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Abstract

A fully automated 2D+time myocardial segmentation framework is proposed for Cardiac 

Magnetic Resonance (CMR) Blood-Oxygen-Level-Dependent (BOLD) datasets. Ischemia 

detection with CINE BOLD CMR relies on spatio-temporal patterns in myocardial intensity but 

these patterns also trouble supervised segmentation methods, the de-facto standard for myocardial 

segmentation in cine MRI. Segmentation errors severely undermine the accurate extraction of 

these patterns. In this paper we build a joint motion and appearance method that relies on 

dictionary learning to find a suitable subspace. Our method is based on variational pre-processing 

and spatial regularization using Markov Random Fields (MRF), to further improve performance. 

The superiority of the proposed segmentation technique is demonstrated on a dataset containing 

cardiac phase-resolved BOLD (CP-BOLD) MR and standard CINE MR image sequences acquired 

in baseline and ischemic condition across 10 canine subjects. Our unsupervised approach 

outperforms even supervised state-of-the-art segmentation techniques by at least 10% when using 

Dice to measure accuracy on BOLD data and performs at-par for standard CINE MR. 

Furthermore, a novel segmental analysis method attuned for BOLD time-series is utilized to 

demonstrate the effectiveness of the proposed method in preserving key BOLD patterns.
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I. Introduction

Recent advances in Cardiac magnetic resonance (CMR) methods such as Cardiac Phase-

resolved Blood-Oxygen-Level Dependent (CP-BOLD) MRI open up possibilities of direct 

and rapid assessment of ischemia [1]. In a single acquisition that can be seen together as a 

movie (i.e., similar to Standard CINE MRI acquisition), CP-BOLD provides both BOLD 

contrast and information of myocardial function [2]. Either at stress [3] or at rest (i.e., 

without any contraindicated provocative stress) [2], [4], BOLD signal intensity patterns are 

altered in a spatio-temporal manner. However, these patterns are subtle and changes 

occurring due to disease cannot be directly visualized [2]. In fact, identifying them requires 

significant post-processing, including myocardial segmentation and registration [5], prior to 

computer aided diagnosis via simple [3] or sophisticated pattern recognition methods [4]. 

This paper presents a segmentation method tailored to CP-BOLD MRI data, which is 

unsupervised and fully automated.

Currently, CP-BOLD myocardial segmentation requires tedious manual annotation. Despite 

advancements in this task in Standard CINE MRI (which is similar to CP-BOLD but with 

little or no BOLD contrast discussed at length at the related work section), most methods 

when used on CP-BOLD MR images for the same task, produce unsatisfactory results. Fig. 

1B illustrates this by overlaying ground truth and algorithmic results for several state-of-the-

art methods showing significant segmentation errors. These errors have deleterious effects 

on BOLD signals, as Fig. 1C shows. Instead of the expected behaviour across the cardiac 

cycle [2] which is seen when ground truth manual segmentations are used, significant 

deviations due to over- and under-segmentation are observed.

Although the BOLD contrast is visually subtle (as the top row of images in Fig. 1A shows) it 

can significantly affect segmentation performance. Locally these temporal variations 

influence registration performance [5], which results in under performance of Atlas-based 

techniques. Early on approaches tailored for BOLD MRI myocardial segmentation were 

semi-automated and relied on boundary tracking [8]. Later, fully automated but supervised 

methods [9] alleviated the need for interaction. However, there is an interest in methods that 

do not need vast amounts of training data and can easily adapt to data at hand and thus offer 

generalizability to unseen anatomical and pathological variation.

This paper presents a fully automated and unsupervised method for CP-BOLD MRI with the 

goal of faithfully preserving the key patterns necessary for diagnosis. The bottom of Fig. 1C 

illustrates the results of our method, which does not require any form of manual intervention 

e.g., landmark selection, ROI selection, spatio-temporal alignment to name a few. It builds 

upon a dictionary approach introduced in [9] using a joint appearance and motion model 

introduced in [10]1. To increase robustness to the BOLD effect, we introduce a pre-

processing step, that aims to “smooth out” temporal intensity variations. Subsequently, 

subject-specific dictionaries of patches of appearance and motion are built from a 

rudimentary definition of foreground (myocardium) and background (everything else). 

1The presented paper builds upon [9], [10] using components of each, but extends the previous work through a completely different 
approach.

Oksuz et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Projections on these discriminative dictionaries and spatial regularization with a Markov 

Random Field (MRF) obtains the final result. Extensive experiments show that, not only we 

obtain higher segmentation accuracy globally and locally around the myocardium, but also 

that this accuracy translates to better local preservation of BOLD patterns. Our work 

demonstrates that it is possible to train subject-specific dictionaries of background and 

foreground (myocardium) that jointly represent appearance and motion even when the 

training sets are drawn directly from the subject on the basis of a soft allocation of training 

patches. Together with atom pruning (which helps build an even more reliable collection of 

linear subspaces that span the data) and MRF overall leads to a robust automated and 

unsupervised algorithm (lacking external supervision) for myocardial segmentation.

The main contributions of this paper are:

• An unsupervised myocardial segmentation algorithm that uses dictionaries to 

jointly represent appearance and motion, trained on subject-specific data.

• The ability to extract meaningful data representations even when the data we 

learn from may not have the most precise annotation.

• Use of a variational spatio-temporal smoothing of the BOLD signal in a cardiac 

image sequence.

• Extensive segmentation performance analysis with both local and global 

measures.

The remainder of the paper is organized as follows: Section II offers a quick overview of 

approaches to myocardial segmentation for Standard CINE MRI. Section III presents the 

proposed method for myocardial segmentation in BOLD MRI. Experimental results are 

described in Section III-C. The final section offers discussion and conclusion.

II. Related Work

The automated myocardial segmentation for standard CINE MR is a well-studied problem 

[11], [12]. Most of the algorithms used for CINE MRI can be broadly classified into two 

categories based on whether the methodology is unsupervised or supervised. For the sake of 

brevity, we focus on examples most similar to our work.

Unsupervised methods

Although unsupervised segmentation techniques were employed early-on for myocardial 

segmentation of cardiac MR, almost all methods require minimal or advanced manual 

intervention [11]. Among the very few unsupervised techniques which are fully automated, 

the most similar to our proposed method are those that consider motion as a way to 

propagate an initial segmentation result to the whole cardiac cycle [13], [14], [15]. Grande et 

al. [16] integrates smoothness, image intensity and gradient related features in an optimal 

way under a MRF framework by Maximum Likelihood parameter estimation. Their 

deformable model estimates the walls based on the MRF along the short axis radial 

direction. A recent work [17] uses synchronized spectral networks for group-wise 

segmentation of cardiac images from multiple modalities. In our previous work [10], a fully 
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automated joint motion and sparse representation based technique was proposed, where 

motion not only guides a rough estimate of the myocardium, but also leads to a smooth 

solution based on the movement of the myocardium.

Supervised Methods

Supervised approaches, on the other hand, have become the de-facto standard in recent years 

and in particular, Atlas-based supervised segmentation techniques have achieved significant 

success [11]. The myocardial segmentation masks available from other subject(s) are 

generally propagated to unseen data in Atlas-based techniques [18], [19] using non-rigid 

registration algorithms such as diffeomorphic demons (dDemons) [6], FFD-MI [20], and 

employ some fusion approaches to combine intermediate results (probabilistic label fusion 

or SVM) [19]. Segmentation techniques that do not use registration (to propagate contours), 

mainly rely on finding features that best represent the myocardium. Texture information is 

generally considered as an effective feature representation of the myocardium for standard 

CINE MR images [21]. Patch-based static discriminative dictionary learning technique 

(DDLS) [7] and Multi-scale Appearance Dictionary Learning technique [22] have achieved 

high accuracy and are considered as state-of-the-art mechanisms for supervised 

segmentation. Some methods utilize weak assumptions, such as spatial or intensity-based 

relations and anatomical assumptions, and include image-based techniques (threshold, 

dynamic programming, etc.) [23], pixel classification methods (clustering, Gaussian mixture 

model fitting, etc.) [24], [25], [16]. Strong prior methods include shape prior based 

deformable models [26], active shape and appearance models and Atlas-based methods, 

which focus on higher-level shape and intensity information and normally require a training 

dataset with manual segmentations [27]. Another idea is to exploit motion and temporal 

information within the acquired data. In [28] a graph cut algorithm is utilized by 

simultaneously exploiting motion and region cues. The method uses terminal nodes as 

moving objects and static background with the intention to extract a moving object 

surrounded by a static background. Spottiswoode et al. [29] used the encoded motion to 

project a manually-defined region of interest in the context of DENSE MRI. Both of these 

methods are semi-automated and need interaction to achieve high accuracy. Earlier, we 

proposed a supervised multi-scale discriminative dictionary learning (MSDDL) procedure 

[9]. However, unlike the proposed method, only appearance and texture features are 

considered for sparse representation in MSDDL. In general we can identify, that supervised 

methods require lots of data for training and a robust feature generation and matching 

framework. Finally briefly for completeness we mention deep learning methods that are 

fully supervised and aim to extract a hierarchy of image features at multiple scales (e.g. see 

[30], [31], [32], [33], [34], and a recent review [35]).

In this paper, we instead propose a fully unsupervised method that incorporates motion 

information in a dictionary learning framework.

III. Methods

In the following we detail the proposed method for segmenting 2D(+time) Cardiac MRI 

data. The method does not rely on manual intervention and its only assumption is that 
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motion patterns of the myocardium differ from those of surrounding tissues and organs. Our 

proposed method consists of three main blocks which are illustrated in Fig. 2 and described 

briefly below and in detail in the next sections.

The pre-processing block (Fig. 2A) aims to reduce BOLD effects by temporal smoothing 

using a Total Variation based method and to localize the myocardium to initialize the next 

step. The second block uses Dictionary Learning to obtain residuals (Fig. 2B). Subject-

specific foreground and background dictionaries are trained from the two extracted regions 

from the entire cardiac sequence. These dictionaries are used to calculate the residuals of the 

cardiac image to be segmented. The final block introduces spatial regularization using 

Markov Random Field (MRF) approach, that is applied on the residuals of the two 

dictionaries to achieve the final segmentation of the myocardium (Fig. 2C). This block 

ensures the local smoothness of the extracted region.

A. Pre-processing

The overriding goal is to reduce the BOLD effect and obtain regions that patches can be 

drawn from for learning the dictionaries. This happens in few steps that we detail below and 

visually in Fig. 2A. First a Total Variation based filtering technique is used to smooth images 

to reduce the BOLD effect. Then, a process based on multi-level histogram thresholding is 

used to find the center of the Left Ventricle (LV) (on the mid-ventricular images we use 

here). We then segment the LV blood pool with region growing. Finally, aided by the 

distance transform we identify candidate foreground and background regions to sample 

from.

Total Variation based smoothing—The BOLD effect poses a significant problem to all 

state-of-the-art segmentation algorithms as demonstrated in [9] and discussed in the 

introduction. One way to create robustness is to learn intensity invariant features. However, 

[9] also demonstrated superior performance when using standard CINE MR. Inspired by this 

observation, we aim to identify a process that essentially converts the difficult CP BOLD 

MRI’s appearance into a more manageable standard CINE MR like appearance. Variational 

methods are used extensively in image denoising problems, most famous being the 

pioneering Rudin-Osher-Fatemi model [36]. Most of the video denoising methods derived 

from [36] actually work on a frame-by-frame basis. This approach is not suitable in our case 

since the BOLD effect is spatio-temporal across the cardiac cycle. In this work, we adopted 

the augmented Lagrangian method [37] developed in [38] to solve the BOLD inhomogeneity 

refinement problem in a space-time volume. We have employed the ℓ1-norm Total Variation 

(ℓ1-TV) using the augmented Lagrangian method introduced in [38] for solving both the 

problems together. The energy functional we have used for this particular minimization 

problem is:

where υ is the input 2D+t image series and u is the processed image series. The main reason 

behind choosing ℓ1-norm over ℓ2-norm is the fact that appearances of different anatomies are 
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piece-wise constant functions [39]. They also demonstrate quantized levels (i.e., a function 

can only take a given energy level without any other level existing between two anatomies), 

within a certain anatomy and sharp edges across anatomical boundaries. These boundaries 

and anatomies can be better preserved when using the ℓ1-norm as shown in Fig. 4.

LV center point detection and blood pool extraction—To extract the blood pool, 

first multiple thresholds are found using Otsu’s histogram thresholding [40] for each image 

in the cycle to obtain a four-class segmentation: loosely capturing blood pool (brightest in 

both standard CINE and BOLD weighted imaging), partial volume between myocardium 

and blood pool (second brightest), myocardium (third brightest) and other (most dark) 

badapting broadly ideas from [26]. The brightest two classes are used to extract the blood 

pool region. Then, the region that fits most closely a circle (of a roughly known diameter) is 

found, which eventually is used to determine the middle point of LV blood pool. Finally, a 

region-growing approach is employed to delineate the LV blood pool.

Finding foreground and background regions to sample from—The distance 

transform from the LV blood pool is used to define two ring-like areas identifying 

foreground and background regions to sample from as visualized in Fig. 3. In this paper we 

use a ring thickness of R = 6mm at end systole for all rings involved. In Section IV-C we 

actually vary this to test robustness. The thicknesses are normalized according to the cardiac 

phase to ensure that these regions do not include false positives with the following function: 

; where f represents the total number of cardiac phases, ft represents the 

frame number of the current phase and fES is the end systolic frame. End systolic frame is 

defined around 30% of the cardiac cycle in accordance with ECG triggering. The regions for 

foreground MF (blue ring in Fig. 3) and background MB (red ring in Fig. 3) will be utilized 

to draw patch samples to learn the dictionaries.

The goal of the last two steps is to obtain a soft definition of where to sample patches from 

for myocardium and background. Any similar methodology will suffice. Experiments in Fig. 

10 show the precision of the last two pre-processing steps does not have a major influence 

on the performance of the overall algorithm.

B. Dictionary Learning

Learning of per-class dictionaries for segmentation problems is a recent idea also developed 

in our earlier study [9]. The discriminative dictionary learning idea has been proposed earlier 

in Atlas-based segmentation of brain MRI [41], [7] and abdominal CT [42] but without the 

context of motion. However, most methods assume that clear annotation to which class a 

patch belongs to. Herein we train per-class dictionaries that jointly model appearance and 

motion that are trained from imprecise data. We expect that the different motion patterns of 

the myocardium and background and their sparse representation of motion guides the 

definition of appropriate linear subspaces to capture the variability in the data.

Our method builds observations from the concatenation (after raster-scanning) of square 

patches of appearance (pixel intensities) and corresponding motion (found via optical flow). 

Specifically, given (1) a series of pre-processed images It, {t = 1 …, T}, (2) the estimated 
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optical flow between subsequent images It and It+d and (3) the corresponding regions 

and  obtained as previously described, two matrices were obtained, YB and YF, where 

these matrices contain the data from the background and foreground information from the 

entire cine stack respectively. The j-th column of the matrix YF is obtained by concatenating 

the normalized patch vector of pixel intensities and motion vectors calculated by the method 

in [43] taken around the j-th pixel in the foreground as shown in Fig. 5. Both horizontal and 

vertical components are used for each pixel. The Dictionary Learning part of our method 

takes as input these two matrices YB and YF, to learn dictionaries DB, DF and a sparse 

feature matrix XB, XF.

In order to achieve discriminative initialization, highly correlated data are disregarded prior 

to learning in a step termed as “intra-class Gram filtering”. In particular, we calculate for a 

given class C (foreground or background), the intra-class Gram matrix as:

(1)

We sort the training patches w.r.t. the sum of their related coefficients in the Gram Matrix, 

and we prune the top 10% of the patches.

Then, dictionaries consisting of K atoms and sparse features with L non-zero elements are 

trained with K-SVD [44]:

To reduce correlation between the dictionaries which is expected to reduce classification 

errors we perform a second pruning step after K-SVD that removes similar atoms. We define 

this pruning as “inter-class Gram filtering.” We compute the inter-class Gram matrix as:

(2)

and the atoms of each dictionary are sorted according to their cumulative coefficients in GIC. 

10% of the atoms from both dictionaries are discarded to promote particularities of the two 

different classes. The most correlated atoms from both dictionaries are eliminated with this 

process. The atoms for foreground and background show strong discriminative power as 

visualized in Fig. ??B.

To perform this classification, we use the dictionaries, DB and DF, previously learnt. The 

Orthogonal Matching Pursuit (OMP) algorithm [45] is used to compute, the two sparse 

feature matrices X̂B and X̂F for a given sparsity level.
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C. MRF based smoothing

In this study, we employ a frame-by-frame MRF strategy [46] across all image pixels to 

enforce spatial regularization on the final segmentation for each image It. The process 

ensures local smoothness of the classification, which is refined according to the labels. 

Given the residuals for background RB and foreground RF the final segmentation is obtained 

by minimizing the MRF-based energy functional:

(3)

where Vp(·) corresponds to the unary potentials representing the data term for node p and 

Vpq(·) corresponds to the pairwise potentials representing the smoothness term for pixels at 

nodes p and q in a neighborhood N in the image It. The data term measures the disagreement 

between the prior and the observed data, which is based on the residuals of dictionaries. For 

a pixel p with initial label C: Label(p) = C, data term is: Vp(Ip) = RC. The smoothness term 

is defined as  on the nodes that have different class Label(q) = C′ in the 

neighborhood N. The parameter λ controls the trade off between smoothness and data term 

that govern the final segmentation. The smoothness term penalizes discontinuities in a 

neighborhood N. In our implementation, the total energy is calculated using the residuals for 

the possible labels of foreground RF and background RB. More precisely, if 

 is larger than , the patch is assigned to the 

background; otherwise, it is considered belonging to the foreground region for the initial 

segmentation. The label update occurs if the total energy calculated adding the unary and 

pairwise terms is smaller for the other label as detailed in Algorithm 1. The method 

converges either when there is no change of labels or the maximum number of iterations are 

reached.

IV. Experimental Results

This section offers a qualitative and quantitative analysis of the proposed method, as well as 

quantitative comparison of our proposed method w.r.t. state-of-the-art methods, to 

demonstrate its effectiveness for myocardial segmentation.

Our quantitative analysis consists of comparing our method with others and also looking 

into regional effects and performance. Unless otherwise noted we use 13 × 13 patch size, a 

dictionary of K = 400 atoms, a sparsity level of L = 4, as parameters. Their influence (and 

computational performance of our method) are discussed in subsection IV-D.

Data Set

Our set consists of the same 10 canines imaged under four different settings. 2D short-axis 

images of the whole cardiac cycle with in-plane spatial resolution of 1.25 mm × 1.25 mm 

were acquired at baseline and severe ischemia (inflicted as controllable stenosis of the left-

anterior descending coronary artery (LAD)) on a 1.5T Espree (Siemens Healthcare) along 
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the mid ventricle using both standard CINE and a flow and motion compensated CP-BOLD 

acquisition within few minutes of each other [2]. In other words we have the same subject 

matched for each condition and imaging sequence. Thus, we can ascertain by keeping the 

anatomy fixed the effects of BOLD contrast and presence of disease. Ground truth of 

myocardial delineations was generated by an expert. Image resolution for the datasets is 192 

× 114 with approximately 30 temporal frames (phases).

Algorithm 1

Proposed Method

Require: Image sequence from single subject

Ensure: Predicted Myocardium masks across the sequence

1: Calculate Optical Flow fp at each pixel p between pairs of frames (It, It+d)

2: Generate YB and YF concatenating image intensities and motion information for each patch

3: for C={B,F} do

4:   Intra-class Gram filtering using 1

5:   Learn dictionary and sparse feature matrix with the K-SVD algorithm

minimize
DC, XC

‖YC − DCXC‖2
2 s . t . ‖xi

C‖0 ≤ L

6:   Inter-class Gram filtering using 2

7: end for

8: Learn residuals RB and RF given Y, DB and DF with OMP algorithm

9: Test on all residuals RB and RF for first classification

10: Use MRF-based segmentation on the residuals RB and RF using Equation 3

Methods of comparison and variants

All quantitative analysis for supervised methods was performed using a strict leave-one-

subject-out cross validation. For our implementation of Atlas-based segmentation methods, 

the registration algorithms dDemons [6] and FFD-MI [20] are used to propagate the 

segmentation mask of all other subjects to the image of the test subject, followed by a 

majority voting to obtain the final myocardial segmentation. For supervised classifier-based 
methods, namely Appearance Classification using Random Forest (ACRF) and Texture-

Appearance Classification using Random Forest (TACRF) random forests are used as 

classifiers to get segmentation labels from different features. To provide more context, we 

compared our approach with dictionary-based methods, DDLS, RDDL, MSDDL and 

UMSS. DDLS is an implementation of the method in [7], whereas the discriminative 

dictionary learning of [47] was used for RDDL. MSDDL [9] uses a multi-scale supervised 

dictionary learning approach with majority voting classification. UMSS [10] is a 

unsupervised method relying only on a motion-based coarse segmentation of background. 

This method learns background class only with a dictionary and performs classification with 

one-class SVM. Finally, to showcase the strengths of our design choices that contribute to 

performance of the proposed method, we considered three additional variants of our method 

(i.e. ablations), without Total Variation pre-processing (Proposed No TV), without Gram 
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filtering (Proposed No Gram Filtering), without concatenating optical flow features with 

intensity for Dictionary Learning (Proposed No Motion) and without spatial regularization 

using MRF (Proposed No MRF).

Evaluation Metrics

To evaluate performance we used three metrics, the first two are classically used when 

evaluating segmentation [48]. We used the Dice overlap measure, which is defined between 

two regions A and B defined as:

To evaluate the match of the ground truth annotation to an algorithm’s result in terms of 

distance, we relied on the Hausdorff distance between two contours CA and CB:

where d presents the distance of points a ∈ CA and b ∈ CB.

Since part of our analysis is to evaluate how errors in segmentation affect the BOLD 

response (and its patterns) we use cosine similarity to evaluate the match between two 

intensity signals SA, and SB (e.g. time series) as:

where |·| corresponds to ℓ2 norm of the vector. (We multiply with 100 to report in %.)

A. Comparison with other methods

The visual quality of myocardial segmentation by the proposed method for both baseline and 

ischemia cases across standard CINE and CP-BOLD MR is shown in Fig. 6. The End-

diastole (ED) and End-systole (ES) phases are picked as exemplary images from the entire 

cardiac cycle. Note that our method results in very smooth endo- and epi-cardium contours, 

which closely follow ground truth contours generated by the experts and can be attributed to 

the successful representation of myocardial motion.

These observations also hold quantitatively when relying on the Dice metric for evaluation. 

As Table I shows, overall, for standard CINE, most algorithms perform adequately well and 

the presence of ischemia slightly reduces performance. However, when BOLD contrast is 

present, some of the approaches that have not been designed to handle the BOLD contrast 

lose performance (i.e. those without a ‘*’ in the table). Specifically, Atlas-based methods, 

ACRF and TACRF are all shown to perform better in standard CINE compared to CP-

BOLD. Among dictionary-based methods, DDLS performs well in standard CINE MR, but 

under-performs in CP-BOLD MR. On the other hand our proposed method performs on par 
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with (and in some cases outperforms) methods that have been designed to handle BOLD 

contrast (namely MSDDL and UMSS). This is revealing since MSDDL is fully supervised 

and uses multi-scale features but not motion whereas UMSS albeit being unsupervised and 

relying on motion uses a single dictionary. It appears that combining motion and using two 

dictionaries even if they are trained on imprecisely annotated data, is beneficial. Other 

design choices contribute as well, as comparisons with the proposed method’s variants 

reveal. In particular, TV-smoothing contributes mostly in extracting more meaningful 

patterns from optical flow for both CP-BOLD and standard Cine MR.

B. Segmental analysis

Here we analyze segmentation results by taking into account the spatial distribution of the 

errors. For each myocardium segmented both manual and automatically, we divide it in 6 

radially concentric regions, following the six-segment AHA model for the mid-ventricular 

slice [49]. Specifically, we take the manually segmented masks and divide them to six 

radially concentric regions 0°, 60°, 120°, 180°, 240° and 300°. As a reference, a diagram of 

this process, known as bullbs eye view, is shown in Fig. 7 along with anatomical 

nomenclature.

Quantitative Analysis—In Fig. 8 boxplots of the Hausdorff distance metric for the 

epicardium for CP-BOLD and standard CINE MR are presented. Endocardium results show 

subpixel accuracy on average, and are excluded for brevity. The boxes represent the lower 

quartile, median and upper quartile values; the whiskers represent the whole extension of the 

error distribution whereas the crosses correspond to outliers. The global error distribution 

shows the presence of two outliers, whereas the remaining segmentations have mean errors 

lower than ≈ 4 mm for images with 1.25 mm spatial resolution. Our reported results of 

Hausdorff distance are at par with [26]. In the case of Hausdorff distance errors, largest 

values are located at the inferior region mainly due to the presence of liver.

A comparison is shown in Table II to indicate the stability of the method when ischemia is 

present. The Dice overlap measure is calculated for the 6 regions of the myocardium. In 

general our algorithm is robust to regional complexities of the myocardium. Ischemia 

appears to slightly influence the performance especially in the regions that are under 

influence of LAD stenosis (Anteroseptal, Anterior and Anterolateral).

Time series analysis for ischemia detection—It is important to evaluate 

quantitatively the influence of segmentation errors on preserving the BOLD effect to reduce 

errors of ischemia detection methods [3], [2], [4]. As a benchmark, we used the BOLD 

signal intensity as obtained via averaging (and normalizing) pixel values in various regions 

with and without disease obtained from myocardial definitions from ground truth or 

algorithm results. Fig. 1C already alludes that our proposed approach outperforms other 

segmentation methods, and this performance also holds when disease is present (see Fig. 9). 

This also holds quantitatively when comparing with an Atlas-based method [6] as an 

illustrative example, using the cosine similarity metric (see Table III). Evidently, small errors 

(even 5–10 pixels) in segmentation towards hyperintense (blood pool) or hypointense (lung/
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liver interface) areas when a myocardial region is as small as 100 pixels in systole have 

severe effects in preserving the BOLD signal.

C. Segmentation performance across cardiac phases

Since our approach uses motion patterns as input features, it is interesting to evaluate if 

natural changes in cardiac motion affect performance. We evaluated this by measuring 

performance over different cardiac phases (early diastole to late systole) of the cardiac cycle 

in Table IV. We partitioned the cardiac cycle to four phases as early diastole, late diastole, 

early systole and late systole according to ECG triggering. First and last points in the R-R 

interval correspond to diastole, whereas systole appear around 30%. Overall the performance 

of the algorithm is consistent throughout the cardiac cycle as anticipated given that 

dictionaries are learned by pooling patches across the entire cardiac sequence.

D. Parameter analysis and computational performance

The purpose of this section is to analyze effects of different parameters of the algorithm as 

well as discuss computational performance. First we evaluate pre-processing; then patch 

size, number of atoms K, and sparsity level L varying one of the 3 but keeping the other two 

fixed using the following values: patch size of 13 × 13, K = 400 and L = 4.

Influence of pre-processing—Pre-processing consists of identifying both background 

and myocardium regions to sample from, which depend on the thickness of the rings that 

define them. Here we vary this ring size (from the initial size of 6mm) keeping all other 

parameters fixed. Fig. 10 illustrates that the results remain consistent whether modifying 

more the background (more false negatives) or the myocardium (more false positives) class. 

This result demonstrates that we can tolerate imprecision in defining the regions to sample 

from.

Influence of patch size—The patch size is related to the local geometry whilst the 

neighborhood size reflects the anatomical variability. The Dice coefficient distributions over 

varying patch are presented in Fig. 11a for a dictionary size of K = 400 atoms, and sparsity 

of L = 4. As one can observe, the best median Dice coefficient was obtained with a patch 

size of 13 × 13 albeit it performed similar to 15 × 15. This is to be expected as this comes 

close to the average size of the myocardium given the image size of our dataset.

Influence of dictionary size and sparsity level—First, experiments were carried out 

to study the influence of dictionary size K (the number of atoms in each dictionary) on 

segmentation accuracy with fixed values 13 × 13 patch size and L = 4 sparsity threshold. As 

illustrated by Fig. 11b, 400 atoms provide a good balance of accuracy w.r.t. dictionary size. 

Note that a larger dictionary does imply higher computational complexity, albeit it also 

depends on sparsity level.

Thus, experiments were also carried out to study the influence of the sparsity level L (the 

number of non-zero components in sparse coefficients) on segmentation accuracy. This 

governs the selection of atoms to be combined for the purpose of representing classes with 

the dictionaries. Fig. 11c shows that sparsity 4 is the most suited level of sparsity for our 
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experiments and indicates the importance of this parameter. It appears that lower sparsity has 

higher discriminative ability as adding additional atoms it appears to add noisy information.

Computational Complexity—Execution time on a 2.4 GHz processor with an average 

data set (192 × 114 × 30) is approximately seven minutes. Most of this time is spent on the 

dictionary learning stage (approx. 4 minutes).

V. Discussion

Cardiac MRI is an emerging modality in the management of cardiovascular disease. Its 

ability to obtain multiple contrasts that can be used to ascertain various degrees and 

complexities of pathology makes it a powerful diagnostic tool. For example, the CP-BOLD 

sequence used in this study is such a sequence that can obtain information on myocardial 

status (ischemia) and function (motion). However, this flexibility comes at a cost for the 

required post-processing. This study clearly showed that algorithms developed to segment 

the myocardium in Standard CINE MRI severely under-perform when applied to images 

from CP-BOLD studies. It showed that new algorithms are necessary for accurate 

segmentation, and the proposed algorithm aims to segment the myocardium in CP-BOLD 

without any supervision in a fully automated fashion.

The results show that the unsupervised automatic segmentation resulting from the proposed 

method results in an acceptable level of agreement with manual segmentations. The main 

challenge of CP-BOLD data stems from spatio-temporal variations of the myocardial signal. 

We address this in several ways. First we reduce the BOLD effect by variational temporal 

smoothing which has not been applied as pre-processing before in the context of cardiac 

BOLD data. We then use both appearance and motion for dictionary learning. Different from 

others we train these dictionaries from data that have uncertainty in their annotation and 

these data are subject-specific. Finally, since classification based on residuals may lead to 

non-smooth contours locally, we use MRFs to obtain the final segmentation. As experiments 

on time series comparisons showed, accurate segmentation translates directly to the fidelity 

of the signal that we aim to preserve, namely: BOLD contrast. This will have direct effects 

on fully automated ischemia detection [4].

This study used 2D (+time) datasets at mid-ventricular slice; however when 3D BOLD 

approaches become routinely available it will be interesting to see how the presented method 

extends to 3D. We envision that iterating the steps of training the dictionaries and 

segmentation could be beneficial, as with more accurate class definitions the discriminative 

power of the dictionaries is increased. In addition, it is possible that we can exploit data 

augmentation to perhaps learn better features. Another avenue of improvement will be the 

thickness normalization function of the preprocessing scheme, which relies on a fixed 

estimate currently.

In conclusion, this study motivates us to rethink the standard assumptions and verification 

metrics regarding the segmentation of the myocardium in cardiac MRI. Development of MR 

technologies bring new challenges and departing from fully supervised techniques (the 

performance of which heavily depends on the amount of training data) towards unsupervised 
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ones can provide multiple benefits. Finally, this work has shown that global DICE score on 

its own is not a sufficient performance metric and more analysis can bring about the 

suitability of segmentation methods for particular MR techniques.
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Fig. 1. 
BOLD contrast challenges myocardial segmentation algorithms. A: Raw BOLD images 

from different cardiac phases of the same healthy subject) and color-coded myocardia 

overlaid on the raw images to demonstrate that subtle, imperceptible to the eye, intensity 

changes occur. B: Results of various algorithms (shown in red) for myocardial segmentation 

of the anterior region together with ground truth (green) manual delineations. Algorithms 

used: Atlas-based [6], Random Forests on Appearance and Texture features (a baseline) and 

a Dictionary Learning method (DDLS) [7]. C: Corresponding time series of the Anterior 

region from different methods compared to the one obtained based on ground truth 
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segmentation. Overall errors in segmentation lead to deviations in the estimated time series, 

which will ultimately lead to low accuracy in ischemia detection. Our proposed method 

achieves high segmentation accuracy (last image in B); which leads to a better estimate of 

the time series (bottom part of C). [In typical CP-BOLD acquisition settings, with ECG-

triggering, first and last points in the R-R interval correspond to diastole, whereas systole 

tends to appear around 30%.]
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Fig. 2. 
Description of the proposed method. Block A aims to find a rough segmentation of the 

myocardium. In Block B two subject-specific dictionaries are trained on foreground and 

background on appearance and motion. In Block C a MRF-based segmentation algorithm on 

the residuals of the two dictionaries is utilized to have smooth boundaries.
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Fig. 3. 
Extracting candidate background and myocardium regions. LV blood pool (left); Distance 

transform from the LV blood pool boundary (middle); Rudimentary background and 

foreground classes (right). Only pixels within the blue and red rings (right panel) are used to 

sample patches for dictionary learning. The green ring acts as boundary in between these 

two regions to reduce the chance of false positives.
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Fig. 4. 
Influence of Total Variation based smoothing on different cardiac phases of a healthy 

subject. Four temporal phases of the same acquisition of a subject before (top) and after pre-

processing (bottom), where myocardial intensities have been color-coded to aid 

visualization. Observe, how myocardial intensities appear smoother and within the same 

(and shorter) range across the cardiac cycle after TV-based smoothing (bottom row).
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Fig. 5. 
The feature vector generation as concatenation of intensities of square patches and 

corresponding motion vectors inside that patch.
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Fig. 6. 
Segmentation result (red) of Proposed method for both CP-BOLD MR and standard CINE 

MR at baseline and ischemic condition for End-diastole (ED) and End-systole (ES) 

superimposed with corresponding Manual Segmentation (green) contours delineated by 

experts.
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Fig. 7. 
Six segments of mid-ventricular myocardial slice
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Fig. 8. 
Segmental Hausdorff distance accuracy for CP-BOLD and standard CINE MR for 

epicardium.
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Fig. 9. 
Normalized time series obtained by averaging pixel intensities in the anterior region, as 

defined using ground truth (blue) and automatic segmentation (red dotted line) in a subject at 

baseline (left) and after LAD stenosis and during ischemia (right). Observe that the time 

series obtained via the proposed segmentation is consistent with that of ground truth, which 

eventually result in more accurate ischemia detection.
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Fig. 10. 
Effect of Pre-processing on segmentation accuracy. Rudimentary class thickness is varied 

from the original size (6mm) for background (a) and myocardium (b). The influence of 

changing the thickness from 3mm to 9mm of both classes on segmentation accuracy is 

minimal.
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Fig. 11. 
Effect of patch size (a), dictionary size (b) and sparsity threshold (c) on segmentation 

accuracy. The optimal results were obtained using a patch size of 13 × 13, a dictionary of 

400 atoms and a sparsity threshold of 4.
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TABLE I

Dice coefficient (mean ± std) for myocardial segmentation accuracy in %.

Baseline Ischemia

Methods Standard CINE CP-BOLD Standard CINE CP-BOLD

Atlas-based methods

dDemons [6] 60 ± 8 55 ± 8 56 ± 6 49 ± 7

FFD-MI [20] 60 ± 3 54 ± 8 54 ± 8 45 ± 6

Supervised classifier-based methods

ACRF 57 ± 3 25 ± 2 52 ± 3 21 ± 2

TACRF 65 ± 2 29 ± 3 59 ± 1 24 ± 2

Dictionary-based methods

DDLS [7] 71 ± 2 32 ± 3 66 ± 3 23 ± 4

RDDL [47] 42 ± 15 50 ± 20 48 ± 13 61 ± 12

MSDDL* [9] 75 ± 3 75 ± 2 75 ± 2 71 ± 2

UMSS* [10] 62 ± 20 71 ± 10 65 ± 14 66 ± 11

Proposed unsupervised method

Proposed No TV 65 ± 6 59 ± 7 63 ± 8 57 ± 9

Proposed No Gram Filtering 62 ± 5 52 ± 4 53 ± 5 57 ± 7

Proposed No Motion 71 ± 6 69 ± 8 67 ± 9 68 ± 8

Proposed No MRF 74 ± 5 75 ± 6 73 ± 7 72 ± 6

Proposed 77 ± 10 77 ± 9 74 ± 7 74 ± 6

*
denotes a method that has been designed to handle BOLD contrast.
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TABLE II

Regional segmentation accuracy measured via Dice (mean ± std) in % for Standard CINE and CP-BOLD.

Baseline Ischemia

Regions Std. CINE CP-BOLD Std. CINE CP-BOLD

Anterior 81±13 83±10 78±10 79±8

Anteroseptal 79±10 82±9 75±10 75±9

Inferoseptal 75±12 72±16 75±12 75±9

Inferior 72±11 70±12 69±11 71±8

Inferolateral 73±8 72±12 71±13 71±11

Anterolateral 82±7 81±9 76±11 74±9
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TABLE III

Cosine Similarity comparison of Timeseries of 6-segmental regions (mean ± std, in %) acquired from the 

ground truth compared with the proposed method and Atlas-based method [6] for CP-BOLD sequences.

Proposed Atlas-based [6]

Regions Baseline Ischemia Baseline Ischemia

Anterior 93±2 89±3 89±4 86±5

Anteroseptal 92±5 83±6 89±5 81±8

Inferoseptal 82±5 83±9 80±8 80±11

Inferior 79±4 80±8 75±8 77±11

Inferolateral 81±3 80±9 81±3 80±9

Anterolateral 91±3 83±5 88±5 81±7
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TABLE IV

Dice coefficient (mean ± std) for myocardial segmentation accuracy in % of different cardiac stages.

Baseline Ischemia

Stage Std. CINE CP-BOLD Std CINE CP-BOLD

Early diastole 76 ± 5 76 ± 6 73 ± 4 75 ± 4

Late diastole 75 ± 4 75 ± 4 74 ± 6 73 ± 7

Early systole 77 ± 5 77 ± 3 75 ± 7 74 ± 6

Late systole 78 ± 4 78 ± 6 75 ± 4 75 ± 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 November 01.


	Abstract
	I. Introduction
	II. Related Work
	Unsupervised methods
	Supervised Methods

	III. Methods
	A. Pre-processing
	Total Variation based smoothing
	LV center point detection and blood pool extraction
	Finding foreground and background regions to sample from

	B. Dictionary Learning
	C. MRF based smoothing

	IV. Experimental Results
	Data Set

	Algorithm 1
	Methods of comparison and variants
	Evaluation Metrics
	A. Comparison with other methods
	B. Segmental analysis
	Quantitative Analysis
	Time series analysis for ischemia detection

	C. Segmentation performance across cardiac phases
	D. Parameter analysis and computational performance
	Influence of pre-processing
	Influence of patch size
	Influence of dictionary size and sparsity level
	Computational Complexity


	V. Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	TABLE I
	TABLE II
	TABLE III
	TABLE IV

