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Summary

A biosimilar refers to a follow-on biologic intended to be approved for marketing based on 

biosimilarity to an existing patented biological product (i.e., the reference product). To develop a 

biosimilar product, it is essential to demonstrate biosimilarity between the follow-on biologic and 

the reference product, typically through two-arm randomization trials. We propose a Bayesian 

adaptive design for trials to evaluate biosimilar products. To take advantage of the abundant 

historical data on the efficacy of the reference product that is typically available at the time a 

biosimilar product is developed, we propose the calibrated power prior, which allows our design to 

adaptively borrow information from the historical data according to the congruence between the 

historical data and the new data collected from the current trial. We propose a new measure, the 

Bayesian biosimilarity index, to measure the similarity between the biosimilar and the reference 

product. During the trial, we evaluate the Bayesian biosimilarity index in a group sequential 

fashion based on the accumulating interim data, and stop the trial early once there is enough 

information to conclude or reject the similarity. Extensive simulation studies show that the 

proposed design has higher power than traditional designs. We applied the proposed design to a 

biosimilar trial for treating rheumatoid arthritis.
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1. INTRODUCTION

According to the Patient Protection and A ordable Care Act (A ordable Care Act) (FDA, 

2012), signed into law by President Obama, a biosimilar product is defined as “a biological 

product that is highly similar to its reference product notwithstanding minor differences in 

clinically inactive components and there are no clinically meaningful differences in terms of 

safety, purity, and potency.” In other words, biosimilar is a term that describes the 

equivalence of a generic version to an innovator’s biologic drug product; biosimilars are 

close, but not exact copies of biologic drugs already on the market. Examples of biological 

products include vaccines, blood products for transfusion, human cells and tissues used for 

transplantation, gene therapies, and cellular therapies (FDA, 2011). Many biological drugs 

are important life-saving products but are extremely expensive, which severely limits their 

accessibility to the general patient population. As the patents of many blockbuster 

proprietary biologic products reach their expirations, such as those for rituximab, infliximab, 

palivizumab, omalizumab and trastuzumab, biosimilars provide great potential to increase 

the accessibility of biologic products for patients with life-threatening diseases. Currently, 

more than 80 biosimilars are under development, and global sales of biosimilars have been 

estimated to reach $3.7 billion in 2015 (Datamonitor, 2011).

Before a biosimilar can be used to treat patients, it must demonstrate “biosimilarity” to its 

innovative citeperence product in terms of quality characteristics, biological activity, safety 

and efficacy based on comprehensive comparability studies (Eemansky, 2014). Because the 

development of biological products is much more complicated than that of conventional 

small-molecule-based drugs, and biologics are sensitive to small procedural or 

environmental changes during the manufacturing process, the conventional approach to 

evaluating bioequivalence based on pharmacokinetic responses cannot be directly applied to 

establish biosimilarity. Biosimilars cannot be regarded as generic equivalents (or 

biogenerics) of innovative drugs because of the impossibility of the active ingredients in 

biosimilars being identical to their innovative counterparts (Ahn and Lee, 2011); whereas 

generic small-molecule drugs can be considered therapeutically equivalent to an innovative 

drug if pharmaceutical equivalence and bioequivalence can be demonstrated. Guidelines for 

statistical methods to establish biosimilarity remain nonspecific because of the newness of 

biosimilars, even though regulatory agencies, such as the U.S. Food and Drug 

Administration (FDA), the European Medicines Agency, and the World Health Organization, 

have provided detailed guidance for demonstrating comparability in terms of quality, safety 

and efficacy. It is therefore of high urgency to develop appropriate and reliable statistical 

methodologies for developing biosimilars.

Some statistical methods have been proposed to assess biosimilarity. Lin et al. (2013) 

proposed a way to assess biosimilar products for binary endpoints using a parallel line assay 

method; Li et al. (2013) proposed a method for considering biosimilar clinical efficacy trials 

with asymmetrical margins; Kang and Chow (2013) proposed a similarity criterion using a 

relative distance method based on the absolute mean difference between a biosimilar product 

and the innovative refererence product; Chow et al. (2013a,b) made important comments and 

discussed several scientific and practical issues raised in the FDA guidance; Endrenyi et al. 

(2013) discussed the differences between small-molecule drugs and biologicals with respect 
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to the interchangeability of drug products; for the quality control of biosimilars, Yang et al. 

(2013) proposed an adapted F-test for homogeneity of the variances to assess biosimilarity 

in variability; and that issue was also considered by Zhang et al. (2013) and Liao and Darken 

(2013). Combest et al. (2014) reviewed the existing methods and demonstrated on a 

conceptual level that a Bayesian approach can reduce the sample size compared to the 

traditional frequentist approach and batch-to-batch methods when developing a biosimilar. 

These existing methods have mainly focused on the statistical assessment of biosimilarity; 

little research has been done on designing clinical trials for biosimilars, especially from the 

Bayesian perspective. A monograph by Chow (2013) provides an excellent review of 

biosimilar drug development.

In this article, we propose a two-arm randomized Bayesian group sequential design to 

evaluate the biosimilarity between an investigational biosimilar and the innovative reference 

drug. Biosimilar trials come with several challenges that are beyond the scope of the 

conventional randomized comparative trial design. First, when a biosimilar is ready to be 

tested in a randomized trial, the innovative reference drug has been in the market for many 

years and a huge amount of data on that drug has accumulated. It is critical to incorporate 

these rich historical data into the biosimilar trial design to improve trial efficiency. An 

efficient trial design not only leads to tremendous cost saving for the pharmaceutical 

industry, but translates into saving lives because it allows patients to access the biosimilars 

earlier by expediting their development. Another challenge when designing biosimilar trials 

is determining how to quantify and monitor the biosimilar during the trial. To address these 

issues, we have developed a new approach, the calibrated power prior (CPP), to allow the 

design to adaptively borrow information from the historical data according to the 

congruence between the historical data and the data collected in the current trial. We have 

also proposed the Bayesian biosimilarity index (BBI) to assess the similarity between the 

biosimilar and the innovative reference drug. In our design, we evaluate the BBI in a group 

sequential fashion based on the accumulating interim data, and stop the trial early once there 

is enough information to conclude or reject the similarity. Simulation studies show that our 

method is statistically powerful, with well controlled type I error rates.

The remainder of this article is organized as follows. In Section 2, we briefly review the 

power prior and propose the CPP. In Section 3, we propose the BBI for assessing the 

similarity between the biosimilar and the innovative reference drug, based on which we 

develop a Bayesian adaptive design for two-arm randomized biosimilar trials. We investigate 

the operating characteristics of the proposed design using simulation studies in Section 4. In 

Section 5, we apply the proposed methodology to design a biosimilar trial for treating 

arthritis, and conclude with a brief discussion in Section 6.

2. METHODS

2.1. Power prior

A power prior provides an intuitive approach for borrowing information from historical data. 

Let θ denote the parameter of interest, and π0(θ) denote the prior distribution of θ (before 

accounting for the historical data), which is typically specified as the noninformative or flat 

prior. Let D0 denote the historical data and D denote the data from the current trial. The 
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basic idea of the power prior is straight-forward: update π0(θ) using D0, and then use the 

resulting posterior as the (power) prior to make posterior inference so that the information of 

D0 is incorporated into the analysis of D. More precisely, the power prior can be written as

(1)

where L(θ|D0) is the likelihood of θ conditional on historical data D0, and δ ∈ [0, 1] is the 

power parameter, which controls how much information we borrow from D0. When δ = 1, 

we fully borrow information from D0 and when δ = 0, we do not borrow any information 

from D0. When D0 come from the exponential distribution family, e.g., a normal or binomial 

distribution, δ can be interpreted as the fraction of the information borrowed from D0. For 

example, for n normally distributed observations with mean θ, L(θ|D0)δ is equivalent to a 

likelihood obtained by inflating the variance with a factor of 1/δ, or, equivalently, a 

discounted historical sample size of nδ.

As the value of δ is typically unknown in practice, the fully Bayesian approach treats δ as an 

unknown parameter (Ibrahim and Chen, 2000; Ibrahim et al., 2003) and assigns it a prior 

distribution π(δ), e.g., π(δ) ~ Unif(0, 1), yielding the power prior as follows:

(2)

where  is a normalizing constant. Duan et al. (2006), and 

Neuenschwander et al. (2009) noted that it is critical to include the normalizing constant 

C(δ) in (2), and that ignoring C(δ) leads to pathological priors, such as in the early literature 

on power priors (Ibrahim and Chen, 2000; Ibrahim et al., 2003; Chen et al., 2003). Given 

data D from the current trial, the posterior distribution of θ and δ is given by π(θ,δ|D, D0) ∝ 
L(θ|D)π(θ,δ|D0).

Although the power prior is intuitive and conceptually attractive, using it in practice is tricky. 

Neuenschwander et al. (2009) found that the power parameter δ cannot be estimated 

accurately based on D and D0, even when the sample size of each data set is large. In other 

words, the power prior cannot appropriately determine how much information we should 

borrow from D0. This led these authors to recommend fixing the value δ a priori, rather than 

estimating it from the data. Ideally, δ should be set close to 1 if D and D0 are congruent, and 

close to 0 if they are not. Unfortunately, this is difficult to implement in practice because a 
priori we typically do not know the degree of congruence between D0 and D. As a result, 

Neuenschwander et al. (2009) concluded that “though the δ is easy to interpret, its elicitation 

is challenging.”

2.2. Calibrated power prior

To address the aforementioned issues, we propose the CPP, for which δ is defined as a 

function of a congruence measure between D0 and D. The key to our approach is that the 
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function which links δ and the congruent measure is prespecified and calibrated by 

simulation such that when D0 is congruent with D, the CPP strongly borrows information 

from D0, thereby improving power, and when D0 is not congruent with D, the CPP borrows 

little information from D0, thereby controlling the type I error rate.

We first introduce a measure of congruence between D0 = (x1, ⋯, xm) and D = (y1, ⋯, yn), 

where x and y can be continuous or binary variables. A natural measure of congruency 

between D0 and D is the Kolmogorov-Smirnov (KS) statistic, a nonparametric statistic for 

testing whether D0 and D have the same probability distribution. We note that the KS 

statistics is not the only choice, and other reasonable measure of congruency can also be 

used. Specifically, for a real number t, letting  and 

 denote the empirical distribution functions for D0 and D, the KS 

statistic is defined as SKS = max−∞<t<∞{|F(t) − G(t)|}. Letting Z(1) ≤ ⋯ ≤ Z(N) denote the N 
= m + n ordered values for the combined sample of D0 and D, the KS statistic can be 

calculated as

The KS statistic measures the discrepancy or incongruence between the distributions of D0 

and D. A large value of SKS indicates a larger incongruence between the distributions of D0 

and D. In our approach, we adopt a scaled KS statistic, defined as

The reason we choose to use S, rather than the original KS statistic, is to ensure that the 

resulting CPP has a desirable property when borrowing information from D0, as described 

later in Theorem 1.

We link the power parameter δ with S through

(3)

where g(·) is a monotonically increasing function with parameter ϕ, known as calibration 
function, satisfying the following requirements: when S is small, which indicates that D0 and 

D are congruent, g(S; ϕ) is close to 1 to strongly borrow information from D0; and when S is 

large, which indicates that D and D0 are incongruent, we require that g(S; ϕ) is close to 0 to 

acknowledge the difference between D and D0 and refrain from borrowing information from 

D0. Although many different forms of g(·) satisfy these requirements, one particular function 

form that is simple and yields good operating characteristics is the two-parameter reciprocal 

exponential model
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(4)

where ϕ = (a, b) are tuning parameters that control the relationship between δ and S. We 

require b > 0 to ensure that the larger incongruence between D0 and D leads to a smaller 

value of δ. The procedure to determine the values of a and b is describe later. The proposed 

CPP can be generally expressed as

The CPP has the following large-sample property. The proof is provided in the Appendix.

Theorem 1 When D0 and D have the same distribution (i.e., are congruent), δ in (4) 

converges to 1 and thus the CPP fully borrows information from D0; and when D0 and D 
have different distributions (i.e., are incongruent), δ converges to 0 and thus the CPP does 

not borrow any information from D0.

In contrast, the original power prior may not have this desirable convergence property. This 

is because given only two data sets, the heterogeneity between the data sets, and thus δ, 

cannot be estimated precisely, even when the sample size of each data set is large. As noted 

by Neuenschwander et al. (2009), this is analogous to a hierarchical (random-effects meta-

analytic) model, for which it is difficult to obtain a reasonably precise estimate for the 

between-trial variability if only a few trials are available.

The CPP follows the spirit of empirical Bayesian methodology in the sense that it depends 

on the observed data D through S. However, unlike the typical empirical Bayesian 

methodology, the determination of the tuning parameters a and b does not rely on the data D 
actually observed in the current study. We calibrate the value of a and b using simulated 

data, as follows. We first consider the case in which D0 = (x1, ⋯, xm) and D = (y1, ⋯, yn) are 

normally distributed, with xi ~ N(μ0, ) and yj ~ N(μ0 + γ, ), i = 1, ⋯ , m and j = 1, ⋯ , n. 

Given historical data D0, the values of the tuning parameters a and b are calibrated as 

follows,

(a) Estimate the mean and variance of D0 by  and 

 with .

(b) Elicit from subject experts the maximum practically negligible mean difference 

γ, denoted as γc, such that D and D0 can be regarded as congruent, and the 

minimal value of γ, denoted as , such that D is deemed to be substantially 

different (i.e., not congruent) from D0. As we describe later, this elicitation 

procedure is simple to implement for biosimilar studies.
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(c)
Generate R replicates of D by simulating (y1, ⋯, yn) from , and 

calculate the KS statistics between each of these R simulated dataset and D0. Let 

S*(γc) denote the median of the R resulting KS statistics.

(d)
Repeat step 3 by replacing γc with , and let  denote the median of the 

R resulting KS statistics.

(e) Solve a and b in (4) based on the following two equations:

(5)

(6)

where δc is a large constant close to 1 (e.g., 0.98), and  is a small constant 

close to 0 (e.g., 0.01). The rationale is that when D0 and D are congruent (i.e., γ 
= γc), we want to strongly borrow information from D0 (i.e., δ is close to 1), and 

when D0 and D are not congruent (i.e., ), we want to refrain from 

borrowing information from D0 (i.e., δ is close to 0) to avoid bias and inflate the 

type I error rate. Solving (5) and (6) leads to the values of a and b as follows,

(7)

(8)

Several remarks are warranted. First, we can see that the calibration of a and b do not depend 

on D, the data collected from the current study. This is an important and very desirable 

property because it allows the investigator to determine the values of a and b and to include 

them in the study protocol before the onset of the study. This will address the major concern 

about the methods of borrowing information from historical data, that is, the method could 

be abused by choosing the degree of borrowing to favor a certain result, e.g., statistically 

significant results. Second, in step 2, γc and  are similar to the effect sizes (i.e., mean 
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differences) that are routinely used in power calculations, and thus can be readily elicited 

from subject experts. This elicitation is particularly straightforward for biosimilar studies 

because in order to assess biosimilarity, a priori, it is imperative to specify the biosimilar 

margin/criterion (i.e., define the level of similarity required). In practice, we often use the 

0.80/1.25 rule, that is, the investigational biosimilar is regarded as being similar to the 

reference agent if the difference between their (log-transformed) means is within (log(0.80) 

= −0.223, log(1.25) = 0.223). In this case, it is natural to choose  = 0.223, and set γc at the 

value that represents a practically negligible difference.

In the proposed procedure, a and b are solved on the basis of two elicited values of γ (i.e., γc 

and ). If desirable, more than two values of γ can be elicited and paired with desirable 

degrees of information borrowing from D0, for example, γ = (0.223, 0.2, 0.15, 0.1, 0) and δ 
= (0, 0.25, 0.50, 0.75, 1). This will result in more than two equations of the form of (5) and 

(6). In this case, the least squares method can be used to solve a and b. We note that a 

common variance is assumed to simulate D in step 3. That assumption can be easily relaxed 

by using a different value of variance for simulating D. However, as the goal of the above 

procedure is to calibrate the value of a and b, not to assess a biosimilar, the common 

variance assumption is not critical, as shown later in the sensitivity analysis.

The above calibration procedure can also be used to handle the case in which D and D0 are 

binary endpoints with minor modifications. Details are provided in the Appendix. In the next 

section, we describe how to use the CPP to design two-arm randomized biosimilar trials.

3. Bayesian design for comparative biosimilar trials

Consider a biosimilar trial in which patients are randomized to receive an investigational 

biosimilar (T) or an innovative reference (R) drug. Let YT and YR denote the primary 

clinical efficacy endpoints for T and R, respectively, which can be a continuous or binary 

variable. Denote μk = E(Yk) for k = T, R. We assume that historical data D0 = (x1, ⋯ , xm) 

are available for R.

Before describing our design, we propose a new measure, the Bayesian Biosimilarity Index 
(BBI), to quantify the similarity between T and R,

where λL and λU are the prespecified biosimilarity limits. In practice, (λL, λU) are often 

chosen as (80%, 125%). For log-transformed normal data, the BBI can be equivalently 

defined as , where biosimilarity limits  and 

 and are often chosen as (−0.223, 0.223). Compared to the existing approaches 

based on the frequentist confidence interval of μT/μR, one important advantage of the BBI is 

its intuitive interpretation and its ability to define and assess biosimilarity using easy-to-

understand probability statements. Specifically, the BBI represents the probability that T and 

R are biosimilar (i.e., located within the prespecified biosimilarity limits), given the 

observed data. For example, BBI=95% means that there is 95% chance that R and T are 
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similar based on the observed data. In contrast, the 95% confidence interval of μT /μR only 

tell us the range of the values that have 95% chance of covering the true value of μT/μR 

under repeated sampling. It does not tell us how likely it is that μT/μR is located within the 

prespecified biosimilarity limits (i.e., satisfies the biosimilar criterion). We may compare the 

confidence interval with (λL, λU) to see whether the former is located within the latter, but 

the confidence interval still does not tell us the probability that R and T are similar.

With the BBI in hand, the proposed Bayesian design is described as follows, assuming that 

K interim looks are planned for the trial after n1, ⋯ , nK patients have been enrolled into 

arms T and R.

1. Enroll 2n1 patients and randomize them to T and R arms.

2. Given the kth interim data DT(nk) = (yT,1, ⋯ yT,nk) DR(nk) = (yR,1, ⋯ yR,nk), k = 

1, ⋯ , K

i. (Futility stopping) If BBI < Cf, terminate the trial early and conclude 

that T is not similar to R, where Cf is a probability cuto for futility 

stopping,;

ii. (Superiority stopping) If BBI > Cs, terminate the trial early and 

conclude that T and R are similar, where Cs is a probability cuto for 

superiority stopping;

iii. Otherwise, continue to enroll patients until the next interim analysis is 

reached.

3. Once the maximum sample size is reached, compute the BBI based on all 

observed data. If BBI > Cs, conclude that T and R are similar; otherwise, they are 

not similar.

To ensure that the design possesses good frequentist operating characteristics, probability 

cutoffs Cf and Cs should be calibrated through simulations to achieve desirable type I and II 

error rates. This simulation-based calibrated procedure is widely used in Bayesian clinical 

trial designs (Thall and Simon, 1994; Yuan and Yin, 2009). The software to implement the 

proposed Bayesian biosimilar design (written in R) will be available at http://

odin.mdacc.tmc.edu/~yyuan/. The details of calculating BBI at each interim are provided in 

Appendix.

4. Simulation studies

4.1. Simulation setting

We investigated the operating characteristics of the proposed Bayesian design via simulation 

studies. We considered both the normally distributed endpoint and the binary endpoint. For 

the normally distributed endpoint, the maximum total sample size was 240, with two interim 

analyses conducted when 80 and 160 patients were enrolled. Patients were equally 

randomized into arms T and R. We generated YR from N(μR, 0.52), with μR = 0, and 

generated YT from N(μT, 0.52), with μT = −0.223, −0.115, 0, 0.115, and 0.223. We adopted 

the 0.80/1.25 rule to define biosimilarity such that T and R are similar if −0.223 < μR − μT < 
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0.223, assuming that YT and YR are log-transformed data. In other words, T and R are 

similar when μT = −0.115, 0 and 0.115, and not similar when μT = −0.223 and 0.223. We 

generated historical data X from N(μ0, 0.52) with μ0 = 0, −0.5, −0.3, 0.3, 0.5 and sample size 

N0 =300 and 500. To obtain the CPP, we elicited γc = 0 and  = 0.223 with δc = 0.99 and 

= 0.001. The resulting tuning parameters a and b are displayed in Table 1. In our Bayesian 

design, we set Cf = 0.4 and Cs = 0.955, which are chosen by calibrating the type I error rate 

to the nominal value of 5% when μT = −0.223 and 0.223.

For the binary endpoint, the maximum total sample size was 1800, with two interim analyses 

conducted when 600 and 1200 patients were enrolled. To obtain reasonable power, such as 

80%, the binary endpoint requires a much larger sample size than the normal endpoint. We 

generated YR from the Bernoulli distribution Ber(μR), with μR = 0.5, and generated YT from 

Ber(μT), with μT = 0.4, 0.45, 0.5, 0.565, and 0.625. Under the 0.80/1.25 rule, T and R are 

similar when μT = 0.45, 0.5 and 0.565 because in these cases, 0.8 < μT /μR < 1.25, and are 

not similar when μT = 0.4 and 0.625 because μT/μR ≤ 0.8 or ≥ 1.25. We generated historical 

data X from Ber(μ0), with μ0 = 0.5, 0.2, 0.8, 0.1 and 0.9 and sample size m = 600 and 1000. 

To obtain the CPP, we elicited γc = 0 and  = 0.223, with δc = 0.99 and  = 0.001. We set 

Cf = 0.8 and Cs = 0.96, to ensure appropriate type I error rates.

We compared the proposed CPP design with two alternative designs. The first alternative 

design is called the no borrowing (NB) design, which is the same as the proposed design 

except that it ignores historical data. The second design uses the standard power prior 

(denoted as the PP design) to borrow information from the historical data. The PP design is a 

fully Bayesian approach, under which is treated as an unknown parameter and assigned with 

a uniform prior δ ~ Unif(0, 1).

4.2. Simulation results

Table 2 shows the results for normal endpoints based on 10,000 simulated trials. As the NB 

design is not affected by the historical data, its results are shown only once at the top of the 

table. In scenario 1, the historical data D0 are congruent with the reference arm data DR (i.e., 

μ0 = 0 = μR). The proposed CPP design had higher power to detect the similarity between R 
and T than the NB design. Specifically, when the R and T are similar (i.e., μT = 0, 0.115 and 

−0.115) and the sample size of the historical data N0 = 300, the powers of the CPP design 

were 67.5%, 96.9% and 67.1%, respectively, while those of the NB design were 58.2%, 

95.5% and 58.9%. The gain was more obvious when N0 = 500, under which the powers of 

the CPP design were improved to 69.0%, 97.6% and 69.2%. Such a power improvement is 

impressive given that the CPP design used smaller sample sizes than the NB design. For 

example, when N0 = 300, the sample sizes of the CPP designs were 88.79, 76.51 and 88.54 

when μT = −0.115, 0 and 0.115, while those of the NB design were 93.32, 85.31 and 93.26. 

When R and T are not similar (i.e., μT = −0.223 or 0.223), both the NB and CPP designs 

controlled the type I error rate (i.e., concluding that T and R are similar when they are 

actually not) close to the nominal value of 5%. In scenario 1 (i.e., D0 and DR are congruent), 

the PP design yielded higher power than the CPP and NB designs and an appropriate type I 

error rate. However, when D0 and DR are not congruent, the PP design led to a substantially 

inflated type I error rate. For example, in scenario 2, when D0 and DR are not congruent, 
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with μ0 = −0.5 (recall that μR = 0), the type I error rate of the PP design was 17.4% and 

22.0% when N0 = 300 and 500. This result confirms the previous finding regarding the 

standard power prior: the power parameter cannot be precisely estimated based on the data, 

and thus cannot appropriately determine how much information should be borrowed from 

D0. In contrast, the proposed design correctly recognized that D0 and D are not congruent 

and thus no information should be borrowed. This is reflected by the appropriate type I error 

rate of the CPP design (i.e., 5.4% and 5.4%) when μT = 0.223 and −0.223. The power of the 

CPP design is comparable to that of the NB design when R and T are similar (i.e., μT = 

−0.115, 0 or 0.115). In scenarios 3 to 5, D0 and DR are not congruent, with different values 

of μ0. We observed similar results. That is, the CPP design well controlled the type I error 

rate and yielded power comparable to that of the NB design. The PP design had high power, 

but did not control the type I error rate. Figure 1 shows the power curve of the CPP design 

under different values of μ0, with the NB design as the reference. We can see that the CPP 

yielded higher power than the NB design when D0 and D are congruent (i.e., μ0 = 0), with 

well controlled type I error rates.

Table 3 provides the simulation results for binary endpoints. The results are generally similar 

to those for the normal endpoint. For example, in scenario 1, the historical data D0 are 

congruent to the reference arm data DR (i.e., μ0 = 0.5 = μR). Given the sample size of the 

historical data N0 = 1000, the powers of the proposed CPP design were 3.3% to 17.8% 

higher than those of the NB design when R and T are similar (i.e., μT = 0, 0.115 and 

−0.115). In addition, the CPP design controlled the type I error rate close to 5% when R and 

T are not similar (i.e., μT = 0.4 or 0.625). Again, although the PP design yielded higher 

statistical power when D0 and DR are congruent (i.e., scenario 1), it led to dramatically 

inflated type I error rates (see scenarios 2-5). For example, in scenario 2, with N0 = 1000, 

the type I error rate of the PP design was 15.2 when μT = 0.4. Figure 2 shows the power 

curves of the CPP design under different values of μ0, with the NB design as the reference.

4.3. Sensitivity analysis

For the normal endpoint, our calibration procedure (Section 2.2) for the CPP assumes that D 
has the same variance as D0. We conducted a sensitivity analysis to evaluate the performance 

of the proposed design when D and D0 actually have different variances. Simulation results 

(see Table 4) show that our design controlled the type I error rate at the nominal level of 5% 

when R and T are not similar, and yielded reasonable power when R and T are similar. In 

contrast, the PP approach led to inflated type I error rates up to 15%.

We also conducted a sensitivity analysis to evaluate the impact of the specification of δc and 

 (in step 5 of the CPP procedure in Section 2.2) on the performance of the design. We 

considered three different specifications of δc and , i.e., (δc, ) = (0.99, 0.001), (0.95, 

0.005), (0.95, 0.0001). Figure 3 shows that the operating characteristics of the design are 

very similar under different values of δc and , suggesting that our design is robust to the 

specification of δc and .
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5. Application

Adalimumab(Humira) is the first fully human monoclonal antibody drug approved by the 

FDA in 2002 for treating rheumatoid arthritis (RA) and other types of arthritis. RA is an 

autoimmune disease characterized by progressive inflammatory synovitis of the joints that 

may result in erosion of articular cartilage and subchondral bone. RA is a relatively common 

disease with prevalence from 0.4% to 1.3% worldwide, and more than 200,000 cases per 

year in the United States (Silman and Hochberg, 2001). Due to the high cost of Humira, e.g., 

approximately $3,000 per month in 2015, a substantial portion of patients cannot receive this 

effective treatment, especially in developing countries such as China. Given that the patent 

for this antibody expires in 2016, our collaborators in China are interested in developing a 

biosimilar monoclonal antibody of Humira to reduce the cost of the drug and allow more 

patients to benefit from the treatment.

A two-arm randomized clinical trial was proposed to evaluate the biosimilarity between the 

test agent and Humira. The primary endpoint is clinical response at week 24, a binary 

outcome indicating whether the patient achieves an improvement of at least 20% in the 

American College of Rheumatology core criteria (ACR20) from baseline to week 24. 

Patients who did not achieve an ACR20 response, who withdrew from the study, or who 

received “rescue treatment with traditional disease-modifying antirheumatic drug therapy on 

or after week 16 were classified as nonresponders. A maximum of 345 patients will be 

equally randomized to receive the test agent or adalimumab administered at 20mg weekly. 

The available historical data were obtained from a randomized clinical trial and included 

information on 212 patients who were treated with adalimumab (Keystone et al., 2004). The 

response rate of ACR20 was 60.8% in the historical data. We applied the proposed 

methodology to design the trial. We determined the calibration function (4) using the 

procedure described in Section 2.2 and the Appendix. Based on the 0.80/1.25 rule, we set γc 

= 0.99 and  = 0.001, resulting in the solution  = 18.63 and  = 5.53. That is, the power 

parameter used in the trial is given by

We examined the operating characteristics of the resulting CPP design under three scenarios 

(see Table 5), contrasted with the conventional no-borrowing (NB) design that ignores the 

historical data. In scenario 1, for which the test agent is biosimilar to adalimumab and the 

historical data is congruent with the control data (i.e., Humira arm), the proposed design 

yielded 81% power, whereas the NB design yielded 67% power, demonstrating that the use 

of historical data can substantially improve the power of the study. In scenario 2, the test 

agent is also biosimilar to adalimumab, but the historical data are not congruent to the 

control. The CPP and NB design yields similar power. Scenario 3 considers the case in 

which the historical data are congruent with the control data, but the test agent and 

adalimumab are not biosimilar. The CPP design well controlled the type I error rate below 

the nominal value of 5%, demonstrating that the CPP design correctly recognized that, in 
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this case, no information should be borrowed from the historical data to maintain an 

appropriate type I error rate.

6. Conclusion

We have proposed a Bayesian group sequential adaptive design for biosimilar trials. To 

incorporate rich historical data that are almost always available for biosimilar trials, we 

developed the CPP, which allows the design to adaptively borrow information from 

historical data. When the historical data are congruent with the new data collected from the 

trial, the CPP borrows information from the historical data and thus improves the power of 

the design; and when the historical data are not congruent with the new data from the trial, 

the CPP well controls the type I error rate. To facilitate trial monitoring, we proposed the 

BBI to measure the similarity between the biosimilar and the innovative reference drug. Our 

design evaluates the BBI in a group sequential fashion based on the accumulating interim 

data, and stops the trial early once there is enough information to conclude or reject the 

similarity. Our simulation studies show that the proposed design has desirable operating 

characteristics.

This article focuses on biosimilar trials. The proposed CPP approach can be used to 

adaptively borrow information from historical data in other settings. For example, in 

bridging clinical trials, as the landmark trial has been completed, we could use the CPP to 

design a follow-up trial (i.e., a bridging trial). We have considered binary and normal 

endpoints. The proposed approach can be extended to time-to-event endpoints as well. This 

will be the topic of our future research.
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Appendix

1. Proof of Theorem 1

PROOF. Supposing that m, n → ∞ and m/n → O(1), that is, the sample sizes of D0 and D 
increase on the same order. Without loss of generality, we assume that m ≥ n. Thus,

(9)

(10)
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(11)

Smirnov (1939) showed that when D0 and D have the same distribution (i.e., are congruent), 

 converges in distribution to Kolmogorov’s distribution with the cumulative 

density function

By Slutsky’s theorem, S → 0 when D0 and D are congruent. Thus, given b > 0,

When D0 and D are not congruent, since SKS = max−∞<t<∞{|F(t) − G(t)|}, SKS is bounded 

from 0. Thus, according to equation (10), S → ∞ as m → ∞, and thus δ → 0.

2. Calibration procedure for binary endpoints

We consider the case in which D0 = (x1, ⋯ , xm) and D = (y1, ⋯ , yn) are distributed with xi 

~ Ber(μ0) and yj ~ Ber(γμ0), i = 1, ⋯ , m and j = 1, ⋯ , n, where γ is the ratio or odds of the 

response rate between D and D0. Given historical data D0, the values of the tuning 

parameters a and b are calibrated as follows,

(a)
Estimate the response rate of D0 by  with I(xi) as the indicator 

function for counting the response.

(b) Elicit from subject experts the maximum value of γ, denoted as γc, such that the 

difference between D and D0 is practically negligible and they can be regarded 

as congruent, and the minimal value of γ, denoted as , is such that D is 

deemed to be substantially different (i.e., not congruent) from D0.

(c) Generate R replicates of D by simulating (y1, ⋯ , yn) from Ber(γc ), and 

calculate the KS statistics between each of these R simulated data sets and D0. 

Let S*(γc) denote the median of the R resulting KS statistics.

(d)
Repeat step 3 by replacing γc with , and let  denote the median of the 

R resulting KS statistics.

(e) Solve a and b in (4) based on the two equations (5) and (6).
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3. Evaluation of BBI

To implement the proposed design, we need to evaluate the BBI at each interim analysis, 

which depends on the posterior distributions of μT and μR. In what follows, we describe how 

to obtain these posterior distributions of μT and μR for evaluating the BBI at each interim. 

We first consider the case in which YT and YR are continuous endpoints following normal 

distributions N(μT , ) and N(μT, ), respectively. For test arm T, we assign (μT, ) 

Jeffrey’s noninformative prior f(μT, ) ∝ , then given the interim data DT(nk), the 

posterior distribution of μT is

where t(a, b, c) denote a t distribution with location parameter a, scale parameter b and 

degree of freedom c, and  and  are the sample mean and variance of DT(nK).

For the reference arm R, we employ the CPP approach to take advantage of the availability 

of historical data D0. We assume the noninformative prior f(μR, ) ∝  before observing 

D0, and elicit δ following the CPP procedures by solving (7) and (8). Given the value of δ 
and interim data DR(nk), the posterior of μR is given by

where ,  and  are the sample 

means of D0 and DR(nk), and  and  are the sample variances of D0 and DR(nk).

We now turn to the case in which YT and YR are binary and follow Bernoulli distributions 

Ber(μT) and Ber(μR), respectively. For arm T, we assign μT noninformative prior Beta(1, 1), 

then the posterior of μT is given by

For arm R, starting from the noninformative prior μR ~ Beta(1, 1), we first apply the CPP 

approach to determine the value of δ. Given δ and DR(nk), the posterior of μR is given by

Here, yT and yR are realizations of YT and YR.
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Fig. 1. 
Power curve of the proposed CPP design for the normal endpoint when μ0 = 0, 0.3 and 0.5 

and μR = 0. The power curve of the NB design is shown as the reference.
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Fig. 2. 
Power curve of the proposed CPP design for the binary endpoint when μ0 = 0.5, 0.2 and 0.8 

and μR = 0.5. The power curve of the NB design is shown as the reference.
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Fig. 3. 

Sensitivity analysis with different values of (δc, ) under scenario 1 with N0 = 500.
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Table 1

The elicited values of a and b for CPP under 5 scenarios for normal endpoints

Scenarios

1 2 3 4 5

a 15.78 13.83 15.92 15.92 15.92

b 6.18 5.59 6.22 6.22 6.22
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Table 2

Simulation results of power and average sample size (n) for the normal endpoint with μR = 0

Historical data μ T

Scenario μ 0 N 0 Design −0.223* −0.115
†

0
†

0.115
† 0.223*

NB Power 0.054 0.582 0.955 0.589 0.052

n 76.98 93.32 85.31 93.26 76.41

1 0 300 CPP Power 0.053 0.675 0.969 0.671 0.055

n 76.21 88.79 76.51 88.54 76.13

PP Power 0.050 0.770 0.991 0.774 0.057

n 75.76 83.36 60.20 83.88 75.80

500 CPP Power 0.052 0.690 0.976 0.692 0.054

n 76.06 88.06 74.68 88.49 75.92

PP Power 0.041 0.697 0.980 0.694 0.054

n 75.28 81.84 57.76 80.84 75.0

2 −0.5 300 CPP Power 0.054 0.591 0.956 0.591 0.054

n 76.94 94.04 85.24 93.00 76.21

PP Power 0.174 0.764 0.852 0.331 0.016

n 87.8 89.96 83.24 83.48 60.24

500 CPP Power 0.053 0.587 0.958 0.597 0.052

n 76.42 92.66 85.47 92.72 76.64

PP Power 0.220 0.728 0.825 0.313 0.009

n 88.6 88.56 82.2 80.08 58.80

3 −0.3 300 CPP Power 0.053 0.589 0.955 0.579 0.053

n 76.70 93.37 85.22 93.23 76.33

PP Power 0.118 0.712 0.913 0.383 0.013

n 87.44 95.04 86.8 88.12 65.4

500 CPP Power 0.054 0.582 0.955 0.589 0.050

n 76.34 92.84 85.12 92.61 76.78

PP Power 0.141 0.751 0.926 0.366 0.022

n 89.0 92.4 86.72 86.76 64.28

4 0.3 300 CPP Power 0.053 0.587 0.936 0.591 0.056

n 76.55 92.60 83.14 93.24 76.14

PP Power 0.004 0.135 0.689 0.893 0.277

n 47.4 61.56 76.8 77.08 73.36

500 CPP Power 0.051 0.580 0.949 0.601 0.055

n 76.49 92.64 85.32 93.69 76.37

PP Power 0.004 0.099 0.563 0.825 0.227

n 46.28 56.64 70.72 78.32 71.92
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Historical data μ T

Scenario μ 0 N 0 Design −0.223* −0.115
†

0
†

0.115
† 0.223*

5 0.5 300 CPP Power 0.055 0.597 0.954 0.589 0.056

n 76.71 93.56 85.01 93.37 76.86

PP Power 0.013 0.317 0.843 0.768 0.218

n 59.48 79.84 82.12 89.56 88.40

500 CPP Power 0.052 0.589 0.953 0.584 0.055

n 76.63 92.89 84.78 93.30 76.55

PP Power 0.012 0.297 0.823 0.771 0.187

n 58.48 78.76 82.04 88.08 89.40

*
Type I error rate;

†
Power
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Table 3

Simulation results of power and average sample size (n) for the binary endpoint with μR = 0.5

Historical data μ T

Scenario μ 0 N 0 Design 0.4* 0.45
†

0.5
†

0.565
† 0.625*

NB Power 0.045 0.615 0.939 0.589 0.05

n 355.68 445.23 382.65 437.31 356.52

1 0.5 600 CPP Power 0.05 0.711 0.966 0.718 0.05

n 359.58 430.68 352.92 425.52 360.60

PP Power 0.045 0.674 0.982 0.703 0.03

n 354 438.6 348.9 450.9 350.4

1000 CPP Power 0.047 0.73 0.972 0.767 0.048

n 358.23 435.21 338.73 420.03 358.77

PP Power 0.042 0.713 0.978 0.686 0.045

n 357.0 442.2 345.3 451.5 351.9

2 0.2 600 CPP Power 0.05 0.612 0.935 0.588 0.046

n 357.48 442.32 385.11 434.82 353.88

PP Power 0.152 0.66 0.820 0.416 0.018

n 376.2 485.1 421.5 463.5 340.2

1000 CPP Power 0.048 0.616 0.935 0.585 0.049

n 356.61 443.70 386.97 436.02 356.04

PP Power 0.175 0.656 0.926 0.454 0.015

n 375.3 489.9 432.0 472.5 342.3

3 0.8 600 CPP Power 0.043 0.612 0.940 0.593 0.047

n 358.17 441.81 383.50 438.27 352.95

PP Power 0.027 0.524 0.943 0.636 0.144

n 345.6 478.2 418.5 478.8 378.3

1000 CPP Power 0.048 0.623 0.941 0.593 0.046

n 355.89 444.60 383.88 439.83 356.37

PP Power 0.019 0.525 0.933 0.629 0.174

n 344.1 462.3 421.8 476.7 381.3

4 0.1 600 CPP Power 0.044 0.625 0.939 0.593 0.046

n 357.87 446.43 385.89 438.0 354.27

PP Power 0.152 0.655 0.921 0.493 0.019

n 369.9 474 420 467.4 342.3

1000 CPP Power 0.043 0.633 0.941 0.598 0.048

n 355.65 446.73 386.04 438.66 355.38

PP Power 0.242 0.634 0.925 0.490 0.026

n 371.7 449.4 401.4 448.5 352.5
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Historical data μ T

Scenario μ 0 N 0 Design 0.4* 0.45
†

0.5
†

0.565
† 0.625*

5 0.9 600 CPP Power 0.049 0.620 0.938 0.596 0.05

n 357.72 439.20 384.36 437.04 354.56

PP Power 0.029 0.520 0.947 0.575 0.147

n 354.9 474.3 416.7 470.7 370.8

1000 CPP Power 0.047 0.621 0.942 0.595 0.048

n 355.95 438.06 386.10 435.09 354.93

PP Power 0.029 0.519 0.933 0.584 0.148

n 351.3 471.6 416.4 467.7 369.6

*
Type I error rate;

†
Power
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Table 4

Sensitivity analysis for the normal endpoint with μR = 0 and  = 0.25

Historical data μ T

μ 0 σ0
2 N 0 Design −0.223* −0.115

†
0
†

0.115
† 0.223*

0 1 500 CPP Power 0.053 0.589 0.953 0.587 0.052

n 76.94 93.98 86.45 94.08 76.8

PP Power 0.036 0.454 0.952 0.580 0.15

n 80.0 98.4 87.6 98.2 79.3

0.3 4 500 CPP Power 0.052 0.579 0.957 0.590 0.055

n 76.55 93.62 85.69 92.12 76.44

PP Power 0.029 0.373 0.909 0.674 0.15

n 74.6 95.84 91.68 100.28 84.92

0.5 1 500 CPP Power 0.053 0.585 0.957 0.582 0.052

n 77.02 93.47 85.37 92.95 76.93

PP Power 0.012 0.333 0.809 0.621 0.154

n 60.8 89.4 91.3 100.16 88.96

0.5 4 500 CPP Power 0.052 0.588 0.956 0.595 0.052

n 76.15 93.88 85.55 93.23 76.63

PP Power 0.016 0.401 0.902 0.562 0.163

n 71.68 92.08 90.2 101.08 87.36

*
Type I error rate;

†
Power
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Table 5

Application of the proposed CPP design to the biosimilar trial of Humira

Scenario
Clinical Response Power Sample Size

Humira Test agent CPP NB CPP NB

1 0.608 0.608 81% 67% 190 188

2 0.486 0.486 76.4% 74.4% 256 259

3 0.608 0.486 4.3% 4.6% 140 137
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