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Summary

Therapy of advanced melanoma has been changing dramatically. Following mutational and 

biological sub-classification of this heterogeneous cancer, several targeted and immune therapies 

were approved and increased survival significantly. To facilitate further advancements through pre-

clinical in vivo modeling, we have established 459 patient-derived xenografts (PDX) and live 

tissue samples from 384 patients representing the full spectrum of clinical, therapeutic, mutational, 

and biological heterogeneity of melanoma. PDX have been characterized using targeted 

sequencing and protein arrays, and are clinically annotated. This exhaustive live tissue resource 

includes PDX from 57 samples resistant to targeted therapy, 61 samples from responders and non-

responders to immune checkpoint blockade, and 31 samples from brain metastasis. Uveal, 

mucosal, and acral subtypes are represented as well. We show examples of pre-clinical trials that 

highlight how the PDX collection can be used to develop and optimize precision therapies, 

biomarkers of response, and the targeting of rare genetic subgroups.
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INTRODUCTION

Advanced melanoma has gone from limited therapeutic options to approved kinase inhibitor 

and immune checkpoint therapy. Five-year survival rates have nearly doubled (Menzies et 

al., 2015; Schadendorf et al., 2015). Precision medicine and immune oncology are major 

areas of translational melanoma research. The complex melanoma landscape needs 

improved models reflecting all mutational and clinical subtypes. The UV carcinogenic 

etiology of melanoma makes it one of the most highly mutated cancers (Alexandrov et al., 

2013). This high mutational burden may be the reason for the success of immune checkpoint 

blockade (Callahan et al., 2016), but makes rational “precision” therapies challenging 

(Krepler et al., 2016).

The Melanoma Cancer Genome Atlas (TCGA) includes comprehensive molecular 

characterization of 333 non-acral cutaneous melanomas and is an important resource. It 

confirmed the main mutational subgroups of BRAF, NRAS, NF1, and triple wild type, as 

well as highlighting the distinct heterogeneity and high mutational burden of melanoma 

(Cancer Genome Atlas, 2015). Subtypes not included in the TCGA but published elsewhere 

were uveal (Van Raamsdonk et al., 2010), acral cutaneous (Furney et al., 2014), and mucosal 

melanoma (Sheng et al., 2016).

Patient-derived xenografts (PDX) as xenotransplantation of human tumors into athymic nude 

mice were first described by (Rygaard and Povlsen, 1969). PDX are established directly 

from patient tumors in immune deficient mice and thus provide a source of tumor tissue 
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closely resembling the clinical lesion (Hidalgo et al., 2014). Melanoma is uniquely suited to 

this approach as even single cells are tumorigenic in vivo (Quintana et al., 2008). Melanoma 

PDX were shown to accurately model the clinical disease and response to targeted therapy 

(Einarsdottir et al., 2014). We have shown recently that PDX derived from BRAF inhibitor 

relapsed patients and expanded on chronic therapy could be used to identify effective second 

line combination therapies based on genomic and proteomic profiling (Krepler et al., 2016). 

While these studies demonstrate the feasibility of the PDX approach, the melanoma TCGA 

and other studies (Arafeh et al., 2015; Cancer Genome Atlas, 2015; Krauthammer et al., 

2015) highlight the pronounced heterogeneity of this cancer type. Both concepts are 

combined here in an unparalleled collection of 459 mutationally and clinically diverse 

melanoma PDX and live frozen tissues, providing an exhaustive and testable resource for the 

melanoma research field. This resource is highly clinically annotated, includes rare body 

sites and subtypes such as brain metastasis, uveal, mucosal, and acral melanoma, as well as 

pre- and post-therapy samples from targeted inhibitor and checkpoint blockade treated 

patients.

RESULTS

Establishment of Melanoma PDX

We have collected 694 melanoma samples for PDX generation from eight institutions 

(Figure 1A). Fresh tumor samples were either directly implantated within 24 hours 

subcutaneously (s.c.) in NOD/SCID/IL-2Rγnull (NSG) mice or banked as cryopreserved 

live tissue (Figure 1A). Keeping primary tissue in a live tumor bank was a cost-effective 

alternative to fresh implantation, but dependent on adequate amounts of tissue. Both 

approaches successfully established PDX and detailed methods are included in the 

experimental procedures section and in a standard operating procedures (SOP) handbook 

(Supplementary File S1).

Of the samples collected, 319 were established as PDX and 140 were banked as live primary 

tissue w (Figure 1B) totaling 459 models from 384 different patients. Failure to establish a 

PDX was due to sample contamination, unexpected death of a primary recipient animal, 

receipt of non-viable samples, or non-melanoma samples (Figure 1B). Thus, although the 

overall success rate for establishing melanoma PDX was 62%, the take rate corrected for 

these factors was 83% (Figure 1C). This excluded primary uveal samples whose take rate 

was 11%.

Time to Tumor Growth and Tumor Growth Rate

Tumor samples were obtained from either fine needle aspirates (FNA), core biopsies, or 

surgical excisions. We found no significant difference in latency (time from implantation to 

palpable tumor) and tumor growth rates (time to maximal tumor size) (Figure 1D,E).

Very Small Cell Numbers Are Needed to Establish a Melanoma PDX

Tissues from three patients were enzymatically digested and hematopoietic cells, red blood 

cells, and endothelial cells removed We observed consistent tumor engraftment in mice at 

1000, 100, 10, and 1 cell(s)/mouse (Figure 1F). The latency period was extended by up to 4 
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months indicating that a follow up of 6 months is optimal to achieve maximum engraftment. 

Further, tumorigenicity did not significantly change when sorting the cells for the cancer 

stem cell marker CD271 (Boiko et al., 2010) (Figure 1G).

Patient Demographics Reflect the Clinical Spectrum of the Disease

Patients’ age ranged from 20–89 years with a peak between 60–69 years (Figure 2A)with a 

predominance of male patients, likely representing our sampling bias for advanced disease 

(Geller et al., 2002) (Figure 2B). More than 80% of patients had stage IV disease. The 

largest proportion of samples (68%) was metastases from patients with non-acral cutaneous 

primaries (Figure 2C), but we also included 59 unknown primary, 17 mucosal, 15 acral 

cutaneous, and 10 uveal melanomas. Approximately 44% were subcutaneous (Figure 2D) 

and 26% lymph node metastasis samples, since these are often excised for diagnostic or 

therapeutic reasons. Remarkably, 23% were distant organ metastates, including brain. 

Primary melanomas represented 5%, although these were thick primaries and the patients 

had often already developed stage III disease.

Our collection spanned several years and the therapies for advanced melanoma have evolved 

during that period. Samples therefore reflect the standard of care and ongoing clinical trials 

at contributing centers, ranging from untreated through targeted therapy, to immune 

checkpoint blockade, and combination therapies (Figure 2E).

Genomic Characterization and Clinical Annotation

The majority (n=314, 68%) of PDX and tissues were analyzed for genomic alterations using 

massively parallel sequencing of a 108-gene targeted panel. The genes included in this panel 

were selected based on previously described mutations and copy number variations in 

melanoma. A full list of included genes and an in-depth analysis of mutational and copy 

number data of all PDX models as well as additional melanoma cell lines (n=488 total) are 

described in a companion resource article (Garman et al., 2017). An additional 90 patients 

were annotated by NGS targeted panels of 40–400 genes at their clinical institutions and we 

used these data to infer oncogenic driver mutation status of PDX. Both data sets were 

combined to classify a total of 372 PDX or banked tissues into major mutational subgroups.

Half (55%) of all samples analyzed were BRAF hotspot mutant, 20% NRAS mutant, 7% 

NF1 mutant, 2% KIT, 1.4% GNAQ/GNA11, and 18% wild-type (WT) (Figure 3A and 

Supplementary File S2). These results correlate with the melanoma TCGA data (Cancer 

Genome Atlas, 2015) and other published large scale sequencing studies (Arafeh et al., 

2015; Hodis et al., 2012; Krauthammer et al., 2015).

Thirty-seven of the BRAF hotspot mutation PDX were from patients progressed on a BRAF 

inhibitor (12 previously published in (Krepler et al., 2016) and 44 progressed on 

BRAF/MEK inhibitor combination therapy. We collected 190 samples from patients with 

immune checkpoint inhibitor therapy (anti CTLA4 and/or anti PD-1). These did not cluster 

to any mutational subgroup. We established PDX from patients progressed on both targeted 

and immune therapy (25 sequentially and 17 with BRAF inhibitor/PD-1 blockade 

combination therapy). (Figure 3A and Supplementary File S2)

Krepler et al. Page 4

Cell Rep. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The reverse phase protein array (RPPA) platform quantified ~300 proteins and 

phosphorylated proteins. These profiles are a useful complementary analysis to genetic 

sequencing (Krepler et al., 2016) and are available for 113 PDX models while others are in 

progress (Figure 3A and Supplementary File S3

PDX derived cell lines

We have established cell lines from 24 PDX tumors with a focus on targeted therapy 

resistant and brain metastasis samples (Figure 3A). These are added to the 112 cell lines of 

the “Wistar Melanoma” collection (https://www.wistar.org/lab/meenhard-herlyn-dvm-dsc/

page/melanoma-cell-lines-0). As these PDX derived cell lines included 10 derived from 

targeted therapy resistant samples, the mutational distribution is biased for BRAF hotspot 

(71%). Further, the cell lines include seven from brain metastasis, two acral melanoma 

(WM4324: V600E, WM4235: Q61R) and one mucosal (WM4173: WT/WT).

PDX from Patients Treated with Checkpoint Inhibitors

We established 190 PDX from 140 immune checkpoint blockade therapy patients. Best 

response was complete response in 7 patients, partial response in 26, mixed response in 5, 

stable disease in 10, and progressive disease in 59 patients. Response data could not be 

obtained in 33 patients. Forty-three patients received only anti CTLA4, and 50 received only 

anti PD-1; 41 patients received both therapies sequentially and six as a combination therapy. 

All patient samples were collected either before, on-, or after immune therapy with 16 

patients matched before and on or after therapy (Figure 3B).

PDX from Targeted Therapy Resistant Patients

We collected 57 biopsies from 47 patients after progression on BRAF or BRAF and MEK 

combination targeted kinase inhibitor therapy (either still on or shortly after end of therapy) 

(Figure 3C). After initial establishment and expansion as PDX, the tumor graft bearing 

animals were continuously dosed with BRAF inhibitor (PLX4720) or BRAF/MEK inhibitor 

(PLX4720/PD-0325901) combination diet corresponding to the type of therapy received by 

the patient (Krepler et al., 2016). Targeted sequencing of resistant PDX tumors using our 

108-gene panel (Garman et al., 2017) confirmed a BRAFV600 hotspot mutation in all but 

two of the models. These two PDX models were established from patients with clinical 

BRAFV600E positive tumors. However, the patient material tested for WM4323 was the 

primary cutaneous melanoma diagnostic biopsy accessioned 5 years prior to the specimen 

sent for PDX. This was done via pyrosequencing of codons 595 and 600 of exon 15 of the 

BRAF gene. The patient material tested for WM4352 was a metastatic lymph node 

accessioned 7 months prior to the specimen sent for PDX. This was done via NGS panel of 

50 genes including, for BRAF, codons 439–473 of exon 11 and codons 581–611 of exon 15.

Several mechanisms of resistance were revealed by targeted sequencing. We found 

concomitant RAS (n=7/47 patients) and MAP2K1/2 (n=9/47 patients) mutations. These 

deleterious mutations were mutually exclusive and have been reported previously as 

activating mutations conferring resistance to BRAF inhibition (Emery et al., 2009; Nazarian 

et al., 2010). BRAF high level amplification (>5) in four patients and MET high level 

amplification (>5) in three patients were exclusive of each other and RAS and MAP2K 
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activating mutations (Shi et al., 2013). PDX from 15 patients had alterations in the PI3K 

signaling pathway (13 PTEN deletion, 3 deleterious PTEN mutation, 5 likely deleterious 

PTEN mutation, 1 deleterious PIK3CA mutation) although these were not mutually 

exclusive with the other genomic changes observed.

Patient matched PDX from before start and after progression on targeted therapy were 

generated from seven patients. Of these, two (WM4298, WM4351) had acquired NRAS 

mutations on dabrafenib-trametinib combination therapy (D/T) and progressed after 406 and 

161 days respectively. WM3901 was established from a solitary progressing (>10%) s.c. 

metastasis after 480 days on D/T and had acquired a BRAF amplification. WM4264 had 

PFS of 120 days and an acquired MEK2K61E heterozygous mutation in the relapse PDX. 

Although a variant of unknown significance per our algorithm (Garman et al., 2017), due to 

the location and glutamic acid change this might be a phosphomimetic activating mutation 

(Villanueva et al., 2013). WM4070 PDX were established from the patient with the shortest 

PFS (60 days) and we found a pre-existing MEK1 mutation in both pre-and post- therapy 

PDX. The remaining two models (WM4276, WM4237) had pre-existing loss of PTEN and 

amplification of MET respectively as possible contributors to resistance (Figure 3C).

Protein expression profiles

RPPA was performed on a total of 118 PDX models in triplicate divided on two batches. Set 

102 (Supplementary File S3) had 184 profiles representing 60 models including one model 

with corresponding untreated and BRAF inhibitor treated samples. Set 119 ((Supplementary 

File S4) had 243 profiles containing 58 models, 23 of which have corresponding untreated 

and BRAFi and/or BRAFi/MEKi treated tumor samples. Set 102 assessed 279 phospho and 

total proteins, and set 119 assessed 299 phospho and total proteins.

PDX Derived from Brain Metastasis

We collected melanoma brain metastasis (MBM) tissue from 34 neurosurgeries of 28 

patients to generate PDX models. Targeted sequencing data are currently available for 20 

PDX and RPPA data for 12 (Figure 3D). Remarkably, four brain metastases were collected 

from the same patient (WM4237-1 to -4) at 2- to 4-month intervals. Although the patient had 

received dabrafenib/trametinib combination therapy (best response stable disease) after the 

first surgery, and had received anti PD-1 therapy during the last two surgeries, all four PDX 

had identical mutation profiles (BRAFV600E RB1N690fs TP53S241). PDX from seven 

patients had BRAF hotspot mutation and from six patients NRAS hotspot mutation. One of 

these had a co-occurring BRAF non-hotspot mutation. Another BRAF non-hotspot mutation 

was co-occurring with an NF1 mutation. Two patients were wild type for both BRAF and 

NRAS. Interestingly, the samples without BRAF hotspot mutation had significantly more 

concurrent deleterious and likely deleterious mutations overall. We found PTEN deletion or 

deleterious mutation in four of 7 patients with BRAF hotspot mutation which has been 

shown to be associated with MBM (Bucheit et al., 2014). On the protein expression level, 

both patients with deleterious PTEN mutations had evidence of PI3K pathway activation by 

relative increased phospho AKT compared to WT PTEN samples.
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PDX from Primary or Metastatic Uveal Melanoma Samples

We implanted 45 uveal primary samples as tumor fragments s.c. in the interscapular fat pad 

of NSG mice with matrigel (Némati et al., 2010). After follow up of at least 12 months, we 

observed tumor growth in five models, albeit kinetics were slow. Three of these had 

mutations in GNAQ or GNA11, one was WT, and one failed genomic analysis. In contrast, 

the take rate for metastatic samples from uveal melanoma patients was comparable to 

cutaneous melanoma and we established four samples as PDX, one with a GNAQ mutation, 

and the others in process.

Availability of PDX models to the research community

A critical component of our PDX platform is its availability to the research community. Like 

cell line repositories, PDX tissue can be frozen and expanded as needed. Thus, we made a 

representative pre-selection of 26 “work horses” based on genetic, and clinical criteria 

available through www.horizondiscovery.com/patient-derived-xenograft/melanoma-pdx 

(Supplementary File S2). All other models are available upon request and tissue will be 

expanded either at Horizon Discovery Inc. (St. Louis, MO) or our laboratory.

Spontaneous Metastasis Rate is Associated with Mutational Group

When cells from a PDX model were inoculated into a human skin graft on NSG mice (Li et 

al., 2015), tumors formed within the human dermis. These then metastasized out of the 

human graft into the lungs of host mice as an indicator for distant organ metastasis (Figures 

4A–C). This propensity to invade the mouse tissue and seed distant organs was reflected in 

the subsequently observed high rates of spontaneous metastasis in s.c. implanted PDX 

models. We analyzed lungs of mice at the time of tumor harvest (Figure 4D) and found that 

in 32% of PDX models assessed, more than 80% of the animals had micro- or macro-

metastases (Figure 4E). There was a significant increase in metastatic ability of BRAF 
hotspot mutant PDX and a decreased metastatic rate in triple WT PDX (Figure 4F).

Spontaneous brain metastasis model

An MBM derived PDX was established as a short-term culture, transfected with a luciferase 

reporter and implanted s.c. into NSG mice. To prolong survival of animals, primary tumor 

grafts were surgically removed once established (Figure 4G). We observed spontaneous 

metastasis to the mouse brain in 50% of animals after a latency of 120 days (Figure 4H). 

Additional such models are in development.

PDX tumors resistant to MAPK inhibitors have increased IGF1R expression

We assessed expression of a panel of melanoma surface receptors previously described as 

cancer stem cell markers including CD20 (Fang et al., 2005), CD271 (Boiko et al., 2010), 

and CD133 (Monzani et al., 2007) in two cohorts of therapy naïve and resistant PDX. There 

were no significant differences observed for any of the markers (data not shown). However, 

tumors derived from targeted therapy progressed patients had significantly higher levels of 

IGF-1R than tumors from therapy naïve patients (Figure 4I). IGF-1R/PI3K signaling has 

previously been implicated in conferring melanoma resistance to BRAF inhibitors 

(Villanueva et al., 2010). Interestingly, when the resistant tumor grafts were grown on 
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continuous BRAFi or BRAF/MEKi combination diet the IGF-1R levels returned to baseline 

(Figure 4I). This phenomenon might indicate the transient nature of tyrosine kinase receptor 

upregulation and its modulation by MAPK pathway inhibitors.

Predictive Value of PDX for Response to Targeted Therapies

We selected a PDX from a 55-year-old female patient with metastatic melanoma and early 

relapse to vemurafenib after partial response using RECIST 1.1 criteria and progression free 

survival of 16 weeks. Lymph node lesions in her right and left axillary regions showed initial 

on-treatment regression: there was a 70.6% decrease in the target lesion (i.e., the right 

axillary node) and a partial response in the non-target lesion (the left axillary node) (Figure 

5A). An FNA was taken from the left lymph node before therapy and used to generate a 

PDX. After in vivo expansion, tumor bearing animals were treated with the BRAF inhibitor 

PLX4720 alone and in combination with the MEK inhibitor PD-0325901. Tumors did not 

respond to BRAF inhibition, but regressed on BRAF/MEKi combination followed by 

relapse (Figure 5B). This was reflected in a reduced proliferation rate in the combination 

therapy tumor cells only (Figure 5C).

MEK and PI3K Beta Inhibition as Second-line Therapy in BRAF Inhibitor Resistant Models

We selected three BRAF-V600E PDX models derived from patients relapsed on BRAF 

inhibitor. Two had homozygous PTEN deletion and one had an activating NRASQ61K 

mutation; all showed activation of both MAPK and PI3K pathways on the protein level 

(Krepler et al., 2016). The MEK inhibitor trametinib and the PI3K beta/delta isoform-

specific inhibitor GSK418 (an analog of GSK2636771 (Rivero and Hardwicke) significantly 

decreased tumor growth in the two PDX models with PTEN deletion without evident 

toxicity (Figure 5D), but not in the PDX with concurrent BRAF and NRAS mutation.

ERK and MDM2 Inhibition Is Highly Effective in a BRAF Inhibitor-resistant PDX Model

WM3973 was derived from a patient progressed on vemurafenib with MAPK pathway 

reactivation via an activating MAP2K1 (MEK1) mutation as a potential resistance 

mechanism (Krepler et al., 2016). Accordingly, this PDX model did not respond to BRAF 

inhibition or even to the downstream targeting ERK inhibitor BVD-523. We then applied a 

previously published response biomarker signature for p53 re-activation (Jeay et al., 2015) to 

a cohort of nine TP53 wild type BRAF inhibitor resistant PDX models. The majority 

including WM3973, were predicted sensitive to MDM2 inhibition (data not shown). The 

MDM2 inhibitor CGM097 (Holzer et al., 2015) moderately inhibited WM3973 tumor 

growth as a single agent, but ERK and MDM2 inhibition synergized potently to induce 

stable disease over 6 weeks of dosing (Figure 5E, left panel).

Typical of the tumor growth heterogeneity seen in PDX experiments, single mice showed a 

variable response to the combination therapy (Figure 5E, right panel). Whereas most animals 

had stable disease, two tumors showed early relapse, and two tumors had complete 

responses at the end of dosing. Both regrew only after treatment was stopped, confirming 

that in PDX models small residual tumors can survive following several weeks of drug 

pressure. However, we did not observe any tumors acquiring resistance while on 
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combination therapy, indicating that this approach could be explored further using additional 

models.

We analyzed protein expression profiles of tumor grafts at the end of dosing to investigate 

the heterogenous responses seen with this therapy. The clusters from unsupervised 

hierarchical clustering identified groups that were predominately based on proteins with a 

role in proliferation and correlated with tumor growth rates rather than dosing groups 

(Supplementary Figure S1). The BVD-523 single agent group whose tumors grew at the 

same rate as controls, clustered with the fastest growing tumors in the control group, 

indicating that ERK inhibition alone did not widely change the protein and phospho protein 

levels assessed in this array. Indeed, there was no inhibition of pERK on RPPA. However, 

the BVD-523 single agent group had the least tumor growth variability with all tumors 

progressing rapidly. All tumors with continued response to combination treatment clustered 

in one group, whereas the two tumors with early resistance to the combination therapy 

clustered with the CGM single agent samples.

Rapid in Vivo Screen for BET Inhibitor Activity in a Broad PDX Panel

We used the novel BRD4 inhibitor BAY8097 to conduct a rapid in vivo screen on 20 PDX of 

diverse mutational profiles. To test feasibility, we reduced group size from 10 to 3 mice per 

group. Like the model in Figure 3E, we observed significant heterogeneity in tumor growth, 

a problem also encountered in a recently published study using only one tumor graft/PDX/

therapy (Gao et al., 2015). We found that a subset of models not clustering into a mutational 

subgroup showed significant tumor growth inhibition using BAY8097 as a single agent 

(Figure 5G).

Validation of Increased Onco-metabolites in PDX with IDH1 Mutation

We identified eight PDX with the canonical IDH1 mutation R132C. Only one melanoma cell 

line with very slow growth kinetics has been described in the literature (Lopez et al., 2010). 

Indeed, we were unsuccessful in establishing cell lines from these patient samples (data not 

shown). We tested levels of the D-2-hydroxyglutarate (2-HG) onco-metabolite (Mondesir et 

al., 2016) and confirmed buildup to very high levels as compared to WT in PDX tissue 

(Figure 5H).

PDX Can Model Pathway Adaptation to Targeted Drugs Over Time

To assess the potential of PDX models to mimic acquired drug resistance, we performed a 

time course analysis of response and acquired resistance to a BRAF inhibitor in a targeted 

therapy-naïve BRAF-V600E PDX. The patient had received BRAF inhibitor therapy after 

the biopsy was taken and initially responded followed by relapse after 9 months. Although, 

the patient never received BRAF/MEK combination therapy, we followed up with this 

combination in our PDX model (Figure 6A). The PDX tumors initially responded to BRAF 

inhibition with almost complete tumor regression but relapsed after seven weeks; however, 

when the same animals were switched over to BRAF/MEK inhibitor combination they again 

responded continuously without relapse for up to 2.5 months. Tumors from each treatment 

were analyzed for protein expression by RPPA in a time course manner (Figure 6B, full 

dataset in Supplementary File S5). Protein expression only changed significantly with the 
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onset of BRAF inhibitor resistance (Figure 6C), and the subsequent change to BRAF/MEK 

inhibitor combination therapy shut down cell proliferation, induced apoptosis and led to 

sustained tumor growth inhibition (Figure 6D). Thus, PDX models can be used to track 

changes in tumor cell signaling on the protein level over the course of therapy.

DISCUSSION

Established melanoma cell lines have significant bias toward BRAF, TP53 mutations, and 

CDKN2A loss (Garman et al., 2017) since these adapt well to in vitro growth. The much 

higher success rate of PDX irrespective of mutational subgroup make PDX more clinically 

relevant (Byrne et al., 2017; Townsend et al., 2016). Several other research groups have 

established melanoma PDX models (Einarsdottir et al., 2014; Gao et al., 2015; Girotti et al., 

2016; Kemper et al., 2016; Quintana et al., 2012). Quintana et al. established PDX from 25 

stage IIIB/C patients and correlated spontaneous metastasis in the animals with patient 

outcome. Einarsdottir et al. established PDX from 23 patients and predicted targeted therapy 

responses in a subset. Gao et al. employed a 1×1×1 in vivo trial design in 277 PDX 

including 67 melanoma derived, demonstrating clinical translatability of this approach. 

Kemper et al. established 89 PDX, but focused on BRAF mutant patients with only 10 

NRAS and 6 WT/WT samples. They then used this platform to identify a novel resistance 

mechanism to BRAF inhibition in the form of a duplicated kinase domain. Girotti et al. have 

built a collection of about 90 PDX models, of which they show 3 deeply characterized 

examples by following the development of resistance to targeted therapy over time using 

whole exome sequencing. Together, these studies show the promise and potential of PDX 

models in melanoma.

Multiple resistance mechanisms to targeted therapy have been described and these most 

often lead to re-activation of the MAPK pathway or activation of alternative pathways such 

as the PI3K signaling pathway (Rizos et al., 2014). Pre-clinical data by several groups have 

suggested that combining BRAF/MEK inhibitors with PI3K/mTOR inhibitors may 

overcome resistance in BRAF mutant melanomas (Atefi et al., 2011; Greger et al., 2012; 

Shannan et al., 2016; Villanueva et al., 2010). Phase I clinical trials using this combination 

demonstrated the safety of this combination approach and some early signs of clinical 

activity (Bedard et al., 2012; Juric et al., 2014), and further phase I/II trials are ongoing 

(NCT01449058, clinicaltrials.gov). On the other hand, a Phase I trial testing the combination 

of pan-PI3K/mTORC1/2 inhibitor GSK2126458 with trametinib was terminated due to a 

lack of tolerability and efficacy (NCT01248858), suggesting a narrower targeting profile 

might be advantageous. Thus, our pre-clinical PDX trial confirmed that combination of a 

beta isoform specific PI3K inhibitor retained synergistic potential with MEK inhibition but 

could potentially decrease toxicity.

We included PDX with diverse mutational backgrounds that were either naïve or progressed 

on targeted therapy in an in vivo screen of a novel BET inhibitor. Targeting the 

transcriptional activity of cancer cells has emerged recently as a novel strategy 

(Filippakopoulos et al., 2010). It is unclear however, which patients would benefit from 

these inhibitors and whether it would be a viable strategy in a clinical setting for melanoma 

(Segura et al., 2013). Our PDX collection is large enough to mirror the diversity of patients 
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that would be studied in an early-stage clinical trial at a fraction of the cost and could be 

beneficial for early-stage drug screening as well as for the development of biomarkers. The 

activity of BET inhibition seen in a subset of PDX models, although hampered by high 

heterogeneity, still warrants further investigation into this class of compounds and use of the 

PDX data to identify response biomarkers.

Another strength of our large collection of PDX is the breadth of coverage including 

multiple samples with rare mutations, made possible by large-scale targeted sequencing of 

PDX (Garman et al., 2017). IDH1 is a rarely mutated oncogene in melanoma, representing 

about 6% of driver mutations (Cancer Genome Atlas, 2015) and has been described as a 

viable target in other cancers (Tateishi et al., 2015). Since PDX are a living resource we 

could functionally validate the mutation by assessing the accumulation of the onco-

metabolite 2-HG in the tumor grafts. Thus, these models would be ideal to test inhibitors of 

IDH1.

MBM is a common event in late stage patients and has a poor prognosis of less than one 

year median survival (Staudt et al., 2010) even with modern systemic therapies (Forschner et 

al., 2017). Although current targeted and immune therapies have demonstrated activity in 

MBM, successful therapy is still a major challenge and an important area of current 

investigation (Glitza Oliva et al., 2017). MBM models are scarce and new therapies are 

needed urgently. Thus, we focused our collection efforts on samples derived from MBM and 

these will provide a valuable resource to study this challenging to treat and frequently lethal 

manifestation of late stage melanoma.

Although patients can show long-lasting responses to immune checkpoint blockade, many 

patients do not respond or acquire resistance. Clinical studies point towards the importance 

of the immune infiltrate in tumors (Chen et al., 2016), however human tumor-infiltrating 

lymphocytes implanted with the initial patient tumor tissue are lost in PDX propagation. 

High mutational load is associated with increased response rates to immune therapies with 

neo-antigens the target of immune responses (Peng et al., 2016). Thus, PDX models from 

checkpoint inhibitor responders and non-responders could potentially be valuable tools to 

study the role of tumor biology in response to immune therapy and we are currently 

investigating neo-antigens. Our collection of PDX can be used to study checkpoint inhibitors 

or other immune therapies alone or in combination with targeted kinase inhibitors when 

employed in humanized mouse models (unpublished). In these models, human CD34+ 

hematopoietic stem cells are injected to reconstitute human B and T cells in NSG mice 

(Rongvaux et al., 2014). Thus, the current limitations of model could potentially be 

addressed using humanized mice and would allow PDX models to be at the forefront of 

immune and targeted therapy translational research (Sanmamed et al., 2016). These studies 

are ongoing.

In summary, we have built a unique and comprehensive melanoma PDX collection 

representing the entire spectrum of this cancer with multiple biological replicates even for 

rare subgroups. It is further enhanced through genetic and genomic analysis in our 

companion paper (Garman et al., 2017).
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EXPERIMENTAL PROCEDURES

Detailed SOPs for all aspects of PDX generation and use are provided in Supplementary File 

S1.

Patient sample processing

Patient samples were collected under IRB approval. Tumor samples were processed within 

24 hours of biopsy. Samples were mechanically dissociated and enzymatically digested if 

necessary. Tumor tissue was frozen in 10%DMSO 90%FBS, if sufficient quantities were 

available, or implanted directly into NSG mice. Mice were anesthetized, a small skin 

incision (~5mm) was made in the back of the animal, and a subcutaneous pocket created. 

Tumor fragments were implanted with 100 μL of matrigel, and the incision closed with a 

wound clip.

PDX Maintenance

All animal experiments were performed in accordance with institutional guidelines under 

Wistar IACUC approval. PDX were expanded in NSG mice. Tumor size was assessed once 

weekly by caliper measurements (lengthxwidth2/2). Animals were sacrificed when the 

tumors reached 1,000mm3 or when necessary for animal welfare. The larger part of the 

tumor was retained as a live tumor bank, the smaller part was re-implanted at 1:5 ratio. PDX 

tumors from patients progressed on BRAF or BRAF/MEK inhibitor therapy were expanded 

on continuous PLX4720 200ppm or PLX4720 200ppm + PD-0325901 7ppm chemical 

additive diet (Research Diets, New Brunswick, NJ).

Pre-clinical in vivo trials

When tumors reached 200mm3, mice were randomized into treatment groups. Groups in the 

efficacy studies were 10 animals each to account for variability among tumors, except for the 

BAY8097 rapid in vivo screen which was designed with three animals/group. Tumor sizes 

were assessed twice weekly per caliper measurement, and tumor volume was estimated 

using the formula (lengthxwidthxwidth/2). Mice were sacrificed after 2–3 weeks of 

treatment. If therapy groups showed tumor regression, dosing was prolonged.

Short Tandem Repeat (STR) Profiling

We performed STR profiling on one tumor per MP using AmpFlSTR® Identifiler® PCR 

Amplification Kit (Life Technologies, Carlsbad, CA) which uses loci consistent with all 

major worldwide STR standards. Genomic DNA was extracted from patient or xenograft 

tumor samples using DNeasy® Blood & Tissue Kit (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions. PCR amplification and STR allele separation and sizing was 

performed by the Wistar Genomics Facility. Profile interpretation was performed in our lab 

by interrogating the resulting DNA fingerprint to our internal database which includes over 

1,000 fingerprints and is available on our website www.wistar.org/lab/meenhard-herlyn-

dvm-dsc/page/melanoma-cell-str-profiles. DNA fingerprinting was matched to normal blood 

DNA if available to confirm identity of the samples.
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Massively Parallel Sequencing

DNA from patients and/or PDX were characterized by massively parallel sequencing using a 

custom-designed 108 gene targeted panel. Results were annotated for mutations, insertions 

and deletions, and copy number changes. A detailed description of the methodology and 

analysis is provided in (Garman et al., 2017). Briefly, DNA was purified (DNeasy Blood & 

Tissue Kit), 500 ng of genomic DNA was sheared randomly into 200 bp fragments, and 

sheared DNA was A-tailed and ligated with adaptor-embedded indexes using the 

NEBNext® UltraTM DNA Library Prep Kit for Illumina® (New England BioLabs, Inc., 

Ipswich, MA). Samples were equimolarly pooled prior to capture with a 2.2 Mbp 

SureSelectXT Custom Target Enrichment Kit (Agilent Technologies, Santa Clara, CA) 

targeting 108 genes previously implicated in melanomagenesis. Paired-end (2X100 bp) 

sequencing was performed on the HiSeqTM 2000 sequencing system (Illumina, Inc., San 

Diego, CA).

To account for mouse DNA contamination, previously unreported variants with an allelic 

fraction of less than 0.15 were filtered out of the analysis.

Foreskin Grafting Procedure

Prepared rectangles of about 1.5 × 2 cm foreskin were placed on skin defects on the back of 

a mouse with the panniculus canosum remaining intact. The panniculus canosum was 

needed to help vascularize the graft. The foreskin graft was then secured in situ using 

Tegaderm (3M, St. Paul, MN). After 10 days, the dressing was removed and the graft was 

fully healed in 5–6 weeks.

Immunohistochemistry

Formalin-fixed, paraffin-embedded tissue sections of xenograft tumors were cut into 4 μm 

sections, deparaffinized in xylene, rinsed in ethanol and rehydrated. Then, the tissues were 

stained with Ki-67 mouse clone MiB-1 (Dako, Carpinteria, CA; Catalog# M7240).

Flow Cytometry Staining

Tumors were analyzed after mechanical dissociation followed by filtration and red blood cell 

lysis. For surface staining, cells were incubated at 4°C for 30 minutes with anti-human 

PeCy7 CD146 (M-CAM), anti-mouse FITC- CD45, H2Kb and H2Kd and anti-human PE 

IGFR1 from BD Biosciences (San Jose, CA). Staining were performed in presence of LIVE/

DEAD® Fixable Dead Cell Stains (Life Technologies). After dead cells and mouse cell 

exclusion, percentage of double positive CD146 and IGF1R cells were reported.

RPPA

The samples were prepared as previously described (Krepler et al., 2016). RPPA was 

performed by the MD Anderson Center RPPA core facility (Houston, TX) as previously 

described (Tibes et al., 2006). Unsupervised hierarchical clustering using centered 

correlation and complete linkage was performed on normalized log2 median-centered 

protein values using Cluster 3.0 software (http://bonsai.hgc.jp/~mdehoon/software/cluster/

software.htm#ctv). Results were visualized using Java TreeView 3.0 software (http://
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jtreeview.sourceforge.net). For WM4007 time course analysis, normalizedLog2 values were 

median centered to the average of the untreated controls. The three tumors from each time 

point were averaged. K means clustering using Euclidean distance measure on 10 clusters 

(identified in unsupervised hierarchical clustering) run for 100 iterations was performed 

using Cluster 3.0 and visualized with Java TreeView. Clusters with variance greater than 

0.10 across the time points were selected for Gene Ontology analysis using Ingenuity 

Pathway Analysis (Qiagen) for biological processes.

Statistical Analysis

The scatter plots with mean of multiple mice’s tumor growth rates were reported by FNA, 

core, and excisional biopsy patient samples, or by patient’s sample. Shapiro normality tests 

were used to examine the distribution of studied variables. Non-parametric Mann-Whitney 

tests were used for between specific gene mutant group comparison. Linear mixed-effect 

models were used to test the difference of the tumor growth trends among treatment groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Establishment and biology of PDX models
(A) A total of 694 melanoma tissue samples from naïve, pre-, on-, or post- therapy time 

points receiving targeted kinase inhibitors (TT) or immune checkpoint inhibitors (IT) were 

used to generate PDX and/or banked as live tissue. (B) Success rate of establishing a tumor 

graft (green), banking of live tissue with the potential of establishing a PDX or 

establishment in progress (blue), no tumor growth at 6 to 12 months (orange), adverse events 

(gray) where we were not able to establish a PDX due to reasons other than tumor take (this 

analysis excludes uveal primary samples). (C) Take rate of cutaneous melanoma derived 

tissue. (D) Time to palpable for all FNA, core, and excisional biopsy patient samples. (E) 
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Tumor growth rate comparison of FNA, core, and biopsies. Growth was calculated as tumor 

volume/weeks. (F) Fresh tumor biopsies (MP0) or PDX after MP1 from three patients were 

prepared as cell suspensions, leucocytes and endothelial cells excluded and injected s.c. into 

NSG mice at indicated cell numbers. (G) Single cell suspension was prepared as before and 

sorted for CD271 marker. CD271+ and negative cells were injected at indicated cell 

numbers.
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Figure 2. Demographics of patient samples used to generate PDX
(A) Age of patients at time of biopsy in 10-year increments. (B) Gender of patients. (C) 

Primary tumor type. (D) Site of tissue biopsy; categorized into primary melanoma, 

subcutaneous metastasis (SQ), lymph node metastasis (LN), distant metastasis to organs 

(Distant met), and brain metastasis (Brain). (E) Targeted kinase or immune checkpoint 

inhibitor therapies the patient had received before or during the biopsy was taken. Samples 

without available data were excluded from the analysis.
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Figure 3. Overview of PDX collection, immune therapy, targeted therapy resistant, and brain 
metastasis derived subsets
(A) All PDX and live frozen tissue samples sorted by driver mutations and therapy received 

by the patients. Driver mutations are dark blue for hotspot and light blue for non-hotspot 

mutation. PDX from patients progressed on targeted therapies are shades of purple, patients 

treated with immune checkpoint inhibitors are green: sequential, combination CTLA4+PD-1 

(IT combo), or combination with BRAF inhibition (TT/IT combo). Red indicates in vivo 

growth, presence of RPPA data, or a corresponding cell line. Samples that spontaneously 

metastasize to lungs in mice are red, yellow indicates no lung metastasis, white was not 

assessed. (B) Patients were treated with CTLA4 or PD-1 blocking therapy before, during, or 

after biopsy. Combination therapies are indicated. PDX are sorted by best response in the 

patients. Additional PDX with unknown response are not shown. (C) Genetic data of BRAF 

Krepler et al. Page 23

Cell Rep. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(−BR) and BRAF/MEK (−CR) inhibitor-resistant PDX. Deleterious and likely deleterious 

mutations, homozygous loss, and high copy number gains (>5) are shown. Numbering after 

dash (1–4) indicate additional PDX available from the same patient. Asterisks indicate 

resistant PDX with available patient matched pre-therapy derived PDX.(D) Patient matched 

pre- and post-therapy PDX models. Progression free survival of patients treated with BRAF 

or BRAF/MEK inhibitor (x-axis). Columns are labeled with putative resistance mechanisms. 

(E) Genetic profile and therapy received of 22 PDX with available sequencing data out of 31 

total brain metastasis PDX. Deleterious and likely deleterious mutations, homozygous loss, 

and high copy number gains (>5) are shown. As an indication of PI3K pathway activation 

status RPPA levels of phosphorylated AKT are shown.
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Figure 4. Melanoma PDX metastasize spontaneously
(A) Animals were grafted with neonatal foreskin grafts and melanoma PDX cells were 

injected into established grafts. (B) Melanoma lesions formed in the human skin 

reconstructs. (C) Melanomas spontaneously metastasized to the mouse lungs from the 

human skin graft. H&E staining, and representative images. (D) Example of spontaneous 

micro-metastasis to lung. (E) Percentage of PDX that metastasize to lungs in more than 80% 

of animals from the subcutaneous tumor graft at the time point of maximal tumor volume. 

(F) Number of PDX with spontaneous lung metastasis compared to main mutational 

subgroups. (G) Luciferase transfected brain metastasis PDX injected s.c.. (H) Spontaneous 
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metastases to the mouse brain were imaged ex vivo after a latency of 120 days after survival 

surgery. (I) Percentage of IGF1R positive cells in PDX from naïve patients, from patients 

progressed on BRAF inhibitor (−BR), on BRAF inhibitor or BRAF/MEKi combination diet.
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Figure 5. PDX models in pre-clinical trials
(A) Computerized tomography scans of patient with early relapse on vemurafenib whose 

tumor was used to generated a PDX from a pre-therapy LN metastasis. Arrow indicates the 

lymph node metastasis biopsied, imaged before and 3 months on vemurafenib therapy. (B) 

The PDX bearing mice were fed a chemical additive diet containing PLX4720 200ppm as 

single agent or in combination with PD-0325901 7ppm (PLX+MEKi). The combination diet 

inhibited the PDX tumors’ growth, followed by early on-therapy relapse. (C) Ki67 staining 

indicating actively proliferating cells from tumor grafts on indicated treatments. (D) Two 

PDX models from patients relapsed on BRAF inhibition (n=10/group) were treated with 

chemical addictive diet containing the MEK inhibitor trametinib 2.1ppm (Tram), the PI3K 

beta inhibitor GSK231418 214.3ppm (GSK418) or the combination of both. (*) The 

combination significantly inhibited tumor growth over single agents in both models. (E) 

PDX model from a BRAF-V600E patient relapsed on vemurafenib (PFS 46 weeks, best 

response stable disease) that had an additional activating MEK mutation, TP53 WT, and a 

biomarker signature indicating sensitivity to p53 re-activation. PDX tumors (n=10/group) 

were treated with the ERK inhibitor BVD-523 50mg/kg twice daily oral gavage, the MDM2 

inhibitor CGM097 100mg/kg once daily oral gavage, or the combination of both. (E, right 
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panel) Single mouse growth curves of the BVD-523 + CGM treated group highlighting the 

heterogeneity of response in PDX models. While most tumors showed stable disease, two 

mice had early relapse and two mice had complete responses (CR). Dosing was stopped on 

day 38 (blue arrow) and the 2 CR mice showed regrowth of residual disease. (F) Twenty 

PDX of BRAFV600 mutant patients (naïve and BRAF inhibitor resistant), NRAS mutant, 

and BRAF-WT NRAS-WT (n=5 models each) were treated with the BET inhibitor 

BAY8097 10mg/kg once daily oral gavage (orange) or vehicle control (n=3/group, blue) in a 

rapid in vivo screen. Although variability within the PDX models was high, tumor growth 

velocity was decreased in a subset of models. Response was independent of mutation status. 

(G) IDH1 mutant PDX have increased 2-HG onco-metabolite levels in tumor tissue 

compared to IDH1 WT PDX.
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Figure 6. Protein pathway activation over time and in response to MAPK inhibition
WM4007 was generated from a pre-BRAF inhibitor therapy biopsy. (A) PDX growth curves 

for mice treated with PLX4720 (BRAFi) or PLX4720+PD-0325901 (BRAF/MEKi) diet 

started at time points indicated by black data points. (B) Protein expression change patterns 

identified in RPPA data with K means clustering. All proteins within each cluster are 

averaged and standard deviation shown. Clusters in bold had variation above 0.1 and were 

analyzed further. (C) Hierarchical clustering of RPPA data normalized to controls depicting 

the significant K means clusters along each time point. (D) Ingenuity Pathway Analysis 

(IPA) was used to assign proteins within each cluster into distinct biological processes. The 

top five significant gene ontology terms within each cluster are displayed with bars, top axis. 
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The percentage of each cluster’s proteins found within each biological functional category 

are displayed with orange dots, bottom axis.
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