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Abstract

Candida albicans is a virulent human opportunistic pathogen. It evades innate immune sur-

veillance by masking an immunogenic cell wall polysaccharide, β-glucan, from recognition

by the immunoreceptor Dectin-1. Glucan unmasking by the antifungal drug caspofungin

leads to changes in the nanostructure of glucan exposure accessible to Dectin-1. The physi-

cal mechanism that regulates glucan exposure is poorly understood, but it controls the

nanobiology of fungal pathogen recognition. We created computational models to simulate

hypothetical physical processes of unmasking glucan in a biologically realistic distribution of

cell wall glucan fibrils. We tested the predicted glucan exposure nanostructural features aris-

ing from these models against experimentally measured values. A completely spatially ran-

dom unmasking process, reflective of random environmental damage to the cell wall,

cannot account for experimental observations of glucan unmasking. However, the introduc-

tion of partially edge biased unmasking processes, consistent with an unmasking contribu-

tion from active, local remodeling at glucan exposure sites, produces markedly more

accurate predictions of experimentally observed glucan nanoexposures in untreated and

caspofungin-treated yeast. These findings suggest a model of glucan unmasking wherein

cell wall remodeling processes in the local nanoscale neighborhood of glucan exposure

sites are an important contributor to the physical process of drug-induced glucan unmasking

in C. albicans.

Introduction

Candida albicans is a normal commensal fungus living on various human mucosal surfaces. It

is also an opportunistic pathogen that can cause superficial or systemic infections. Healthcare

costs associated with treatment of candidiasis exceed $1 billion annually in the US alone [1, 2].

Innate immune host defense is critical to combating candidiasis, so understanding the host

and pathogen factors that impact fungal recognition is both scientifically and clinically

significant.
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Initial contact between Candida and an innate immune cell occurs at the cell wall surface.

Because of this, surface accessible cell wall components play an important role in host-patho-

gen interactions. The Candida cell wall contains the polysaccharides chitin, β-(1,3:1,6)-D-glu-

can and N- and O-linked mannans. Innate immune cells (e.g., dendritic cells, macrophages

and neutrophils) sense fungal cell wall polysaccharides via Pattern Recognition Receptors

(PRRs), such as the transmembrane C-type lectins (CTLs) DC-SIGN and Dectin-1 that bind

mannan and β-(1,3)-D-glucan, respectively. Recognition of β-glucan by Dectin-1 provides

powerful immunogenic signals capable of driving fungal phagocytosis and downstream cellu-

lar activation in these cell types [3–5]. Activation by PRRs allows leukocytes to fulfill critical

roles in innate and adaptive immunity as sentinels of pathogen entry and as antigen-presenting

cells for stimulating T lymphocytes [6]. Therefore, regulation of the amount and exposure of

immunogenic cell wall ligands is an important facet of the host-pathogen interaction that is

the subject of active investigation.

While mannan is abundantly exposed at the surface of C. albicans cell walls, recent studies

have shown that surface exposure of β-glucan is limited to punctate exposures of nanometric

dimensions in resting C. albicans yeast lateral cell walls [7, 8]. However, conditions such as

treatment with the antimycotic drug caspofungin, hyphal germination and neutrophilic attack

have been reported to cause a phenotype of increased β-glucan exposure in C. albicans cell

walls as observed by conventional, diffraction-limited imaging and dSTORM imaging [8–10].

Caspofungin impairs β-glucan biosynthesis. It is unclear exactly how caspofungin treatment

leads to glucan unmasking, but caspofungin’s effects on glucan biosynthesis may result in

increasing exposure of existing glucan due to normal cell wall mannoprotein turnover and/or

cell wall remodeling processes combined with a failure to synthesize new glucan-based cell

wall structures. It is consistent with this concept that perturbation of genes related to cell wall

biosynthetic processes can also elevate glucan exposure. For instance, deletion of C. albicans
genes directly involved in β-1,3-glucan remodeling (PHR2), β-1,6-glucan synthesis (KRE5) and

global transcriptional regulation of cell wall biosynthetic machinery (SSN8) results in increased

exposure of β-glucan [9]. Because, β-glucan is the point of attachment for many cell wall man-

noproteins, perturbations to glucan biosynthesis and remodeling are likely to adversely impact

proper localization of mannan in the cell wall. Moreover, ablation of Mnn2 mannosyltransfer-

ase family members diminishes the size and structural complexity of N-mannan, in turn

reducing β-glucan masking on cell walls [11]. These and other studies [12] support a model

wherein N-mannosylated cell wall proteins provide the moiety that masks exposure of β-glu-

can, allowing C. albicans to evade innate immunity by restricting Dectin-1’s access to β-

glucan.

Our super resolution imaging of fine-scale β-glucan exposure geometries has revealed that

the majority of glucan exposure sites on C. albicans yeast lateral cell walls are single glucan/

Dectin-1 interaction sites. After caspofungin-mediated unmasking, the cell wall surface exhib-

its increases in exposure site density, including an increasing number and size of glucan expo-

sures represented by clusters of Dectin-1 binding sites having a median radius of 19 nm [8].

While it is unknown exactly what processes control the local, nanometric-scale exposure char-

acteristics of β-glucan, we hypothesize that passive turnover of cell wall mannoproteins due to

degradation and environmental damage, and perhaps also local, active enzymatic remodeling

of the cell wall, may account for the changes in β-glucan nanoexposure geometry that we have

observed. In the present work, we use a computational approach to test these mechanistic

hypotheses by determining whether simulations of a spatially random unmasking process (i.e.,

passive turnover), alone and with additional locally biased unmasking (i.e., active remodeling)

of glucan, can recapitulate the nanoscale glucan exposure geometries that we have observed on

masked and unmasked C. albicans yeast. We conclude that a completely spatially random
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unmasking process, such as would be expected for passive environmental damage to the cell

wall, cannot account for observed nanoscale glucan exposure features. However, models incor-

porating an additional component of locally biased unmasking provide predictions of glucan

nanoexposure geometry that are much closer to observed glucan exposure geometry as mea-

sured by super resolution microscopy. This finding is consistent with a composite mechanism

of glucan unmasking that involves spatially random unmasking together with a moderate con-

tribution of active local remodeling of cell wall structure.

Results

Our previous study indicated that the majority of glucan exposed on resting C. albicans cell

walls is present in single Dectin-1 binding sites, termed “singlet glucan exposures”. After cas-

pofungin treatment, higher density of Dectin-1 binding glucan exposure sites appears. Addi-

tionally, after drug treatment, glucan exposure sites able to bind multiple Dectin-1 probes,

termed “multiglucan exposures”, were increased in density and size. To facilitate comparison

of modeling data from this work with experimental data previously described, we present

Table 1 that summarizes key experimental results from Lin, et al concerning glucan exposure

nanostructure in C. albicans [8]. These data were derived from direct Stochastic Optical

Reconstruction Microscopy on fungal cell walls. Measured quantities included the localization
density (relates to the density of probes attached to glucan on the sample surface), the singlet
glucan exposure fraction (proportion of glucan exposures representing single ligand/probe

interaction sites), the equivalent radii of multi-exposures (radial size of clustered glucan expo-

sures), and the glucan site exposure densities (number of glucan exposure sites, including both

singlet glucan and multiglucan exposures, per unit area). All these quantities were assessed for

untreated and caspofungin treated yeasts. Table 1 summarizes the values for the 25th, 50th

(median) and 75th percentiles of the two yeast conditions for each quantity of interest used in

our study, as specified in the two leftmost columns.

To understand mechanisms that might lead to glucan unmasking, we developed a sequence

of iterative computer simulations. Our basic premise was that we could use a simulation space

with a grid of regular spatial elements (pixels) to model the region of interest (ROI) analysis

results from the pixelated rendering of super resolution microscopy experimental data [8]. In

the experimental datasets, each pixel represented a 5 nm x 5 nm region of the sample. This

value was derived from an estimate of the largest dimensions of a single Dectin-1 carbohydrate

recognition domain (PDB: 2BPD) [13], due to the fact that Dectin-1 was used as the probe for

Table 1. The values for the 25th, 50th (median) and 75th percentile of the experimental data as presented in Lin et al.8.

25th percentile 50th percentile 75th percentile

% glucan surface area Yctrl 0.03 0.04 0.05

Ycasp 0.19 0.22 0.24

fraction of singlets Yctrl 0.87 0.92 1.00

Ycasp 0.82 0.85 0.88

radius of multi-exposures

(nm)

Yctrl 5.8 8.6 14.2

Ycasp 16.2 19.2 23.9

glucan exposure density

(number of glucan exposures/μm2)

Yctrl 5.2 7.0 7.5

Ycasp 24.6 28.5 34.0

Referring to figures in Lin et al.: Fig 7C (localization density converted to percent glucan surface area observed), Fig 7D (fraction of singlet glucan exposure

sites), Fig 8B (equivalent radii of circular exposures representing multiglucan exposure sites), and Fig 8A (glucan exposure density). These values were

used to compare with the simulation outputs. Yctrl and Ycasp refer to untreated control and caspofungin treated yeasts, respectively.

https://doi.org/10.1371/journal.pone.0188599.t001
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glucan exposure in the experimental studies. Because the ROIs from our experimental data

represented a total 1 μm x 1 μm physical space in the specimen, our corresponding simulation

was comprised of a 200 x 200 grid of model pixels, each pixel representing a 5 nm x 5 nm area

(Fig 1A).

Glucan is not distributed uniformly in fungal cell walls but rather exists in fibril structures

and thus can only be unmasked in certain areas [14]. In order for the simulations to reflect this

anisotropic distribution of cell wall glucan, we introduced striped regions in the simulation

space in which masked glucan was assumed present (black), while glucan was absent from all

other areas (white) (Fig 1A). The width of the stripes and the total masked glucan area (expressed

as a percentage of the total simulation space) were thus parameters of the simulations. Our simu-

lations were restricted to conditions with uniform stripe width.

Results from the computational model of glucan exposure assuming a spatially random

unmasking process are illustrated in Fig 2. To compare the results of the simulations of glucan

unmasking with the analysis of the experimental data, the singlet exposure fractions, equiva-

lent radii of multiglucan exposures, and glucan site exposure densities from the simulations

were plotted versus the simulated percent glucan surface area. This latter quantity is defined as

the fraction of exposed pixels per total number of pixels in the simulation space (40,000). It is

Fig 1. Schematic description of the glucan unmasking model. (A) Masked glucan on C. albicans cell walls was represented as stripes (black) of a

specified width in pixels and covering a specified fraction of the total simulation area (white grid space). The stripes model the presence of fibrillar structures

of insoluble glucan in the C. albicans cell wall. Each pixel represents a 5 nm x 5 nm area in the total square simulation space of 1 um2. The glucan

unmasking model proceeds by selecting a single pixel at each iteration (black masked glucan or white glucan free) and changing its state. As pixels

representing glucan are unmasked, they change their color to red. (B-D) Pixels are chosen for glucan unmasking at each iteration of the simulation, either in

a random (Pedge = 0) or an edge biased (Pedge>0) manner. If Pedge>0, then Pedge determines the probability that a pixel will be chosen from the boundary

pixels surrounding existing exposures as opposed to a pixel chosen randomly from the surface. (E) The simulation space is 200 x 200 pixels, so after

40,000 iterations all pixels have been selected and all masked glucan has been exposed.

https://doi.org/10.1371/journal.pone.0188599.g001
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directly comparable with the experimentally observed localization densities expressed as total

exposed glucan area (nm2, with each localized glucan probe assumed to occupy 25 nm2)

divided by the Region of Interest (ROI) area (1 μm2 = 106 nm2). This means that the percent

glucan surface area ranges from the experimental data can be plotted along the horizontal axis

of the simulation results. Correspondingly, the ranges of the experimental singlet fractions,

equivalent radii of multiglucan exposures, and glucan site exposure densities can be plotted

along the vertical axes of the equivalent simulation results. Together, these axial ranges create

range boxes of experimental data overlaid on top of the simulation results (Fig 2D–2F, cyan

boxes). These boxes express ranges in the style of box plots, representing the 25th, 50th and 75th

percentiles of the relevant values (percent glucan surface area, singlet fractions, equivalent

radii of multiglucan exposures, and glucan site exposure densities). The left and right edges of

the boxes represent the 25th and 75th percentiles of percent glucan exposure area in the experi-

mental dataset, with the 50th percentile represented by the vertical line within the box. The bot-

tom and top edges of the boxes represent the 25th and 75th percentiles of experimental dataset

measurement as noted on the plot’s vertical axis (singlet fractions, equivalent radii of multiglu-

can exposures, or glucan site exposure densities), with the 50th percentile represented by the

horizontal line within the box.

As a concrete illustration of the concepts introduced above, once again consider Fig 1.

Panel A represents the initial configuration in which the glucan localization density is zero,

that is, there are no exposed pixels. In Panel B, two pixels (in red) have been exposed on the

Fig 2. Random unmasking model simulation results did not match the experimental results. (A-C) Full results over the entire simulation for various

combinations of stripe width (nm) and glucan coverage (percent) of the simulation space for the three simulation and experimental outputs measured. The

lines represent means calculated from n = 100 runs for each condition. (D-F) Zoomed in results corresponding to the experimental data domain. The cyan

range boxes express ranges in the style of box plots with the lines representing the 25th, 50th (median) and 75th percentiles of the experimental data, going

from left to right or bottom to top, on the corresponding axes (percentiles refer to percent glucan surface area on the horizontal axes, and to singlet fraction,

equivalent multi-exposure radius or glucan exposure density as denoted on the vertical axes). Within each plot, the left-most cyan range box corresponds to

untreated yeast, the right-most to caspofungin-treated yeast.

https://doi.org/10.1371/journal.pone.0188599.g002
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black stripes which represent glucan fibrils. The localization density is therefore 2/40,000, cor-

responding to 0.005% glucan surface area. The two exposed pixels are isolated from each

other, so are both singlets. Since only singlets are present, the singlet fraction is one. In Panels

C and D, more pixels are exposed, sometimes as isolated singlets and sometimes collected

together into groupings. Each singlet or grouping is a glucan exposure site. The localization

density is defined as the total number of exposed pixels per unit area, while the glucan site

exposure density is the total number of glucan sites per unit area. Biologically, we are compar-

ing the density of probes attached to glucan versus the density of exposures. The singlet frac-

tion is now < 1 as some of the exposed sites are not singlets, this fraction being the number of

singlet sites per total number of sites. Finally, for those sites containing three or more pixels,

we compute the exposure site area (corresponding to the area bounded by three or more locali-

zations in the experimental data). Rather than compare areas directly, we compute the radii of

circles with equivalent areas, as the values have a more understandable interpretation. In Panel

E, all the masked glucan has been exposed and is collected together into a single exposure site

per stripe, corresponding to a glucan site exposure density of 2/μm2 since the ROI area is

1 μm2. The localization density and equivalent radii of multi-exposures is at a maximum, while

the singlet fraction is now zero. From the data in Table 1, the maximum 75th percentile locali-

zation density corresponds to about 100 exposures / μm2, which equates to approximately

0.25% glucan surface area, establishing the upper end of the percent glucan surface area range

that is applicable to reported experimental observations of glucan exposure nanostructure.

Mean behavior of all three simulation outputs are shown over the entire range of the simula-

tions through complete unmasking (Fig 2A–2C), but separate plots detail the experimentally

comparable percent glucan surface area range of all outputs for easier examination (Fig 2D–

2F). We focused on comparing simulation results to experimental results between the 25th and

75th percentiles of percent glucan surface area exposed relevant to the two yeast experimental

conditions, untreated and caspofungin-treated.

Glucan in the cell wall is not homogeneously distributed, but rather is present as insoluble

fibrils ([14, 15], see Methods). To account for the effects of glucan fibrils, the simulation space

was filled with glucan stripes of width 25, 50, 75 or 100 nm (5, 10, 15 or 20 pixels) wherein the

glucan stripes covered 5%, 10%, 15% or 20% of the total simulation space. While stripes are a

simplified representation of glucan fibril structure, these width values are based on available

experimental evidence (see Methods). We present in Fig 2 the mean output of simulations at

various model parameterizations (n = 100 simulations/parameter set). As expected, the percent

glucan coverage of the simulation space determines the maximum percent glucan surface area

that can be achieved in the simulation (note the final values on the horizontal axis) (Fig 2A–

2C). Furthermore, differences in the stripe width change the behavior of simulation output

curves, which is especially noticeable on the singlet fraction curves and glucan exposure den-

sity as the characteristic shape of the curves is compressed into smaller ranges of percent glu-

can surface area as the stripe width decreases (Fig 2A and 2C).

Plots in Figs 2D–2F and 3D–3F include experimental data indicated by cyan range boxes:

untreated (left-most box in the plot) or caspofungin-treated (right-most box in the plot). If a

given model and parameterization is an accurate representation of the process of unmasking,

then we expected to find at least some simulation parameterizations that accurately predicted

glucan exposure nanostructure, resulting in simulation outputs that would lie within the boxes

defined by experimental measurements. The completely spatially random unmasking model

predicted glucan nanoexposure characteristics that were inconsistent with experimental obser-

vations (Fig 2D–2F). Throughout the realistic range of model parameterizations used, this

model overestimated the fraction of singlet exposures and glucan exposure density while

underestimating the size of multiglucan exposures.
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Because glucan exposure nanostructure cannot be explained by a completely spatially ran-

dom unmasking process, we modified the model to account for additional mechanisms of glu-

can exposure. Fungal cell walls are sensitive and malleable organelles capable of rapid and

active enzymatic remodeling during cytokinesis and in response to environmental stress [16,

17]. Therefore, we proposed that glucan unmasking might be partially explained by a locally

active enzymatic process acting to enlarge existing sites of glucan nanoexposure. We next

modified our model to account for such a mechanism of partially edge biased unmasking,

where the degree of bias toward unmasking at the edge of an existing exposure (versus

unmasking at a new site randomly located on the cell wall surface) is defined by the new

parameter Pedge (see Fig 1). Pedge is the probability that in a masked glucan region a boundary

pixel surrounding an existing exposure was chosen rather than a completely random pixel. In

Fig 3. The edge biased unmasking model improves correspondence of simulated and experimental datasets. We show Pedge = 4% bias runs as an

example. (A-C) Full results over the entire simulation for various combinations of stripe width and glucan coverage for the three simulation and experimental

outputs measured. (D-F) Similar to A-C, but showing zoomed in results corresponding to the experimental data domain. The cyan range boxes express

ranges in the style of box plots with the lines representing the 25th, 50th and 75th percentiles of the experimental data, going from left to right or bottom to top,

on the corresponding axes. Within each plot, the left-most cyan range box corresponds to untreated yeast, the right-most to caspofungin-treated yeast. (G-I)

The standard deviations of the zoomed in results from D-F. The lines represent mean (A-F) or standard deviation (G-I) values calculated from n = 100 runs for

each condition.

https://doi.org/10.1371/journal.pone.0188599.g003
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other words, edge biased unmasking chooses pixels at the edges of existing exposures thus

expands existing glucan exposure sites. Pedge, satisfying 0� Pedge� 1, is therefore the probabil-

ity that an edge pixel is chosen at each iteration, the rest of the time pixels are randomly chosen

somewhere on the simulated surface. In this scenario, the random unmasking model described

previously is simply the situation when Pedge = 0.

We performed the same sort of analysis with the edge biased unmasking model as we did

with the spatially random unmasking model, running simulations on a range of Pedge from

0.01 to 0.95. An example for Pedge = 0.04 (4% bias) is given in Fig 3, with simulation outputs

for the complete range of glucan unmasking conditions (Fig 3A–3C) and a detailed range of

percent glucan surface area corresponding to comparative experimental data (Fig 3D–3F),

similarly to Fig 2. In general, results from the edge biased model with Pedge = 0.04 predict glu-

can exposure nanostructural features that are much closer to experimentally measured glucan

exposures than the spatially random model, as shown by their closer approach to experimental

data boxes. Across the range of edge biased unmasking model simulations with Pedge = 0.04,

the variance of the three model outputs was consistent as shown by the plot of standard devia-

tions at all stripe width and percent total glucan parameterizations (n = 100 replicate simula-

tions/parameterization) (Fig 3G–3I).

To determine an optimum value for Pedge, we defined a metric to compare the simulated

mean curves at the experimental percent glucan surface area medians (untreated and treated)

with the corresponding experimental medians for each of the three variables examined (singlet

fraction, equivalent radii of multiglucan exposures, and glucan exposure density; see Table 1).

For each of the three variables, y, we first computed a normalized signed discrepancy,

Dy ¼
yexperimental � ysimulated

yexperimental

then computed the sum of the absolute values,

D ¼ jDsingletfractj þ jDradiij þ jDdensityj

to yield a total discrepancy for either untreated or treated experimental results. D is a weighted

sum of the | Dy |’s, where all the weights have been chosen to be one, not favoring any of the

three variables in the sum. We considered that the value of Pedge that produced curves with the

lowest total discrepancy to be defined as the simulation parameterization giving optimum pre-

dictions of experimentally observed glucan exposure nanostructure.

In Fig 4, we plot D and its three contributing normalized signed discrepancies (Dsingletfract,

Dradii and Ddensity) as a function of Pedge for the untreated (Fig 4A–4D) and caspofungin

treated (Fig 4E–4H) yeasts. A discrepancy of zero or values near zero is desirable. In all cases,

the normalized signed discrepancies, Dy, approach zero as Pedge increases up to some limit that

depends on the output quantity (y), treated condition, percent glucan coverage and stripe

width (Fig 4B–4D and 4F–4H). The total discrepancy, D, which combines the | Dy |’s, also

approaches zero over intervals that depend on the treated condition, percent glucan coverage

and stripe width (Fig 4A and 4E). In these latter ranges determined by the total discrepancy,

the edge biased unmasking model is always an improvement over the random unmasking

model because the magnitude of D in these ranges is always less than the magnitude of D at

Pedge = 0. At values of Pedge greater than the occurrence of the minimum D, the total discrep-

ancy begins to rise, indicating a non-optimal fit between the model and experimental data

introduced by too much edge bias. However, the edge biased unmasking model (all Pedge>0)

continues to provide better predictions of experimental data than the spatially random

unmasking model (Pedge = 0) until extreme values of Pedge are reached (i.e., Pedge = 0.95 for the
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untreated yeasts; the edge biased unmasking model was always better for caspofungin treated

yeasts).

The different stripe widths (depicted as different line styles) have very minor effects on the

quality of fit of simulation predictions to experimental measurements for all three measured

quantities, while percent of total area containing glucan (depicted as different line colors) had

a much stronger effect. We note that for the total discrepancy D (Fig 4A and 4E), the smaller

the percentage of the glucan coverage, the steeper the slope of the curves (in absolute value) is

at any particular value of Pedge� the value of Pedge corresponding to the minimum D for the

given percentage of glucan coverage. Similar comments can be made for most of the Dy’s (Fig

4B–4D and 4F–4H). Examination of individual outputs’ signed normalized discrepancies,

focusing for illustrative purposes on 5% glucan coverage, shows that singlet fraction discrepan-

cies decrease as Pedge rises, transitioning from positive to negative discrepancies (under- to

overestimate of experimental values) at Pedge = 0.02/0.03 (untreated/caspofungin-treated) (Fig

4B and 4F). Multiglucan equivalent radius discrepancy increases with Pedge, with negative dis-

crepancies until about Pedge = 0.39 (untreated) or Pedge = 0.70 (caspofungin-treated) (Fig 4C

and 4G). Glucan exposure density signed normalized discrepancy decreases with rising Pedge,

not reaching zero until Pedge = 0.09/0.11 (untreated/caspofungin-treated) (Fig 4D and 4H).

All 11 conditions of stripe width and glucan coverage produced the same trends. How-

ever, the values of the transitions varied, but always with caspofungin-treated greater than

untreated. It is notable from the above observations that the three outputs relating to glucan

nanostructure are optimally predicted for different ranges of Pedge. Therefore, the best fit

model parameterizations must always represent a compromise between these three outputs

wherein divergence of model predictions from experimental observations is simultaneously

minimized, but individual outputs cannot all simultaneously achieve global minimum dis-

crepancies.

Fig 4. Model/Experiment discrepancy calculations quantify model performance and identify model parameterizations with optimum fit to

experimental data. To describe the goodness of fit of the models, we measured discrepancies of various simulation outputs as a function of Pedge. Data are

displayed for untreated (A-D) and caspofungin-treated (E-H) yeasts. Note that Pedge = 0 corresponds to the random unmasking model. For each series,

results are given for the total discrepancy (A,E) and the individual signed contributions of the three variables of interest [singlet fraction (B,F), equivalent

radii of multi-exposures (C,G), and glucan exposure density (D,H)]. Dotted magenta lines in B-D and F-H denote the zero value for the indicated

discrepancy metric, which is the value of optimum fit of model results to experimental results for an individual output. The above mean values are calculated

from n = 100 runs for each condition.

https://doi.org/10.1371/journal.pone.0188599.g004
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Since some of the Dy cross zero, | Dy | will turn back from zero, which is evident in the plot

of D where the glucan coverage curves exhibit minima ranging from Pedge = 0.10–0.36 depend-

ing on the percent glucan coverage. In general, the larger the percent glucan coverage, the

higher the value of Pedge becomes where D is minimized. The values of the minimal total dis-

crepancies are similar over all stripe widths and percent glucan coverages, within the untreated

or treated groups, respectively. In Table 2, we report the values of singlet fraction, equivalent

radii and exposure density predicted by the edge biased unmasking model at the four different

percent glucan coverages simulated. These data are shown for the Pedge that provided the mini-

mum D, which is considered the optimal model parameterization providing the best fit to

experimental data, so as to focus on model parameterizations that optimally fit the experimen-

tal results shown in Table 1. Also, the data in Table 2 only concern simulations with 50 nm glu-

can fibril widths because: 1) our models were quite robust to variations in fibril width over the

experimentally relevant range of percent glucan surface area and 2) this fibril width is consid-

ered a good representative value for native fungal glucan fibril sizes based on the available liter-

ature (see Methods).

The best predictions of experimental data by the model are only achieved when it is

assumed that a larger degree of edge-biased unmasking (larger Pedge) happens in cells treated

with caspofungin. This finding is consistent with the fact that caspofungin represents a cell

wall stressor, so heightened activity of local cell wall remodeling enzymes is expected to be

present in C. albicans yeast treated with this drug. The fact that this prediction emerges from

our model lends confidence that the glucan exposure regulatory processes embodied in the

model do bear close relation to mechanisms controlling glucan exposure in C. albicans yeast

cells.

To provide a more visual comparison of the optimal predictions of the edge biased model,

we focused on the Pedge parameterizations that provided the optimal fits to the experimental

data for each of the four different percent glucan coverages tested for untreated and treated

conditions (Fig 5). These curves represent the best performance of the model, that is, the simu-

lated results taken at the Pedge corresponding to the minimum D for each individual percent

glucan coverage for a representative fibril width of 50 nm (see also Table 2). This allows the

predictions of all three outputs (singlet fraction, equivalent radius of multi-exposures, and

exposure site density) to be individually assessed against experimental values. Under optimal

Pedge parameterization (i.e., the Pedge at which D is minimized for a given parameterization of

stripe width and glucan coverage), our model predicts mean glucan exposure site density quite

Table 2. Simulation outputs (mean ± standard deviation) from model parameterizations with optimal fits to experimental results.

% Glucan Coverage Min DPedge Singlet Fraction Equivalent Radius (nm) Exposure Site Density (μm-2)

5 10 0.64 ± 0.23 9.4 ± 2.1 6.8 ± 3.1

10 19 0.66 ± 0.21 9.3 ± 1.9 7.1 ± 2.9

15 25 0.66 ± 0.17 9.3 ± 1.5 7.1 ± 3.1

20 32 0.63 ± 0.22 9.5 ± 1.7 6.9 ± 2.8

5 11 0.63 ± 0.09 24.0 ± 1.5 27.8 ± 5.7

10 21 0.63 ± 0.09 23.9 ± 1.5 28.1 ± 6.4

15 29 0.63 ± 0.09 23.9 ± 1.4 28.2 ± 5.9

20 36 0.63 ± 0.10 23.8 ± 1.2 28.9 ± 6.3

All results shown correspond to simulations conducted at a representative glucan fibril width of 50 nm, and at values of Pedge associated with the minimum D

for the given percent glucan coverage and treated condition. The top half of the table is untreated results, while the bottom half is caspofungin-treated

results.

https://doi.org/10.1371/journal.pone.0188599.t002
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well for untreated and caspofungin-treated cases (Fig 5C and 5F). Similarly, the model pro-

vides good predictions of mean equivalent multi-exposure radii for both untreated and treated

cases (Fig 5B and 5E). While the consideration of non-zero edge biased unmasking probabili-

ties in our model did clearly improve predictions of mean singlet fraction, we find that optimal

model parameterizations did not provide predictions that fit experimental data for singlet frac-

tion as well as the other outputs, for either untreated or treated conditions (Fig 5A and 5D).

Discussion

Genetic and biochemical approaches have advanced our conceptual understanding of glucan

masking and its impact on host-pathogen interactions [9, 10, 18]. However, the field still lacks

physically detailed and quantitatively testable mechanistic models of how glucan masking and

unmasking unfolds in C. albicans at the fine spatial scales relevant to engagement of Dectin-1.

Here, we used mathematical modeling to simulate physical processes regulating glucan expo-

sure during glucan unmasking by the antimicrobial drug, caspofungin, and tested the model

predictions against super resolution imaging observations of glucan exposure under the same

conditions. We first considered a totally random unmasking process. Glucan exposure nano-

structure predicted by this mechanism was not well matched to experimental observations,

Fig 5. Edge-biased unmasking model parameterizations with optimum global performance predict experimental outputs significantly better

than random unmasking models. We compared the simulated to the experimental results using the Pedge’s that produced the smallest total discrepancies

(minimum D) for 5, 10, 15 and 20% glucan coverage with fibril width 50nm in untreated and treated conditions. The actual Pedge values used in the depicted

model results are given in Table 2. Data are displayed for untreated (A-C) and caspofungin-treated (D-F) yeasts, corresponding to singlet fraction (A,D),

equivalent radii of multi-exposures (B,E), and glucan exposure density (C,F). The range boxes express ranges in the style of box plots with the lines

representing the 25th, 50th and 75th percentiles of the experimental data, going from left to right or bottom to top, on the corresponding axes. The left-most

range box corresponds to untreated yeast, the right-most to caspofungin-treated yeast. Within each plot, the above values are calculated from n = 100 runs

for each condition. For emphasis, the range boxes representing untreated experimental data are colored cyan in A-C, which concern simulations of

untreated yeast. Conversely, the range boxes representing caspofungin-treated experimental data are colored cyan in D-F, which concern simulations of

caspofungin-treated yeast. In every case, range boxes for the sample type less relevant to a given plot are de-emphasized by grey coloration, but are

retained for reference.

https://doi.org/10.1371/journal.pone.0188599.g005
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excluding a fully random process as an adequate mechanistic description of glucan exposure.

We then introduced Pedge, a parameter indicating the extent of local glucan unmasking near

sites of existing glucan exposure (e.g., glucan remodeling enzyme activity) that remodel the

cell wall dynamically to alter glucan exposure. Simulations of glucan exposure induced by cas-

pofungin according to this model improved accuracy of predictions of experimentally observ-

able glucan exposure nanostructure. Furthermore, the model predicts that a greater degree of

bias toward local glucan unmasking activity (Pedge) is necessary to optimally predict glucan

exposure nanostructure in caspofungin treated yeasts, while control untreated yeasts achieve

optimum results at lower Pedge. Because caspofungin inhibits the fungal β-(1,3)-glucan

synthase, it represents a significant cell wall stressor. Under conditions of cell wall stress, C.

albicans activates cell wall repair pathways, leading to increased enzymatic remodeling of the

cell wall. So, the prediction of increased local glucan unmasking that emerged from our study

is consistent with expected cell wall remodeling activities during drug treatment.

Prior reports have implicated mannan biosynthesis and cell wall incorporation as a key con-

trol point in regulating glucan exposure. C. albicans N-linked mannan biosynthesis involves

the C. albicans Mnn2 family of α-1,2-mannosyltransferases [19]. Deletion of CaMNN2 family

genes attenuates N-mannan structure and leads to increased glucan exposure [11]. Caspofun-

gin inhibits the activity of the multi-protein β-(1,3)-glucan synthase complex (CaGsl1p,

CaGsl2p, CaGsc1p and CaRho1p) [14, 20]. Caspofungin may impair the development of the

glucan scaffold to which mannoproteins attach, thus degrading glucan masking in the outer

cell wall. Consistent with this, The Cakre5 deletion mutant has reduced β-(1,6)-glucan which

links mannoproteins to the glucan network; this mutant possesses strongly increased cell wall

glucan exposure [9, 21, 22]. Specifically, β-(1,6)-glucans can attach mannoproteins to glucan

via a GPI anchor remnant [23, 24] in a process that requires CaDFG5 and CaDCW1 [25, 26].

In S. cerevisiae, ScCdc1p regulates the efficiency of GPI-anchored protein transfer [27]. So, glu-

can exposure may also be impacted by the ability to incorporate GPI-linked cell wall proteins.

However, it is important to recognize that impaired cell wall polysaccharide biosynthesis or

incorporation via chemical or genetic perturbations may cause numerous compensatory

changes to cell wall structure and composition that make it difficult to disentangle direct and

indirect effects on glucan exposure. It is particularly challenging to know how global perturba-

tions of cell wall biosynthesis may be able to directly impact the local (nanoscale) pattern of

glucan exposure that was particularly important in our model.

Because our model stresses the importance of a 10–36% bias toward local cell wall synthe-

sis/remodeling in the development of glucan nanostructure, enzymes that are present in the

outer cell wall and capable of locally modifying cell wall structure to impact glucan exposure

are of particular relevance. Such systems include glucosidases that cleave glycosidic bonds in

glucan or glucosyltransferases that mediate attachment of oligosaccharide chains to glucans.

These cell wall enzymes can be divided into three classes: 1) carbohydrate-active enzymes

found in the outer cell wall but not known to be covalently attached, 2) similar enzymes cova-

lently anchored to the glucan scaffold, and 3) proteolytic enzymes anchored in the cell wall.

First, proteomic studies have identified CaBgl2p (β-(1,3)-glucosyltransferase), CaXog1p (exo-

β-(1,3)-glucosidase), and CaEng1p (endo-β-(1,3)-glucosidase) as C. albicans outer cell associ-

ated proteins [28–32]. These secreted enzymes could mediate removal or rearrangement of

glucan in the outer cell wall, perhaps by interacting with surface accessible glucan exposures

from the cell exterior. Indeed, Garfoot et al. reported a similar mechanism of glucan exposure

regulation for the homologous Eng1p in H. capsulatum [33]. Second, several GPI-anchored

cell wall proteins capable of modifying β-glucan have also been identified in the outer cell wall

of C. albicans, including CaExg2p (exo-β-(1,6)-glucosidase), CaPhr1p and CaPhr2p (β-(1,3)-

glucosyltransferases), and CaScw1p (glucosidase) [32, 34, 35]. Caphr2 deletion mutants display
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increased glucan exposure [9]. CaScw1p (MP65) is an abundant cell wall mannoprotein that

likely provides significant glucan masking function, suggesting that glucan masking moieties

in the cell wall may provide not only a passive steric blockade of access to glucan, but they may

also have significant catalytic activity that locally shapes cell wall structure [35–37]. Addition-

ally, a similar set of GPI-anchored cell wall enzymes with chitin remodeling activity have also

been found in the C. albicans outer cell wall, including CaCrh11p (a transglycosylase that links

glucan to chitin) and CaCht2p (chitinase). We speculate that these enzymes may locally con-

trol a degree of chitin/glucan crosslinking in the outer cell wall. Third, the C. albicans outer

cell wall contains CaSap9p and CaSap10p which are GPI-anchored aspartyl proteases [32].

CaSap9p is homologous to the S. cerevisiae "sheddase" yaspin, ScYps1p, that can cleave and

release other cell wall anchored proteins [38]. Indeed, CaSap9p and CaSap10p have known

proteolytic activity against a number of the GPI-anchored cell wall proteins [39], suggesting

that these proteases may locally regulate the level of other cell wall anchored enzymes present

within the neighborhood defined by gyration about their β-(1,6)-glucan tethers. Thus, several

systems are known that have the potential to influence cell wall structure through acting inter-

facially at the cell wall/medium boundary or by virtue of their anchorage in the cell wall by

flexible GPI-remnant anchors to β-(1,3)-glucan chains. Further studies are needed to deter-

mine if these specific enzymatic systems might provide the locally biased enzymatic activities

predicted to be important for determining glucan exposure nanostructure in our computa-

tional models.

Dectin-1 activation by fungal β-glucan is a key determinant of host defense against C. albi-
cans infection [40, 41]. Several lines of evidence suggest that understanding the biophysical

nature of Dectin-1/glucan at nanoscale dimensions is significant for antifungal immunity.

First, Goodridge et al. stimulated Dectin-1 expressing leukocytes with β-glucan attached to 50,

200 and 500 nm diameter particles, and observed a positive correlation between nanometric

length scale of a particular glucan presentation and ROS response [42]. While it is true that

particle size might also impact the rate of particle internalization and termination of Dectin-1

signaling [43], these suggest that glucan nanostructure may impact Dectin-1 signaling. Second,

Dectin-1 activates an ITAM-like signaling process, engaging Syk via a hemITAM motif with

only a single ITAM phosphotyrosine motif [44, 45]. Because a tandem ITAM motif is more

typical and supports bivalent interaction with dual SH2 domains of Syk, it is thought that Dec-

tin-1 multimerization is important for Syk recruitment and signaling [46–49]. This is sup-

ported by a crystal structure indicating dimerization of ligated Dectin-1 [13]. Third, high-

resolution methods are increasingly revealing the importance of nanostructure in cell wall

biology. Atomic Force Microscopy (AFM) studies have demonstrated force dependent forma-

tion and propagation of CaAls5p adhesin nanodomains [50]. AFM has also been used to char-

acterize glucan exposure and physical properties of cell walls in Cacho1 and Cakre5 deletion

mutants [22]. Our previous studies using dSTORM super resolution imaging have revealed

that both glucan exposures in C. albicans and C-type lectins on dendritic cells exhibit regulated

nanoscale organization [8, 51]. For instance, >90% of glucan exposure sites on C. albicans
yeast and hyphal lateral cell walls are restricted to supporting only single Dectin-1 receptor

binding, but unmasking glucan with sub-MIC caspofungin increases the density and size of

larger glucan exposures capable of supporting multivalent Dectin-1 ligation [8]. Therefore, the

size of glucan exposure sites on the cell wall and their valency of interaction with Dectin-1 at

nanometric dimensions is relevant to engagement and aggregation of the receptor. It is fur-

thermore likely to be important for understanding Dectin-1 activation. The nanobiology of

glucan and Dectin-1 is a gap in knowledge that must be filled if physically realistic and evi-

dence based models of Dectin-1 engagement are to be propagated and tested.
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At optimal Pedge, our model yielded good predictions for experimental values of glucan

exposure density and multi-exposure radii, but less accurate predictions of the fraction of sin-

glet exposures. Optimal model performance is a compromise to achieve best results for all

three outputs in one model parameterization. Future improvements in model performance

may require a more complex model of pools of glucan in the C. albicans cell wall that can con-

tribute to surface exposure. We have considered glucan fibrils underlying the masking mannan

layer to be the sole source of glucan exposure. However, biochemical fractionation of cell wall

glucan by alkali solubility identifies two pools of β-(1,3;1,6)-glucan: 1) an alkali-insoluble frac-

tion that is considered to contain the deep cell wall glucan fibrils that we have modeled [15, 52]

and 2) an alkali-soluble fraction that is highly branched and has a low degree of polymerization

[53, 54]. The alkali-soluble glucan probably resides in the outer cell wall because it is intimately

associated with mannan [55–57]. It is possible that these alkali-soluble glucans of the outer cell

wall contribute to a population of predominately singlet glucan exposures by virtue of their

small size and close association with masking mannans. Future models that consider this addi-

tional source of glucan exposure sites might provide predictions of singlet glucan exposure

fraction that would more closely match experimental values. Continued efforts to use model-

ing coupled with experimental observations of glucan nanostructure are likely to provide a

fruitful approach to deepening our understanding of the fine structure of the C. albicans cell

wall.

Methods

Simulations

Our initial model simulated a completely spatially random glucan unmasking process, consis-

tent with a process driven by random environmental damage to the cell wall and/or cell wall

turnover leading to glucan exposure. In this model, a single unique model pixel was converted

from the masked to the unmasked state on each iteration (Fig 1B–1E). If the model pixel was

within one of the stripes, this conversion represented glucan unmasking, creating a glucan

exposure (red). If the model pixel was outside the stripes, no change resulted for glucan expo-

sure. In either case, each individual pixel was converted exactly once, so that the total number

of iterations was the same as the total number of pixels (40,000). Also, in random modeling,

the unmasking process can occur in any unconverted pixel in the simulated space with equal

probability. For this reason, we compared the results of random unmasking anywhere in the

simulation space to simulations in which only pixels in the stripes were selected at each itera-

tion. The results were very similar (S1 Fig). This comparison acted as a control, showing that

the results obtained from the random unmasking model are not merely an artifact of having

partial coverage of glucan in the simulation space.

In the random model, at each iteration, the total number of glucan exposure sites and their

areas were tabulated. A glucan exposure site was defined as: 1) an isolated "singlet" exposure

consisting of a single exposed pixel or 2) an extended "multiglucan" region consisting of three

or more pixels with exposed glucan sharing at least one edge with other members of the region.

(Two adjacent pixels, a doublet, were treated in the analysis as two singlets in order to fairly

compare with the analysis of the experimental data in which an isolated pair of localizations

closer than the clustering radius was treated in a similar manner.) The area of a glucan expo-

sure site was therefore computed simply from the number of pixels that composed it. The total

number of glucan exposures at each iteration was then the sum of the number of pixels com-

posing all of the glucan exposure sites. The corresponding area was expressed as the percent

glucan surface area exposed in order to provide a common axis to follow the progress of

unmasking as variously parameterized simulations were iterated. The total number of glucan
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exposure sites at the end of the simulation (complete unmasking) was thus the number of

stripes and their areas were the stripe areas.

To compare simulation results with experimental data, we computed the localization den-

sity (number of glucan exposures per μm2), the fraction of singlet glucan exposure sites (iso-

lated unmasked pixels), the equivalent radii of circular exposures representing multiglucan

exposure sites (sites with three or more contiguous exposed pixels; nm), and the glucan expo-

sure density (number of glucan exposure sites, including both singlet glucan and multiglucan

exposure sites, per μm2).

Examining the results from the initial model (see Results), we saw that the experimental

data did not match well with the simulations. This led us create a modified model introducing

edge biased unmasking and to run a second series of simulations using this model. In the mod-

ified model, a third parameter, the edge unmasking probability, Pedge, was introduced. At each

iteration, a uniform random number, x, between 0 and 1 inclusive, was chosen. If x� Pedge, a

boundary pixel just outside the edge of a pre-existing glucan exposure site (and within a stripe

of masked glucan) was chosen, otherwise a random pixel was selected with no restrictions on

its location. The boundary pixel chosen was selected randomly from all possible boundary pix-

els. If there were no pre-existing glucan exposure boundary pixels (for example, at the start of

a simulation), then a random pixel was picked. This allowed unmasking activity to be balanced

between growth of existing exposure sites (representing local unmasking) during some speci-

fied fraction of the time and completely spatially random unmasking (representing random

environmental effects).

In the extreme, Pedge = 0 corresponds to the random unmasking model, while Pedge = 1

causes the first exposure in a stripe to expand to cover the entire stripe before a new exposure

in another stripe can occur.

Implementation of simulations

Simulations and analysis of simulation outputs were implemented in custom MATLAB code,

available at http://stmc.health.unm.edu/tools-and-data/ and https://doi.org/10.6084/m9.

figshare.5606035. A semi-MATLAB style pseudocode of the unmasking algorithm for Pedge�

0 is provided in S2 Fig.

Parameterization of simulations

Models were parameterized with 5%, 10%, 15% or 20% of the total area of the simulation space

as initially masked glucan arranged in vertical stripes of a specified widths of 25, 50, 75, 100

nm (5, 10, 15, 20 pixels). In the edge biased model, simulations were run at Pedge values of 0.01

to 0.60 by 0.01 and 0.65 to 0.95 by 0.05.

Stripes of glucan in our simulation space were intended to model the presence of fibrillar

structures of insoluble glucan in the C. albicans cell wall. Osumi measured these fibrils in the

cell walls of recovering protoplasts using low-voltage SEM methods [14]. Elemental glucan

fibrils were observed to be 1–2 nm wide. However, most glucan fibrils laterally self-assembled

into larger bundles of fibrils, and the presence of these larger fibrils increased in more mature

cell walls. Fibrils were typically greater than 20 nm wide and ranged up to approximately 200

nm. We chose to simulate a range of fibril widths ranging from 25–100 nm in width, repre-

senting the range of fibrils that were most commonly observed. This general size range of

fibrils is further supported by the observation of fibrillar structures of approximately 25 nm

width in fungal cell walls by AFM [58]. Furthermore, we used en face images of glucan fibrils

from Osumi’s paper to estimate the percent area composed of glucan fibrils. In these images,

glucan fibrils are brighter than the background. We thresholded these images at one standard
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deviation above the mean grey value of the image to objectively identify glucan fibrils in a

mask image. The fractional area composed of glucan fibrils so identified was ~10%. Note that

because protoplast walls are still growing, this value may be an underestimate of glucan fibril

fractional area of the inner cell wall surface for a mature cell wall. To complement this analysis,

we similarly analyzed images showing fibrillar inner cell wall structure in S. cerevisiae from

Kopecka, et al [15], and we found that these glucanase-sensitive fibrils covered ~20% of the

inner cell wall surface. S. cerevisiae cell walls are thought to be similar in structure to C. albi-
cans, and this latter study is likely more indicative of glucan fibrillar structure in a mature

Ascomycetous cell wall. Therefore, we simulated a range of percent glucan areas that straddled

this range of values, emphasizing slightly higher values in the simulated range upon the

assumption that recovering protoplast glucan fibril densities could be somewhat less than a

fully matured cell wall.

Supporting information

S1 Fig. Comparison of the random unmasking model (option 2, solid lines) with the con-

trol model (option 1, dashed lines). We compared running the random unmasking model in

which a random pixel somewhere in the entire simulation space was chosen at each iteration

(opt 1) to a control model in which only a random pixel in one of the masked glucan stripes

was selected per iteration (opt2) (in the latter case, the number of iterations was adjusted to be

just sufficient to flip all the pixels in the given set of stripes). The results for all parameter com-

binations simulated were nearly identical for the two models for the variables of interest [sin-

glet fraction (A), equivalent radii of multi-exposures (B), and glucan exposure density (C)].

Given that, we chose to simply use the random unmasking model (and the edge biased

unmasking model, which was an extension of the random unmasking model) in subsequent

studies as it seemed to better mimic the experimental processes we expected might be present.

The above values were calculated from n = 100 runs for each condition.

(TIF)

S2 Fig. Unmasking algorithm written in semi-MATLAB style pseudocode. Cellwall repre-

sents the 200 x 200 pixelated simulation space (which also can be indexed from 1 to 40,000

using one-dimensional indices). Boundary collects the (orthogonal) boundary pixels of exist-

ing glucan exposure sites within the masked stripes. Masked keeps track of which pixels are

available to be chosen, however, only those in non-fixed regions cover masked glucan and so

can be exposed. The actual MATLAB algorithm was written in such a way that it can be run

on multiple processors simultaneously.

(DOCX)
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