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Abstract

Gene by environment (GxE) interaction studies have investigated the influence of a number of 

candidate genes and variants for major depressive disorder (MDD) on the association between 

childhood trauma and MDD. Most of these studies are hypothesis driven and investigate only a 

limited number of SNPs in relevant pathways using differing methodological approaches. Here (1) 

we identified 27 genes and 268 SNPs previously associated with MDD or with GxE interaction in 

MDD and (2) analyzed their impact on GxE in MDD using a common approach in 3944 subjects 

of European ancestry from the Psychiatric Genomics Consortium who had completed the 

Childhood Trauma Questionnaire. (3) We subsequently used the genome-wide SNP data for a 

genome-wide case-control GxE model and GxE case-only analyses testing for an enrichment of 

associated SNPs. No genome-wide significant hits and no consistency among the signals of the 

different analytic approaches could be observed. This is the largest study for systematic GxE 

interaction analysis in MDD in subjects of European ancestry to date. Most of the known 

candidate genes/variants could not be supported. Thus, their impact on GxE interaction in MDD 

may be questionable. Our results underscore the need for larger samples, more extensive 

assessment of environmental exposures, and greater efforts to investigate new methodological 

approaches in GxE models for MDD.

INTRODUCTION

Major depressive disorder (MDD) is known to be substantially heritable but also has a huge 

number of well-established environmental and lifestyle factors that contribute to the disease 

risk (Cerdá, 2010). Although the proportion of variance attributable to genome-wide SNPs 

(SNP heritability) for MDD has been estimated to be about 21% to 32% (Lee et al., 2013; 

Lubke et al., 2012), there are only a few genome-wide significant hits for MDD or 

depressive symptoms that have been detected to date (Hek et al., 2013; Okbay et al., 2016; 

CONVERGE, 2015; Hyde et al., 2016) and their biological impact on depression is largely 

unknown. Many factors could explain the lack of success so far including limited sample 

size, the high symptom heterogeneity for MDD as well as the strong contribution of 

environmental and, lifestyle factors and life events (Flint and Kendler, 2014), and it has been 

hypothesized that genetic factors need the presence of environmental triggers to exhibit an 

effect on the individual (Caspi et al., 2003; Dun et al., 2015).

Early childhood trauma (CT) is the most frequently investigated environmental factor, which 

shows a high impact on major depression and many other psychiatric disorders (Mandelli et 

al., 2015). Previous studies have suggested interaction effects between CT and individual 

variants from several genes including the highly studied serotonin-transporter-linked 

polymorphic region (5-HTTLPR) (Caspi et al., 2003; Van der Auwera et al., 2014; Karg et 

al., 2011), but also for BDNF, TPH2, FKBP5, DRD2 and many other genes from candidate 

pathways (Mandelli and Serretti, 2013; Grabe et al., 2011; Appel et al., 2011). These 
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candidate gene approaches in gene-environment (GxE) interaction analyses select single 

variants in specific genes belonging to plausible disease-related pathways. Although this 

approach seems sensible, there are many challenges in this work. Many factors impact on 

their interpretation, not least non-significant results are less likely to be taken forward for 

publication generating a reporting bias (Duncan and Keller, 2011). Comparisons between 

studies are difficult because of the different environmental exposures considered such as 

stressful life events, abuse and neglect subtypes, social support or living in rural/urban areas, 

different methods of assessment (questionnaires vs. interviews), and the different 

quantification of exposures (binary, categorical or continuous) (Mandeli and Serretti, 2013; 

Dunn et al., 2011). Likewise, the phenotype definition varies between a binary lifetime 

major depression variable to a dimensional score of current depression. Moreover, there are 

no common guidelines regarding how to perform GxE analyses in MDD (type of regression 

model (linear or logistic model), mode of action (multiplicative or additive) or assumed 

genetic effect (additive, allelic, dominant or recessive model)). Until now, only two GxE 

interaction analyses for depressive symptoms have been performed on a genome-wide level. 

One was published by Dunn et al. (2016) in a sample of African American and Hispanic 

women. In N=7179 African American women one genome-wide significant hit was found 

near CEP350, a centrosomal protein which has never been associated with a psychiatric 

phenotype before. Another study in a Japanese population (N=320) reported the genome-

wide hit rs10510057 near RGS10 (Otowa et al., 2016), but given the small sample size this 

result should be regarded with caution. Both studies performed a linear regression GxE 

analysis assessing the p-value of the interaction term with a dimensional depression score as 

the outcome, and stressful life events during the past 12 months as the environmental 

exposure. Whether these findings can be replicated in a population of European ancestry, 

although the environmental exposure is different, needs to be elucidated.

Here, we focus on the most important known risk exposure for MDD, early childhood 

trauma, and combine all cohorts from the Psychiatric Genomics Consortium (PGC) with 

available CT and MDD data to perform gene-environment (GxE) interaction. At the outset, 

despite being the largest European ancestry study to date, we recognized that our study was 

likely under-powered to detect GxE effects on a genome-wide level, so we sought to reduce 

the multiple testing burden by screening the literature and identified genes and SNPs 

previously implicated in MDD or GxE in MDD. Our aims were 1) to analyze candidate 

variants, 2) to compare different methodological approaches, and 3) to analyze the genome-

wide summary statistics of the GxE analyses for an enrichment of significant findings. We 

hypothesize that candidate genes/SNPs for a GxE interaction in MDD that have been 

proposed in the past should at least show a nominally significant association (p<0.05) in our 

analyses.

MATERIALS AND METHODS

Participants

The Psychiatric Genomics Consortium (PGC) collates genome-wide genotypic and 

phenotypic data for MDD (PGC steering committee, 2009). Subjects were recruited from the 

PGC wave 2 for MDD, with phenotypic and genetic data of 16823 MDD cases and 25632 
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controls from 24 different cohorts with individuals from European ancestry. All cases were 

diagnosed according to DSM-IV lifetime MDD using structured diagnostic instruments from 

direct interviews by trained interviewers or clinician-administered DSM-IV checklists. 

Controls were screened for absence of MDD. Nine of these cohorts also provide 

phenotyping of exposure to environmental factors as risk for psychiatric disorders including 

childhood trauma (CT). Five cohorts used the most widely applied Childhood Trauma 

Questionnaire (CTQ) that distinguishes between different dimensions of childhood abuse 

and neglect (Bernstein et al., 2003) (table S1): Cognition and Function in Mood Disorders 

Study (COFAMS) from Australia (Baune and Air, 2016), the Netherlands Study of 

Depression and Anxiety (NESDA) (Penninx et al., 2008), Radiant-UK from the United 

Kingdom (Lewis et al., 2010), and two independent samples from the Study of Health in 

Pomerania (SHIP) from Germany (Völzke et al., 2011). Six cohorts used study-specific 

versions of childhood trauma assessment that do not capture all five dimensions of abuse and 

neglect from the CTQ or used different types of questions (table S1): Depression Gene 

Network (DGN) from the USA (Mostafavi et al., 2014), the Genetics of Recurrent Early-

Onset Depression (GenRED) from the USA (Holmans et al., 2007), two independent 

samples from the Queensland Institute of Medical Research (QIMR) from Australia (Nelson 

et al., 2002; Wray et al., 2012), the psychiatric arm of the population-based CoLaus study 

(PsyCoLaus) from Switzerland (Preisig et al., 2009) and the Bonn/Mannheim study from 

Germany (BOMA) (Cichon et al., 2011). To reduce the heterogeneity in our samples, we 

only included the five studies that measured childhood trauma with the same standardized 

instrument (CTQ). In addition, COFAMS was excluded from the analysis due to the low 

number (N=56) of MDD cases with available CTQ data.

Childhood Trauma Questionnaire

The CTQ assesses childhood trauma, defined as trauma before the age of 16 (CTQ, table S1) 

(Bernstein et al., 2003), which covers three sub-scales of abuse, sexual abuse, physical abuse 

and emotional abuse, as well as two sub-scales of neglect, emotional neglect, and physical 

neglect, all covered by five questions (range 1 to 5). This results in a score per domain 

ranging from 5 to 25, and an overall CTQ continuous score ranging from 25–125. Per 

domain, cutoffs from the CTQ manual (Bernstein et al., 2003) were applied to get a broad 

definition of childhood trauma separating no trauma from mild, moderatel, or severe trauma. 

CT was transformed to a dichotomous abuse variable separating childhood abuse in any of 

the three domains (1=Yes) from no abuse in all domains (0=No) to address the skewness of 

the CTQ score.

Genotyping, quality control and imputation

The cohorts were genotyped following their local protocols, after which quality control and 

imputation to the 1000 genomes reference panel (Abecasis, 2010) was conducted through 

the standardized PGC pipeline (see Schizophrenia Working Group of the PGC, 2014) per 

cohort (PGC MDD: wave 2 GWAS results, In preparation). For details see supplemental 

material.
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Statistical Analysis

We performed these analyses in three steps: 1. Power calculation and selection of candidate 

SNPs/genes for GxE analyses, 2. Analysis of the candidate variants and genes in GxE, and 

3. Analysis of the genome-wide GxE GWAS results.

Different methodological approaches—Our main analytic models assuming additive 

genetic effects include (i) a standard GxE analysis with a multiplicative interaction term and 

a dichotomous environmental exposure (abuse 0/1) and (ii) case-only analyses, 

recommended by VanderWeele (VanderWeele et al., 2010; Explanation in Causal Inference, 

2015), with the dichotomous abuse 0/1 variable as well as the continuous CTQ score as 

outcome (for overview see figure 1). Case-only analyses have a higher statistical power to 

detect GxE effects (Gauderman et al., 2013) than case-control GxE models with a 

multiplicative interaction term and circumvent the statistical difficulties of the low 

robustness of interaction terms. But these models require that no gene-environment (G~E) 

correlation is present (VanderWeele et al., 2010; VanderWeele, 2015). For all case-only 

models G~E correlation in MDD negative controls was analyzed. We used MDD negative 

controls because these constitute of roughly 85% of the population and can thus be used as 

an approximation for the full population.

1. GxE case-control (CC) interaction analyses included a multiplicative interaction 

term between the SNPs and abuse 0/1 assessing the p-value for the interaction 

term. Analyses were controlled for sex, the first three genetic principal 

components as well as all SNPxCov and ABUSExCov interaction terms as 

recommended by Keller (Keller, 2014).

2. MDD case-only (CO) analyses with abuse 0/1 as dependent variable assessed the 

SNP p-value:

3. MDD CO analyses with CTQ score as dependent variable assessed the SNP p-

value:

4.

These three approaches enable the comparisons between CC GxE and COy 

analysis as well as between dichotomous and continuous measurement of 

childhood trauma (abuse 0/1 vs. CTQ-score).

As a sensitivity analysis, the CO analyses were also performed assuming a 

dominant and recessive SNP effect (see supplement). This analysis was 
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empirically driven by the fact that in many candidate studies for GxE in MDD 

dominant or recessive effects were found (Mandelli and Serretti, 2013).

GWAS and meta-analyses—For each of the four cohorts (SHIP-0, SHIP-TREND, 

NESDA, Radiant-UK) GWAS have been performed as described above. A logistic 

regression model was used for a binary outcome and a linear regression model for a 

continuous outcome using PLINK (Chang et al., 2015). Quantile-quantile (QQ) and 

Manhattan (MH) plots were generated using R (https://cran.r-project.org/). The final meta-

analysis comprised N=3944 individuals (N=1891 MDD cases and N=2053 controls). The 

results were combined using an inverse variance-weighted fixed effects meta-analysis in 

METAL (Willer et al., 2010) with the following QC parameters; MAF>0.05, info score>0.6, 

HWE>0.001 and including only SNP present in at least 3 of the 4 cohorts. The genomic 

inflation factor λ for each study was calculated, and genomic-control (GC) correction was 

applied when λ>1. The I2 statistic was used to evaluate between-study heterogeneity.

RESULTS

The number of MDD cases and controls with and without CT are summarized in table 1. In 

each of the four cohorts the CTQ total score as well as the abuse 0/1 variable were highly 

associated with MDD, adjusted for sex and age.

1. Power calculation and selection of candidate genes/SNPs

The software Quanto (vs. 1.2.4) was used to determine the interaction effect size we would 

be able to detect as genome-wide significant given our sample (see table S2). In the case-

control GxE model with N≈1900 MDD cases, we would only be able to detect large effects 

(OR≥2.5) with a power of 80% for SNPs with high MAF (MAF≥0.2). In the case-only 

model with N≈2000 MDD cases, we would be able to detect large effects (OR≥2.4) for 

SNPs with low MAF (5%), and medium effects (OR>1.5) with SNPs with large MAF 

(50%). Because in GWAS small effects (OR<1.5) are observed, we assumed that with our 

current sample size we were underpowered to detect genome-wide interaction signals. Thus, 

we will focus on candidate SNPs and genes for GxE in MDD.

Since the literature on candidate genes for MDD and GxE interaction in MDD is very broad, 

we focused on papers that reviewed the previous work in the field. The candidate list 

comprises SNPs/genes that were taken from two major reviews (Mandelli and Serretti, 2013 

for GxE interaction in MDD; Luo et al., 2016 for candidate genes/SNPs in MDD). These 

candidates cover genes from central monoaminergic systems such as serotonin, dopamine or 

noradrenalin, from the glutamatergic system, corticotrophin system, neurotropic system or 

from inflammatory processes (e.g. SLC6A4, DRD2, COMT, NR1, CRHR1, BDNF, FKBP5, 
NR3C1). We also included SNPs from recent GWAS results for MDD or GxE interaction 

(Dunn et al., 2016; Otowa et al., 2016; Hyde et al., 2016). The final list included 268 

different candidate SNPs (table S4) and 27 candidate genes (table S6). From the candidate 

SNP list, 184 SNPs were available in the meta-analyses after QC (most of these candidate 

SNPs were excluded based on MAF<0.05).
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2. Analysis of candidate SNPs/genes

The candidate genes/variants were analyzed using different methodological approaches. In 

the CO analyses the candidate SNPs revealed no excess of G~E correlation (supplemental 

material, table S7), justifying continuation into case-only analyses. A full list of the results 

from the candidate SNPs in all models is provided in table S4.

Case-control GxE analysis with a multiplicative interaction term—In the fully 

adjusted GxE model no candidate SNP reached statistical significance after correcting for 

multiple testing (pcorrected set to 0.05/184≈0.0003) and five SNPs showed nominal 

significance (p<0.05), which was fewer than expected by chance (expected N=9): rs2433320 

(PDLIM5), rs1656369 (RSRC1), rs1539243 (IKBKE), rs900144 (ARNTL) and rs6582078 

(TPH2).

Case-only approach on abuse 0/1 and CTQ score—Abuse 0/1: From the candidate 

list, eight SNPs were at least nominally significant in the additive SNP model: rs1656369 

(RSRC1), rs41423247/rs6191/rs33388 (NR3C1), rs1801262 (NEUROD1), rs4763327 

(EMP1), rs2433320 (PDLIM5). CTQ-score: Seven SNPs from the candidate list were 

nominally significant in the additive SNP model: rs909486 (CSF2RB), rs3754674 (NPAS2), 

rs9450282 (NT5E), rs4244813/rs2279861 (SLC29A2), rs6191 (NR3C1), rs737865 

(COMT). Results for the dominant/recessive case-only models can be found in 

supplementary table S4.

Exploratory comparison of all three approaches—Taking the CC GxE and CO GxE 

approaches, only 16 (≈9%) of the 184 SNPs showed nominal significance in at least one of 

the approaches (table S4), 13 of them with consistent directions of effects in all three 

approaches. Some of them showed consistently significant associations across approaches. 

Two SNPs (rs33388 and rs6191) of NR3C1 (glucocorticoid receptor) which acts as a 

transcription factor and player in the hypothalamic-pituitary-adrenal (HPA) axis could be 

supported (Keller et al., 2016) in both case-only models but not in the direct GxE 

interaction. Rs2433320 in PDLIM5 (PDZ and LIM domain containing 5) and rs16566369 in 

RSRC1 (arginine and serine rich coiled-coil 1) showed nominal significant results in at least 

two different approaches.

3. GWAS to identify GxE interaction loci

Meta-analysis of all four cohorts included nearly 4.3 million variants. An overview of the 

top loci in all three models, assuming an additive SNP-effect, is given in table 2. In all three 

meta-analysis no SNP achieved genome-wide significance (all p>5E-8). The top SNPs from 

the genome-wide CO approaches revealed no excess of gene-environment correlation 

(supplemental material, table S7).

Manhattan-plots for all three models are given in figure S1. The quantile-quantile plots 

showed a deflation of the observed results to those expected by chance (figure S2) and the 

λs were between 0.96 and 0.99. A full list of SNPs with p<1E-5 in all different approaches 

is given in table S3.
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The top-hit in the case-control GxE approach on abuse 0/1 assuming an additive SNP effect 

was the variant rs7128637 near the ARHGAP20 gene, a Rho GTPase activating protein, with 

p=4.4E-6. The top hit in the case-only analysis on abuse 0/1 was rs17578476 (p=3.3E-6) 

harboring at LRRIQ3 locus, a locus previously implicated as one of the 108 loci associated 

with schizophrenia (Schizophrenia Working Group of the PGC, 2014). In the case-only 

analysis for CTQ score the minimum p-value was achieved for rs3214187 (p=7.4E-7) near 

the NPY (neuropeptide Y) gene. Another top variant from this analysis was rs75184661 

(p=4.1E-6), intronic of CACNA1C (subunit of calcium voltage-gated channel). Results for 

the dominant/recessive case-only models can be found in supplementary table S3.

Exploratory comparison of all three approaches—The correlation between effect 

estimates (betas and log(OR)) of all three genome-wide approaches assuming an additive 

SNP effect was highest between both CO approaches on abuse 0/1 and CTQ-score (r=0.58), 

medium between both analyses on abuse 0/1 (CC and CO) (r=0.54) and lowest between the 

dimensional CO approach using CTQ score and the GxE interaction approach using abuse 

0/1 (r=0.33). The overlap between SNPs with a notable p-value <0.001 is given in the Venn 

diagram (figure S3). Although in theory all approaches were applied to measure GxE 

interaction for CT in MDD, the overlap between all three analyses with p<0.001 was only 

one SNP (rs10504767) on chromosome 8 with no known gene nearby.

Lookup of candidate genes—We performed a gene-based test using VEGAS2 (Mishra 

and Macgregor, 2015) on the genome-wide summary statistics of the three main analyses 

assuming additive SNP-effects. The gene definition was set to ±10kb and all SNPs per gene 

were used for analysis. No gene was significant after correction for multiple testing and the 

top results contained no gene previously associated with a psychiatric phenotype (table S5). 

Also our list of candidate genes revealed not even a nominally significant (p<0.05) hit in the 

VEGAS2 results (tables S6).

DISCUSSION

This is the first genome-wide GxE interaction GWAS for depression and childhood trauma 

in subjects of European ancestry. The aims of this study were to validate candidate SNPs and 

genes for GxE in MDD while applying different model assumptions to acknowledge the 

variety of GxE models in previous candidate gene studies. Our methods included standard 

case-control GxE analysis with a multiplicative interaction term as well as case-only 

analyses with two different parametrizations of childhood trauma (dichotomous childhood 

abuse 0/1 and a continuous childhood trauma score) assuming an additive SNP-effect.

Two published GxE studies on depressive symptoms reported genome-wide significant 

SNPs in African American women (rs4652467) (Dunn et al., 2016) and in a Japanese 

population (rs1051057) (Otowa et al., 2016). We were not able to replicate these findings as 

rs4652467 only has a MAF <0.001 in populations of European ancestry and was therefore 

excluded from our analyses. The association between rs1051057 and MDD in this sample 

was non-significant, even at a nominal level. One explanation for our failure to replicate this 

finding could be due to the different phenotype definition, as we used lifetime MDD and not 

current depressive symptoms. As expected, due to the limited number of subjects, we were 
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underpowered to identify robust genome-wide significant interaction effects in 3944 

individuals. None of the genome-wide approaches suggested an inflation of the p-values in 

the QQ-plots (figure S2).

Overall, the candidate variants could not sufficiently be supported by our analyses; only 9% 

of the SNPs revealed a nominally significant effect in at least one of the three main 

approaches. Also the introduction of dominant and recessive SNP models led to no 

association with p<0.0003. Subsequent gene-based analyses on the summary statistics using 

VEGAS2 allowed for no biologically meaningful interpretation. These findings are also 

consistent with recent large-scale efforts to validate candidate genes, especially the 5-

HTTLPR variant (Culverhouse et al., 2017). With such limited validation of candidate 

variants it seems questionable if the current approaches of candidate gene studies are the 

right tool to gain insights into the biology of gene-environment interactions in MDD. Our 

results suggest that published studies on candidate variants in GxE for MDD are in part 

likely subject to publication bias.

Methodological limitations and challenges

GxE studies face even larger methodological challenges than genetic association studies 

looking for main effects of SNPs.

1. Power: Our main limitation was the lack of power due to the limited sample size 

in our analysis which only allows for the robust identification of huge genetic 

effects which are not expected when analyzing common variants. – We tried to 

circumvent this limitation by focusing on previously reported candidate variants.

2. Assumptions behind GxE models: The methodological approaches that have 

been performed are based on different assumptions. In case-only analysis, 

independence between the genetic signal and the environmental factor is 

required. This might be a problem as studies suggest a significant heritability of 

childhood adversity through inherited ways of behavior. – Nevertheless, as 

previously shown for the MDD PGC wave2 data, SNP heritability for childhood 

trauma was estimated to be not significantly different from 0.00 in GRM based 

analyses (Peyrot et al., in preparation). Because of limited sample size, 

estimating the proportion of variance attributable to the interaction between CT 

and genome-wide genetic effects was not possible. But we also found no 

evidence for a gene-environment correlation for the top hits of our meta-

analyses.

3. Heterogeneity across samples: The samples used in these analyses were taken 

from different settings, general population and clinical patients. – Although this 

might have biased the results, all subjects were of European ancestry, all subjects 

were screened for MDD with the same instrument, all controls were also 

screened for absence of MDD and childhood trauma was assessed using the same 

instrument (CTQ).

4. Childhood trauma measurement: As with many other measures for childhood 

trauma, the CTQ is a retrospective self-report measure and thus reports are likely 
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to be influenced by recall bias and particularly depressive state. One solution 

would be to control for mood at the time of reporting in the analyses (Fisher et 

al., 2013). But other groups have found that depressive symptoms do not result in 

exaggeration of retrospectively recalled stressful events (Brewin et al., 1993; 

Fisher et al., 2011) and thus the use of retrospective self-reports is likely to have 

had only a minimal impact on these results. Nevertheless, this could be a source 

of bias leading to false positive results in our analyses.

5. GxE models: Although a number of different model assumptions were tested in 

this study, there are other models that need further investigation like the 

distinction between additive and multiplicative interaction models which is 

circumvented in the case-only approach as this method is assuming a 

multiplicative interaction. Also environmental factors different from childhood 

trauma such as social status or BMI could exhibit a GxE interaction as these are 

also risk factors for depression (Mansur et al., 2015; Schlossberg et al., 2010).

6. Lack of replication samples: We had no independent replication samples but we 

used different models to assess the robustness of the results. Unfortunately, no 

consistency between models was found.

7. Coverage of genetic variants: A GWAS approach does not cover all possible 

genetic variants that could contribute to depression, e.g. insertions, deletions or 

rare genetic variants. One of the most prominent examples is the serotonin-

transporter polymorphism (Caspi et al., 2003).

Nevertheless, our analyses may provide some insights into GxE analyses and the genetic 

underpinning of gene-environment interactions in MDD as some of the top signals in the 

three main analyses involved genes previously implicated in psychiatric phenotypes (table 2) 

like ENPP2 (Aston et al., 2005), the LRRIQ3 locus identified in the latest GWAS for 

schizophrenia (Schizophrenia Working Group of the PGC, 2014), FAT1 (Light et al., 2007; 

Abou Jamra et al., 2008), NPY (Nakhate et al., 2016; Soleimani et al., 2015) and 

CACNA1C, a candidate gene in depression that also shows pleiotropic effects on other 

major psychiatric disorders (Rao et al., 2016; Cross-Disorder Group of the PGC, 2013). 

Although some of these genes are well known in psychiatric research, the significant SNPs 

from the analyses showed no overlap with previously identified candidate SNPs of these 

genes.

Finally, we can say that with the current sample size we were not able to detect a robust 

genome-wide significant interaction with childhood trauma and depression and most of the 

candidate variants and genes could not be supported when utilizing different methodological 

approaches. An important point of this analysis is the lack of replication, even if only 

nominal p-values are considered. Moreover, the analyses showed a lack of stability of 

findings in the different methodological approaches.

It will be necessary to collect more data on childhood trauma in MDD samples to validate 

our top hits and achieve a higher power to detect robust genome-wide significant findings. 

Also it might be prudent to at least partially question some of the former candidate SNP 

results for MDD as these could be attributed to publication bias and inconsistent models. 
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One approach could be to harmonize the different CT measures throughout all of the PGC 

cohorts and perform the analyses with a much larger sample size. We also recommend 

reconsideration of the different models currently performed in GxE analyses for MDD and 

to perform consistent analyses in samples large enough to identify robust GxE interaction 

signals. Our next steps will be to perform the GxE analyses on single sub-dimensions of 

abuse where we have more data within the PGC as well as performing the analysis under the 

assumption of an additive interaction effect.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the seven different models and approaches for GxE
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