

the decision difficulty (note that these reaction times also included the time necessary for 

saccade initiation). Neuronal data from juice choice experiments are consistent with these 

findings (Figure 5G) (Padoa-Schioppa, 2013). These measures are at odds with serial 

sampling and suggest that subjects in these experiments divided their attention between the 

offers on display.

At the neuronal level, a case for the ADDM was made by Hare et al. (2011), who used a 

juice choice task nearly identical to that used in primate experiments (Figure 3A). In this 

study, the authors defined a neural network version of the ADDM (referred to as ADDMn), 

fitted its parameters based on the behavioral choices, derived an integrated measure for the 

total activity in the network (Mout), and used Mout as a regressor to interpret the BOLD 

signal. They found that neural activity in dorsomedial prefrontal cortex (dmPFC) and 

intraparietal sulcus (IPS) correlated with Mout, and they concluded that value comparisons 

take place in these regions through ADDM-like mechanisms. One weakness of this 

argument is that the correlation between aggregate measures does not necessarily imply a 

correspondence between the underlying elements. In other words, the fact that an aggregate 

measure derived from the model (Mout) provides good explanatory power for the aggregate 

neural activity in a particular region (the BOLD signal) does not imply that neurons in that 

region encoded the variables defined in the underlying model. Drawing such implication is 

particularly problematic if neuronal responses in the brain areas of interest are 

heterogeneous. Furthermore, Hare et al. (2011) indicate that their dmPFC corresponds in the 

macaque brain to the region recorded from by Kennerley et al. (2009), namely the dorsal 

bank of the cingulate sulcus (ACCd). One primate neurophysiology experiment focused on 

this very area (Cai and Padoa-Schioppa, 2012), and since the tasks were nearly identical, the 

data provide an ideal opportunity to test the claims of Hare et al. (2011) at the neuronal 

level. The analysis of firing rates examined a large number of variables that neurons in the 

ACCd could potentially encode, including all the variables defined in the ADDMn. The 

results clearly demonstrated that neurons in the ACCd do not encode the variables defined in 

the ADDMn (in particular, neither action values nor value differences were encoded at the 

neuronal level). Moreover, the activity of neurons in the ACCd encoding the choice outcome 

(chosen value, chosen juice) emerged too late to contribute to the decision (Cai and Padoa-

Schioppa, 2012). These same signals, measured in the same task, emerged in the OFC much 
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earlier than in ACCd. Thus the results seem to rule out that decisions in juice choice tasks 

are made through ADDM-like mechanisms taking place in dmPFC/ACCd.

Another argument put forth by Hare et al. (2011) is based on measures of effective 

connectivity (i.e., correlation). Specifically, they found increased effective connectivity 

between dmPFC and vmPFC during stimulus presentation and between dmPFC and motor 

cortex during the delay preceding the motor response. Interestingly, these effects are well 

explained by the neuronal results from ACCd (Cai and Padoa-Schioppa, 2012). Indeed, in 

the early part of the trial (1 s following the offer), the dominant variables encoded by 

neurons in the ACCd was the chosen value, which was also encoded in the OFC. This 

explains the increased correlation between these two areas at that time. Later in the trial, 

especially in the time window preceding the movement onset, many neurons in ACCd 

encoded the direction of the upcoming movement. This explains the correlation between 

ACCd and motor cortex at that time. Thus the effective connectivity patterns found by Hare 

et al. (2011) most likely capture real correlations in neuronal activity. However, these 

correlations do not imply that decisions are made in dmPFC/ACCd and they do not support 

the ADDM against alternative hypotheses.

It may be noted that the ADDM is primarily an algorithmic model. Thus one might wonder 

whether good-based decisions might take place within OFC but according to the ADDM. 

Two observations in the juice choice experiments described above seem to argue against this 

hypothesis. First, according to the ADDM, one population of neurons participating in the 

decision should encode the difference in value between the chosen option and the other, non-

chosen option. Contrary to this prediction, the variable value difference explained very few 

neuronal responses in OFC (Padoa-Schioppa and Assad, 2006). Second, as noted above, 

chosen juice cells encoded the binary choice outcome. If good-based decisions took place in 

OFC according to the ADDM, the activity of these cells should present a race-to-threshold 

profile similar to that observed in area LIP during perceptual decisions (Roitman and 

Shadlen, 2002). However, experimental measures did not match this prediction (Figure 5G) 

(Padoa-Schioppa, 2013).

In summary, the ADDM stipulates that economic decisions (i.e., value comparisons) result 

from random walks driven by endogenously driven shifts of visual attention or gaze. 

Empirical support for this hypothesis is weak at best. Importantly, the present considerations 

do not exclude that visual attention – or, more generally, mental focus – might play a role in 

the construction of subjective values. Some framing effects observed in behavioral 

economics are consistent with this view.

Conclusions

Economic choice behavior entails the computation and comparison of subjective values. A 

fundamental contribution of neuroeconomics has been to show that subjective values are 

represented explicitly at the neuronal level. With this result at hand, the field has 

increasingly focused on the question of where in the brain and how subjective values are 

compared to make a decision. This is not an easy question. For comparison, the equivalent 

questions apropos the visual perception of motion (perceptual decisions) have been pursued 
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for >25 years and remain areas of active research. In this article, we reviewed a large number 

of experimental and theoretical results suggesting that good-based decisions are generated in 

a neural circuit within the OFC. The main arguments supporting this proposal may be 

summarized as follows: (1) goal-directed behavior is specifically disrupted by OFC lesions; 

(2) during economic decisions different groups of cells in OFC encode the input and the 

output of the decision process; (3) menu invariance and range adaptation make offer value 
cells particularly well-suited to support economic decisions; (4) the three groups of neurons 

identified in OFC are computationally sufficient to generate decisions; (5) trial-by-trial 

fluctuations in the activity of each cell group correlates with aspects of choice variability. 

Importantly, value and choice signals are present in numerous other brain regions. However, 

current results are generally consistent with the idea that good-based decisions take place 

within the OFC.

These arguments notwithstanding, the proposal that decisions take place within the OFC 

remains a working hypothesis and several key questions should be addressed in future work. 

For one, research on the roles of other brain regions remains active. Also, crucial aspects of 

the neural circuit within the OFC are poorly understood. For example, it is not known 

whether the three groups of neurons identified in this area correspond to different 

morphologically identified cell types, whether they reside in different cortical layers, and 

whether neurons in each group are preferentially excitatory or inhibitory. The patterns of 

anatomical connectivity between different groups of cells are also unclear. Perhaps most 

importantly, causal links between neuronal activity in the OFC and the choice made on any 

particular trial has not yet been established. Of note, testing causality is technically 

challenging due to the lack of columnar organization in the OFC. Other open questions 

pertain to what we have termed discrete forms of context adaptation – that is, how the neural 

circuit reorganizes itself when choices involve different kinds of goods or options defined by 

different traits. By examining these issues, future research will shed further light on the 

neuronal mechanisms underlying economic decisions.
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Figure 1. 
Long-distance anatomical connections underlying economic choice behavior. Top and 

bottom panels represent the lateral and ventral view of a monkey brain, and the front of the 

brain is on the right. The figure summarizes the anatomical connections deemed the most 

relevant to the formation and implementation of economic decisions. Subjective values are 

computed by integrating input from sensory regions and limbic regions. Value comparison 

(the decision) takes place in OFC, where goods and values are represented independently of 

the spatial contingencies of the choice task (good-based representation). Ultimately, many 

decisions lead to some action. OFC projects to the lateral prefrontal cortex (LPFC), where 

neurons reflect a good-to-action transformation. In turn, LPFC projects to a variety of 

premotor and motor regions, where suitable movements are planned and controlled. The 

figure does not show other anatomical connections through which value signals computed in 

OFC likely inform other mental functions such as autonomic responses (connections with 

the medial network), emotion (projections to the amygdala), associative learning 

(projections to dopamine cells), perceptual attention (reciprocal projections to sensory 

regions), etc.
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Figure 2. 
Effects of brain lesions on goal-directed behavior. Performance in reinforcer devaluation 

tasks is disrupted following lesions of orbitofrontal cortex (OFC, area 13/11) and/or 

amygdala (AMY). In contrast, goal-directed behavior is not affected by lesions of 

ventromedial prefrontal cortex (vmPFC, area 14), lateral prefrontal cortex (LPFCd/v, area 

46d/v), prelimbic cortex (PLC, area 32) or the hippocampus (HC). Top, center and bottom 

panels represent the lateral, ventral and medial view of a monkey brain, respectively.
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Figure 3. 
Cell groups in orbitofrontal cortex. A. Task design. In each session, monkeys chose between 

two juices (labeled A and B, with A preferred) offered in variable amounts. Offers were 

represented by colored squares on a computer monitor and monkeys indicated their choice 

with a saccade. B–F. Cell groups. The five panels represent the activity of five neurons 

(recorded in different sessions). In each panel, different offer types are ranked on the x-axis 

by the ratio #B/#A, where #X is the quantity of juice X offered to the animal. Black dots 

represent the percent of trials in which the animal chose juice B (the choice pattern). A 

sigmoid fit provided a measure for the relative value of the juices. Red symbols represent the 

neuronal activity, with diamonds and circles indicating trials in which the animal chose juice 

A and juice B, respectively. Neurons on the top encode (B) the offer value A and (C) the 

offer value B. These variables captures the input of the decision process. Neurons on the 

bottom encode (D) the chosen juice A, (E) the chosen juice B and (F) the chosen value. 
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These variables capture the decision outcome. The fact that different neurons in OFC encode 

the input and the output of the decision suggests that economic decisions may be generated 

within a neural circuit formed by these groups of cells. Adapted from Padoa-Schioppa and 

Assad (2006) and Padoa-Schioppa (2013) with permission.
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Figure 4. 
Neuro-computational models of economic decisions. A. Biophysically realistic model based 

on pooled inhibition and recurrent excitation. In its extended form, the network includes 

2,000 spiking neurons (Wang, 2002). The model is biophysically realistic in the sense that 

neurons are either excitatory (80% of cells) or inhibitory (20% of cells) and all the 

parameters (synaptic weights, time constants, etc.) have values derived from or compatible 

with experimental measures (Brunel and Wang, 2001). A mean-field approximation reduces 

the network to a dynamic system of 11 variables (Wong and Wang, 2006). The model 

recapitulates the groups of cells identified in OFC and reproduces second-order phenomena 

such as choice hysteresis, the “predictive activity” of chosen juice cells and the “activity 

overshooting” of chosen value cells (Rustichini and Padoa-Schioppa, 2015). B. Recurrent 

neural network (Song et al., 2017). The network includes two modules organized in an actor-

critic architecture, namely a decision module trained to select actions that maximize rewards 

and a value module that predicts future rewards and guides learning. The authors trained the 

network to perform binary economic choices providing teaching signals similar to the choice 

patterns observed behaviorally (Figure 3). After training, the activity of units in the value 

module recapitulated the three groups of cells identified in OFC. Reproduced from Song et 

al. (2017) with permission.
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Figure 5. 
Neuronal fluctuations and choice variability. The figure illustrates four phenomena relating 

fluctuations in neuronal activity to choice variability. Each row refers to one phenomenon. In 

each row, the left panel illustrates experimental data, while two cartoons in the center and 

right panels depict the phenomenon in a conceptual way. In any given session, “easy” 

decisions are those for which the animal consistently chose the same juice; “split” decisions 

are those for which the animal alternated its choices between the two juices. A–C. Trial-by-

trial activity fluctuations in offer value cells. Panel (A) illustrates the average baseline-

subtracted activity profile of a large number of offer value cells. Only split trials were 

included in the figure. The two traces refer to trials in which the animal chose the juice 

encoded by the neurons (juice E, blue) and trials in which the animal chose the other juice 

(juice O, red). In the post-offer time window, the blue trace is mildly elevated compared to 

the red trace. Panel (B) depicts the idealized tuning of offer value B cells and panel (C) 

depicts two idealized choice patterns. In different trials, the neuronal activity might be 

slightly elevated (blue) or slightly depressed (red). This neuronal variability induces (or 

correlates with) a choice bias – when the activity of offer value cells is elevated, the choice 

pattern is displaced to the left. D-F. Range adaptation of offer value cells. In the juice choice 

experiments, the ranges of offer values varied from session to session. Each trace shown in 

panel (D) illustrates the average of a large number of offer value responses recorded with a 

specific value range. Panel (E) depicts the idealized tuning of offer value B cells recorded in 

two sessions, in which the range of offer values is small (blue) or large (red). Panel (F) 
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depicts two choice patterns presenting low (blue) and high (red) choice variability. Neuronal 

adaptation to larger ranges of offer values induces higher choice variability. Intuitively, this 

follows from the fact that neuronal firing rates are noisy. Furthermore, due to range 

adaptation, the same fluctuation in firing rate (δr) corresponds to a larger fluctuation in 

subjective value (δV) when the value range is large (red) compared to when it is small 

(blue). Finally, larger trial-by-trial fluctuations in the subjective value of any given offer 

induce higher choice variability. G-I. Predictive activity of chosen juice cells. Panel (G) 

illustrates the average baseline-subtracted activity profile of a large number of chosen juice 
cells. For each neuron, trials were divided in four groups depending on whether the animal 

chose the juice encoded by the cell (E, blue traces) or the other juice (O, red traces), and on 

whether decisions were easy (dark traces) or split (light traces). In split trials, the activity 

measured prior to the offer was correlated with the eventual decision of the animal (i.e., the 

light blue trace was elevated compared to the light red trace). Panel (H) depicts the idealize 

tuning of chosen juice B cells in the pre-offer time window. Cells are not tuned, but in 

different trials the neuronal activity might be slightly elevated (blue) or slightly depressed 

(red). This variability induces a choice bias (panel (I)). J–L. Overshooting of chosen value 
cells. Panel (J) illustrates the average baseline-subtracted activity profile of a large number 

of chosen value cells. The figure includes only trials in which the animal chose 1A (fixed 

chosen value). Trials were divided in three groups depending on the quantity of the other, 

non chosen juice. Here “n” indicates the quantity of juice B offered and “ρ” indicates the 

relative value (i.e., the quantity of juice B such that the animal is indifferent between 1A and 

ρB). The blue, green and yellow traces refer, respectively to trials for which n < ρ (easy 

decisions), n < ρ (spit decisions) and n ≥ ρ. During the decision window (200–450 ms after 

the offer), the activity of offer value cells presented an overshooting when n was larger (i.e., 

the decision was more difficult). Panels (K) and (L) depict the idealized tuning of chosen 
value cells and the corresponding choice pattern. Each dot represents a trial type. In panel 

(L), dots on the bottom solid lines are trials in which the animal chose juice A, dots on the 

top dotted line are trials in which the animal chose juice B. Colored dots are trials in which 

the animal chose 1A over different quantities of juice B. In panel (K), the corresponding 

colors indicate firing rates. Panels (A), (G) and (J) are adapted from Padoa-Schioppa (2013) 

with permission; panel (D) is adapted from Padoa-Schioppa (2009) with permission.
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Figure 6. 
Dynamics of economic decisions in OFC. The figure summarizes the results of Rich and 

Wallis (2016). A. Reconstruction of the internal state. Each panel refers to one trial and 

illustrates the posterior probability of the decoded state (y-axis) as a function of time (x-

axis). B. Relation between choice and internal state. In the top panel, β coefficients were 

obtained by regressing the decoded state onto the chosen/unchosen value. In the bottom 

panel, the decoded state was regressed onto the value presented on the left/right. C. Relation 

between reaction times and internal state during the decision. In the top left panel, β 
coefficients were obtained by regressing reaction times onto the probability that the network 

be in the chosen or unchosen state. The bottom left panel depicts the coefficient of partial 

determination (CPD). The right panels illustrate the equivalent results obtained by regressing 

reaction times onto the probability that the network be in the chosen or other (non-present) 

state. DE. Quick versus deliberative decisions. Quick decisions were defined as those in 

which the animal made only one saccade. The fraction of quick decisions increased as a 

function of the value difference (E). F. Relation between choice and internal state as a 

function of the decision difficulty. Reproduced from (Rich and Wallis, 2016) with 

permission.
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