Exp Appl Acarol (2017) 73:439-450 @ CrossMark
https://doi.org/10.1007/s10493-017-0197-8

Seasonal cycles of the TBE and Lyme borreliosis vector
Ixodes ricinus modelled with time-lagged and interval-
averaged predictors

Katharina Brugger1 - Melanie Walter' - Lidia Chitimia-Dobler>” -
Gerhard Dobler’”* - Franz Rubel'

Received: 24 July 2017/ Accepted: 17 November 2017 /Published online: 27 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract Ticks of the species Ixodes ricinus (L.) are the major vectors for tick-borne
diseases in Europe. The aim of this study was to quantify the influence of environmental
variables on the seasonal cycle of questing I. ricinus. Therefore, an 8-year time series of
nymphal I ricinus flagged at monthly intervals in Haselmiihl (Germany) was compiled.
For the first time, cross correlation maps were applied to identify optimal associations
between observed nymphal 1. ricinus densities and time-lagged as well as temporal
averaged explanatory variables. To prove the explanatory power of these associations, two
Poisson regression models were generated. The first model simulates the ticks of the entire
time series flagged per 100 m?, the second model the mean seasonal cycle. Explanatory
variables comprise the temperature of the flagging month, the relative humidity averaged
from the flagging month and 1 month prior to flagging, the temperature averaged over
4-6 months prior to the flagging event and the hunting statistics of the European hare from
the preceding year. The first model explains 65% of the monthly tick variance and results
in a root mean square error (RMSE) of 17 ticks per 100 m?. The second model explains
96% of the tick variance. Again, the accuracy is expressed by the RMSE, which is 5 ticks
per 100 m?. As a major result, this study demonstrates that tick densities are higher
correlated with time-lagged and temporal averaged variables than with contemporaneous
explanatory variables, resulting in a better model performance.
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Introduction

It is undeniable that ticks and their ability to transmit medically relevant pathogens play an
important role for public health. The most important examples are the tick-borne
encephalitis (TBE) virus or Borrelia burgdorferi sensu lato, the complex of bacteria
causing Lyme borreliosis (LB). Reviews on TBE and LB concerning the study region
Central Europe (Germany) have recently been published on the epidemiology and distri-
bution of TBE (Dobler et al. 2012), the progress in TBE research (Kunze and The ISW-
TBE 2016) and LB in general (Stanek et al. 2012). To contribute to an adequate TBE and
LB risk assessment, which should incorporate the phenology of the vectors involved
(Norman et al. 2016), an enhanced method to determine variables explaining the seasonal
cycles of ticks is introduced. The focus is on the main vector Ixodes (I.) ricinus, which is
widely distributed in Germany (Rubel et al. 2014).

Brugger et al. (2016) compiled a dataset of 69 German sites from which monthly 1.
ricinus time series were collected. However, most of these time series are only 1-2 years
long and so unsuitable to depict inter-annual tick fluctuations. The longest time series in
Haselmiihl (Germany) lasting eight consecutive years without data gaps, was used in this
study. As all the other tick time series compiled by Brugger et al. (2016), the number of
ticks (abundance) was related to the same flagging area of 100 m2. Thus, ticks were given
as densities in units 1/100 m?. To quantify the seasonal and inter-seasonal activity of ticks
usually climatic variables as temperature or precipitation were used (e.g. Cat et al. 2017;
Schulz et al. 2014). Contrary to the monthly tick time series, such variables are observed
on a regular base (previously several times per day, meanwhile every minute) under
defined standards (World Meteorological Organization 2008). Some time-series last over
more than two centuries, e.g. in Germany the stations Berlin or Hohenpeiflenberg.

So far the majority of studies used climatic variables on the sampling day to explain
influences on the seasonal tick density (Daniel et al. 2015; Berger et al. 2014). In some
cases, a possible time-lagged association of climate variables up to 8 days prior to the
sampling event was considered (Barandika et al. 2006; Kiewra et al. 2014; Li et al. 2012).
However, in all studies, the influence of these short time lags was determined not to be
significant. Only Kazimirova et al. (2016) reported a negative correlation between nym-
phal density and the mean saturation deficit of the preceding 2 months. More frequently
temporal accumulated or averaged climate variables have been used to statistically explain
tick seasonality (Perret et al. 2000; Alonso-Carné et al. 2016; Osipova et al. 2017).
Alternatively, the effect of the winter conditions on the subsequent tick season was con-
ceived by defining temperature or relative humidity thresholds (Dautel et al. 2008; Vollack
et al. 2017).

Here, an enhanced method of the classical correlation analysis, frequently used to
determine the influence of environmental variables, is applied. With these cross correlation
maps (CCMs), optimal associations between ticks sampled during a specific flagging event
and time-lagged as well as interval-averaged environmental variables were identified.
Initially developed for mosquitoes of the genus Aedes spp. (Curriero et al. 2005; Shone
et al. 2006), this method has also been applied for Culex spp. (Walsh et al. 2008; Chuang
et al. 2012; Lebl et al. 2013; Lockaby et al. 2016; Groen et al. 2017), biting midges such
as Culicoides spp. (Brugger and Rubel 2013; Diarra et al. 2015), and stable flies such as
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Stomoxys calcitrans (Taylor et al. 2007; Taylor and Berkebile 2011). Recently, CCMs
have also been used to explain the seasonal dynamics of dengue (Stoddard et al. 2014) and
to detect abortive diseases in cattle (Bronner et al. 2015).

Here, this method is applied for the first time to ticks (nymphal . ricinus). As the life
cycle of I. ricinus comprises four life stages (egg, larva, nymph, and adult) and lasts up to
several years (Gray et al. 2016), time-lagged influences should be considered for a com-
prehensive analysis of tick dynamics. Within this usually 3- to 4-year period, key processes
determining the tick dynamics such as development (rate and duration, emergence), dia-
pause (survival, inactivity) and questing (activity, ability to find host, survival) are affected
by environmental variables (Ostfeld and Brunner 2015). This study aims to quantify the
time-lagged and interval-averaged influence of environmental variables on tick density
and, secondly, to simulate the seasonal and inter-annual density fluctuations for a disease
risk assessment.

Materials and methods
Study site and tick flagging

The site Haselmiihl is one of the most intensively studied natural foci of tick-borne
encephalitis (TBE) in Germany (Weidmann et al. 2013). This rural area in the adminis-
trative district of Amberg-Sulzbach is around 60 km east of Nuremberg, the second largest
city in the German federal state of Bavaria (Fig. 1). The site is located 430 m above sea
level at geographic longitude 11.8819°E and latitude 49.4083°N. The natural focus is
characterised by arable fields surrounded by mixed forests with a predominance of pines
(Pinus sylvestris) and dense undergrowth.
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Fig. 1 The flagging site Haselmiihl is located in the southeast of Germany in the Bavarian district Amberg-
Sulzbach (left) and is a rural area characterised by arable land, forests, and scattered villages (right)
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Between March 2009 and October 2016, questing I. ricinus (larvae, nymph, adults)
were collected at monthly intervals using the flagging method. Ticks were always flagged
2 h before dawn at the last weekend of the month or, if weather conditions were unsuitable,
on the following weekend. A 50 x 100 cm flag of cotton cloth was flagged over the low
vegetation along a standardised 800 m trail. The flagged densities were, therefore, the
number of questing ticks per 400 m?. The flagging was usually done by two people, each
one sampling for 45 min, or by one person sampling for 90 min. The collected ticks were
identified under a Zeiss Stemi DV4 microscope using the identification key according to
Hillyard (1996).

Explanatory variables

In this study, climate variables were obtained from the nearest weather station Regens-
burg-Oberhub (WMO No. 107760) of the German Weather Service (2017). The station is
located at the geographic coordinates 12.1021°E/49.0424°N in 365 m above sea level and
around 16 km away from the flagging site Haselmiihl. The latter is characterised by a warm
temperate climate with rain throughout the year, classified as Cfb climate according to
Koppen-Geiger (Kottek et al. 2006). This climate is optimal for deciduous and mixed
forests (Rubel et al. 2017), which are known for their high I. ricinus density (Boehnke
et al. 2015; Brugger et al. 2016). For the period 2008-2016, monthly time series of
temperature and relative humidity, were aggregated out of daily measurements. Addi-
tionally, 30-year monthly averages (1985-2014) of each variable were calculated.

Another environmental variable affecting tick densities is the availability of suit-
able hosts. Nymphal ticks mainly feed on small to medium-sized animals, such as rodents,
hares or hedgehogs. This is contrary to the behaviour of adults, which prefer to feed on
large-sized animals like roe deer (Gray et al. 2016). Although roe deer density is a good
site-specific predictor for TBE (Rizzoli et al. 2009), it does not significantly change over
time and was, therefore, not suitable for use in the model. However, as no data on the
densities and inter-annual changes of rodents were available for Haselmiihl, hunting
statistics of another host, the European hare (Lepus europaeus), were used. These lago-
morphs are known to be both competent reservoir and blood hosts for all tick life-stages,
but especially for larvae, in environments lacking rodents (Télleklint and Jaenson 1993).
The Bavarian Ministry of Food, Agriculture and Forestry provides annual hunting statistics
for administrative districts via the Wildtierportal Bayern (http://www.wildtierportal.
bayern.de). In Bavaria, the official hunting season for hares runs from the 15th October to
31st December.

Tick densities may also vary between years or seasons of the year due to unknown or
non-measurable variables. Examples include the availability of suitable hosts for each life
stage (Gray 1998), higher mortality rate in the winter months (Gray 1981) or rodent cycles
(Mihalca and Sandor 2013). Therefore, the season was included as a categorical variable
(classes I-IV). Note that the meteorological season with groups of 3 months based on the
annual temperature cycle was used, e.g. meteorological spring includes March, April, and
May.

Statistical analysis

The method of cross correlation maps (CCMs) was applied to determine the environmental
variables and their highest correlation with tick densities on defined time lags. As an
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improvement on the ordinary cross correlation, not only the month-to-month correlation
between the tick densities and an explanatory variable were obtained, but also time-lagged
and interval-averaged correlations by considering a second time lag. The CCM in Fig. 2
(left) shows a maximum correlation between the tick density and, for example, the tem-
perature averaged from time lag 1 (e.g. 13 months) to time lag 2 (e.g. 9 months) prior the
flagging event. The CCM method was previously explained in detail by Brugger and Rubel
(2013) and the R source code is provided on the website http://epidemic-modeling.
vetmeduni.ac.at/. Based on the findings, a data set comprising environmental variables
(e.g. temperature or hunting statistics of hares) was compiled. Finally, two Poisson
regression models were developed to simulate the inter-annual tick density of the complete
time series (model I) and the mean seasonal cycle (model II). To account for the
overdispersion of the data, the standard errors were corrected using a quasi GLM model
where the variance is specified by the mean and the dispersion parameter (Zuur et al.
2009). The Akaike information criterion (AIC; Akaike 1974) was used as variable selec-
tion criterion. Non-significant variables were removed in a stepwise procedure. The
coefficient of determination for generalised linear models R? introduced by Zhang (2017)
and the root mean square error (RMSE) were selected as goodness-of-fit measures.

All analyses were conducted with the open-source statistical computing environment R
(R Development Core Team 2017). The package rsq (Zhang 2016) was used for calculating
the coefficient of determination R2.

(A) temperature in °C (B) relative humidity in %

15 | 1(0,0)=0.680 4 10,0)=-0.718
1(6,4) = —0.817 r(1,0) = —0.810 8
1(13,9) = 0.810 1(9,4) = 0.763 <
v 0.5
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time lag 2
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Fig. 2 Cross correlation maps (CCMs) of the monthly time series of nymphal ticks versus both (a)
temperature in °C and (b) relative humidity in %. The correlation coefficient for the month of the flagging
event r(0, 0) as well as the minimum and maximum time-lagged correlation coefficients r(lag;, lag,) are
given. The tick density is maximal negatively correlated with the temperature averaged from 6 to 4 months
and the relative humidity averaged from 1 to O months prior the flagging event. Significance levels
depending on the constant sample size of n = 91 and the floating correlation coefficient r indicates that all
values |r| > 0.206 are significant (p < 0.05). Period: 2009-2016
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Results

A total of 473 larvae, 8636 nymphs, and 3819 adult I. ricinus ticks (1897 female, 1922
male) were flagged over 8 years of consecutive sampling (2009-2016). However, as
nymphs are the most important stage for pathogen transmission to humans (Gray 1998),
only this life stage was considered here. As mentioned above, ticks were collected by
flagging an area of 400 m?. To allow for comparison with the more commonly used area of
100 m?, tick numbers were divided by 4.

The cross-correlation maps revealed that temperature (T) and relative humidity (rH)
were highly correlated with nymphal tick densities (Fig. 2). In accordance with the four
life stages of 1. ricinus, a broader time frame of the 18 months preceding the flagging event
was considered. For each explanatory variable, the highest positive and negative time-
lagged and interval-averaged correlations as well as the month-to-month correlations
T(0, 0) and rH(O, 0) were determined. For example, the highest negative correlation of
r(6, 4) = — 0.817 was found for ticks versus temperature averaged over 4—6 months prior
to the flagging event, while the highest positive correlation of r(13, 9) = 0.810 was found
for temperatures averaged from 13 to 9 months prior to flagging.

A set of time series including the monthly temperature and humidity values T(0, 0) and
rH(O, 0), as well as the time-lagged values identified with the highest positive correlation,
T(13, 9) and rH(9, 4), and negative correlation, T(6, 4) and rH(1, 0), was compiled. The set
was then incorporated into the regression analysis together with the annual values of the
hare hunting statistics and the seasons [-IV as categorical value. Non-significant variables
were removed stepwise to select the model with the lowest Akaike information criterion
(AIC). The best fitted model included the month-to-month temperature T(0, 0), the mean
relative humidity of the actual month and 1 month previously rH(1, 0), the averaged
temperature over 4-6 months prior to the flagging event T(6, 4), the hare hunting statistics
(hare) shifted by 1 year, and the season as a categorical variable (classes I-IV) as sum-
marized in Table 1. As depicted in Fig. 3, the model simulated the seasonal cycle as well

Table 1 Summary of the Poisson regression models for inter-annual tick density of the complete time series
(model I) and the mean seasonal cycle (model II)

Model 1 Model II

Estimate  SD t P Estimate  SD t P
Intercept 5.3937 2.3657 2280 <0.05 259312  7.4417 3485 <0.05
T(0, 0) —0.1432 0.0439 —3259 <0.01 —0.2167 0.0859 —2.523 <0.05
T(6, 4) —0.2173 0.0398 — 5453 <0.001
rH(1, 0) —0.0686 0.0235 —12915 <0.01 — 03110 0.0846 —3.676 <0.05
Hare 0.0076  0.0017 4.325 < 0.001
Factor(season) II 2.6083 1.1723 2225 <0.05 3.0718 14277 2.152 <0.1
Factor(season) 111 2.5290 1.2095 2.091 <0.05 33341 14626 2280 <0.1
Factor(season) VI 35022 1.1741 2983 <0.01 3.7859  1.4449 2.620 < 0.05

For each explanatory variable, the parameter estimate, the standard error SE, the ¢ value (test statistics), and
the p value (significance) are given. Note that factor(season) I is not listed, as it is defined as default.
Parameters T(6, 4) and Hare determining the year-to-year variation of the tick density are not needed in
model II (mean seasonal cycle)
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Fig. 3 Monthly nymphal tick density in Haselmiihl (Germany) between 2009 and 2016 (unit: nymphs per
100 m?). Observations are shown as grey bars and simulations as lines. To illustrate the climatic variables
determining the density in May 2011, the mean temperature between November 2010 and January 2011 as
well as the mean relative humidity from April to May 2011 are highlighted in red

as the inter-annual fluctuations reasonably well. Little to no activity was observed in the
winter months, while the activity peaked in late spring, mainly in May. In some years, a
secondary, but not so marked, peak was also documented in early autumn, mainly in
September. The coefficient of determination R? indicated that a total of 64.8% of the
variation in the observed nymphal density was explained by the model. Compared to the
null model with exclusively climatic variables (not shown), the R? is 27% higher. The
goodness-of-fit was evaluated by a RMSE of 17 ticks per month.

A second model was developed to explain the mean monthly density of nymphal ticks.
In order to assess the question which variables define the seasonal cycle, the procedure
described above was repeated. The mean monthly density was described using only the
month-to-month temperature T(0, 0), the averaged relative humidity of the month of the
flagging event and 1 month previously rH(1, 0), and the four seasons as categorical

80
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Fig. 4 Mean monthly nymphal tick density in Haselmiihl (Germany). Observations are shown as grey bars
and simulations as lines. To illustrate the climatic variables determining the density in May, the mean
temperature in May as well as the mean relative humidity from April to May are highlighted in red
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variables (Table 1, Fig. 4). A marked higher R? of 95.6% and a goodness-of-fit of RMSE
of 5 ticks per month were calculated. Compared to the mean peak tick density of about 70
ticks per 100 m? this error is extremely low.

Discussion

A time series of monthly questing nymphal I. ricinus flagged in Haselmiihl (Germany) over
a period of eight consecutive years was presented. The length of this time series is unique
for Germany. Comparable or longer time series have been published for e.g. I. scapularis
with 8 (Schulze et al. 2009), 14 (Berger et al. 2014) or 25 years (Hayes et al. 2015), but
with markedly lower flagging intervals and occasional gaps between sampling years.
However, for quantitative statements, e.g. regarding the impact of climate change on tick
densities, longer periods are needed. Basically, several methods are available for moni-
toring tick activity: flagging/dragging (Estrada-Pefa et al. 2013), collecting from small
mammals (Pfaffle et al. 2011), or monitoring on field plots (Dautel et al. 2008). All
methods and their variations have advantages and disadvantages as discussed by Dobson
(2013) or Mays et al. (2016). Nevertheless, the flagging method gives the best insights into
long-term tick population dynamics and activity. Although flagging is the most common
method, it is always a snapshot of the current situation influenced by environmental
variables (Dantas-Torres et al. 2013). It will, therefore, be a challenge for the future to
compile time series of up to 30 or more consecutive years of standardized tick sampling to
improve our understanding of the influence of climate and environmental change on tick
densities.

Here, cross correlation maps (CCMs) were introduced to identify time-lagged and
interval-averaged associations between ticks and environmental variables. CCMs, pri-
marily used for insects with multiple-generations per year, were applied for the first time to
tick densities. For both the inter-annual and the seasonal cycle, temperature and relative
humidity with different time lags were revealed as the determining environmental variables
for nymphal tick densities. The diapause (survival, inactivity) and questing (activity, ability
to find host, survival) are principally affected by both variables. Contrary, the development
(rate and duration, emergence) is mainly influenced by temperature (Ostfeld and Brunner
2015). Here, the mean temperature in the month of the flagging event and the mean relative
humidity of the actual month and the previous one are particularly important for both
temporal scales. In addition, for the inter-annual tick density of the complete time series
(model I), the temperature mean of 4—6 months prior to flagging is required for an optimal
model fit. The environmental variables such as the temperature in May, the temperature
mean from November to January (3 months) and the relative humidity mean from April to
May (2 months) prior to flagging determine the first activity maximum in May (as marked
in red in Fig. 3).

The seasonal and inter-annual variability of the nymphal tick density was also found to
be affected by the abundance of hosts. Cayol et al. (2017) demonstrated that the abundance
of rodent species is positively correlated with those of I. ricinus larvae and nymphs. For
Germany, several time series were compiled e.g. for field voles (Microtus agrestis) or bank
voles (Myodes glareolus) some of which go back to 1952 (Imholt et al. 2017). However,
these vole data were not used in the current study, as the observation periods available for
the voles did not match those of the ticks. Instead of voles, time series of the European hare
(Lepus europaeus) were compiled from hunting statistics and shown to improve the model
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fit. The hunted hares were determined to be positively, but marginally, correlated with the
nymphal tick densities in the following year. Although the role of hares in the transmission
of pathogens, e.g. TBE virus (Palo 2014), is unclear, they are assumed to act as a reservoir
or as transport hosts for ticks (Télleklint and Jaenson 1993). The hunting statistics can be
interpreted as in place of not yet determined factors such as small rodent density. Alter-
natively, rodent density may be estimated from beech mast data of the previous year. As
demonstrated by Clement et al. (2009) and Reil et al. (2015), a year with abundant fruc-
tification is followed by a year with high rodent density, the main blood hosts for larvae
(Matuschka et al. 1991). However, this approach revealed no significant improvement of
both models.

Overall, this study demonstrated that using CCMs to identify time-lagged correlations
enables quantitative seasonal predictions of nymphal tick densities to be made. The time
lags and averaging intervals presented here should be generally applicable, at least in a
crude approximation. This conclusion is supported by a first application of CCMs (not
shown) using the 1. ricinus time series collected in Prague (Czech Republic) by Daniel
et al. (2015). The parameters for the two predictive models, however, must be appropriate
for each new location. Furthermore, CCMs may be an elegant method to find optimal
relationships between tick activity and the occurrence of human TBE cases. Without using
CCMs, Daniel et al. (2010) found maximal correlations between TBE cases and the 1.
ricinus abundance 6 weeks ago, and a 1-month time lag was empirically estimated by
Randolph et al. (2008). Such predictions are essential for epidemiological considerations:
not only for individuals at risk of acquiring a pathogen capable of causing TBE or LB, but
also for (veterinary) public health authorities.

Acknowledgements Open access funding provided by University of Veterinary Medicine Vienna. The
study was supported in part by a German Center of Infection Research (DZIF) grant. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The
authors would like to thank Clair Firth for English language editing and an anonymous reviewer for his
valuable hints.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control
19:716-723. https://doi.org/10.1007/978-1-4612-1694-0_16

Alonso-Carné J, Garcia-Martin A, Estrada-Pefia A (2016) Modelling the phenological relationships of
questing immature Ixodes ricinus (Ixodidae) using temperature and NDVI data. Zoonoses Public
Health 63:40-52. https://doi.org/10.1111/zph.12203

Barandika J, Berriatua E, Barral M, Juste R, Anda P, Garcia-Pérez A (2006) Risk factors associated with
ixodid tick species distributions in the Basque region in Spain. Med Vet Entomol 20:177-188. https://
doi.org/10.1111/§.1365-2915.2006.00619.x

Berger KA, Ginsberg HS, Dugas KD, Hamel LH, Mather TN (2014) Adverse moisture events predict
seasonal abundance of Lyme disease vector ticks (Ixodes scapularis). Parasit Vectors 7:181. https://doi.
org/10.1186/1756-3305-7-181

Boehnke D, Brugger K, Pfiffle M, Sebastian P, Norra S, Petney T, Oehme R, Littwin N, Lebl K, Raith J,
Walter M, Gebhardt R, Rubel F (2015) Estimating Ixodes ricinus densities on the landscape scale. Int J
Health Geogr 14:23. https://doi.org/10.1186/512942-015-0015-7

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-1-4612-1694-0_16
https://doi.org/10.1111/zph.12203
https://doi.org/10.1111/j.1365-2915.2006.00619.x
https://doi.org/10.1111/j.1365-2915.2006.00619.x
https://doi.org/10.1186/1756-3305-7-181
https://doi.org/10.1186/1756-3305-7-181
https://doi.org/10.1186/s12942-015-0015-7

448 Exp Appl Acarol (2017) 73:439-450

Bronner A, Morignat E, Hénaux V, Madouasse A, Gay E, Calavas D (2015) Devising an indicator to detect
mid-term abortions in dairy cattle: a first step towards syndromic surveillance of abortive diseases.
PLoS ONE 10(e0119):012. https://doi.org/10.1371/journal.pone.0119012

Brugger K, Rubel F (2013) Bluetongue disease risk assessment based on observed and projected Culicoides
obsoletus spp. vector densities. PLoS ONE 8(e60):330. https://doi.org/10.1371/journal.pone.0060330

Brugger K, Boehnke D, Petney T, Dobler G, Pfeffer M, Silaghi C, Schaub GA, Pinior B, Dautel H, Kahl O,
Pfister K, Siiss J, Rubel F (2016) A density map of the tick-borne encephalitis and Lyme borreliosis
vector Ixodes ricinus (Acari: Ixodidae) for Germany. J Med Entomol 53:1292-1302. https://doi.org/10.
1093/jme/tjw116

Cat J, Beugnet F, Hoch T, Jongejan F, Prangé A, Chalvet-Monfray K (2017) Influence of the spatial
heterogeneity in tick abundance in the modeling of the seasonal activity of Ixodes ricinus nymphs in
Western Europe. Exp App Acarol 71:115-130. https://doi.org/10.1007/s10493-016-0099-1

Cayol C, Koskela E, Mappes T, Siukkola A, Kallio ER (2017) Temporal dynamics of the tick Ixodes ricinus
in northern Europe: epidemiological implications. Parasit Vectors 10:166. https://doi.org/10.1186/
s13071-017-2112-x

Chuang TW, Ionides EL, Knepper RG, Stanuszek WW, Walker ED, Wilson ML (2012) Cross-correlation
map analyses show weather variation influences on mosquito abundance patterns in Saginaw County,
Michigan, 1989-2005. J Med Entomol 49:851-858. https://doi.org/10.1603/me11150

Clement J, Vercauteren J, Verstraeten WW, Ducoffre G, Barrios JM, Vandamme AM, Maes P, Van Ranst M
(2009) Relating increasing hantavirus incidences to the changing climate: the mast connection. Int J
Health Geogr 8:1. https://doi.org/10.1186/1476-072X-8-1

Curriero FC, Shone SM, Glass GE (2005) Cross correlation maps: a tool for visualizing and modeling time
lagged associations. Vector Borne Zoonotic Dis 5:267-275. https://doi.org/10.1089/vbz.2005.5.267

Daniel M, Vrablk T, Valter J, Kfiz B, Danielova V (2010) The TICKPRO computer program for predicting
Ixodes ricinus host-seeking activity and the warning system published on websites. Cent Eur J Public
Health 18:230-236

Daniel M, Maly M, Danielova V, BizB Kifiz, Nuttall P (2015) Abiotic predictors and annual seasonal
dynamics of Ixodes ricinus, the major disease vector of Central Europe. Parasit Vectors 8:478. https://
doi.org/10.1186/s13071-015-1092-y

Dantas-Torres F, Lia RP, Capelli G, Otranto D (2013) Efficiency of flagging and dragging for tick col-
lection. Exp Appl Acarol 61:119-127. https://doi.org/10.1007/s10493-013-9671-0

Dautel H, Dippel C, Kimmer D, Werkhausen A, Kahl O (2008) Winter activity of Ixodes ricinus in a Berlin
forest. Int J Med Microbiol 298(Suppl 1):50-54. https://doi.org/10.1016/j.ijmm.2008.01.010

Diarra M, Fall M, Lancelot R, Diop A, Fall AG, Dicko A, Seck MT, Garros C, Alléne X, Rakotoarivony I,
Bakhoum MT, Bouyer J, Guis H (2015) Modelling the abundances of two major Culicoides (Diptera:
Ceratopogonidae) species in the Niayes area of Senegal. PLoS ONE 10(e0131):021. https://doi.org/10.
1371/journal.pone.0131021

Dobler G, Gniel D, Petermann R, Pfeffer M (2012) Epidemiology and distribution of tick-borne
encephalitis. Wien Med Wochenschr 162:230-238. https://doi.org/10.1007/s10354-012-0100-5

Dobson ADM (2013) Ticks in the wrong boxes: assessing error in blanket-drag studies due to occasional
sampling. Parasit Vectors 6:344. https://doi.org/10.1186/1756-3305-6-344

Estrada-Pefia A, Gray J, Kahl O, Lane R, Nijhof A (2013) Research on the ecology of ticks and tick-borne
pathogens—methodological principles and caveats. Front Cell Infect Microbiol 3:29. https://doi.org/
10.3389/fcimb.2013.00029

German Weather Service (2017) Climate data Germany. http://www.dwd.de/DE/leistungen/
klimadatendeutschland/klimadatendeutschland.html. Last accessed 01 June 2017

Gray J (1981) The fecundity of Ixodes ricinus (L.) (Acarina: Ixodidae) and the mortality of its develop-
mental stages under field conditions. Bull Entomol Res 71:533-542. https://doi.org/10.1017/
s0007485300008543

Gray JS (1998) The ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol 22:249-258. https://
doi.org/10.1023/A:1006070416135

Gray JS, Kahl O, Lane RS, Levind ML, Tsaoe JI (2016) Diapause in ticks of the medically important Ixodes
ricinus species complex. Ticks Tick-Borne Dis 7:992—-1003. https://doi.org/10.1016/j.ttbdis.2016.05.
006

Groen TA, L’ Ambert G, Bellini R, Chaskopoulou A, Petric D, Zgomba M, Marrama L, Bicout DJ (2017)
Ecology of West Nile virus across four European countries: empirical modelling of the Culex pipiens
abundance dynamics as a function of weather. Parasit Vectors 10:524. https://doi.org/10.1186/s13071-
017-2484-y

@ Springer


https://doi.org/10.1371/journal.pone.0119012
https://doi.org/10.1371/journal.pone.0060330
https://doi.org/10.1093/jme/tjw116
https://doi.org/10.1093/jme/tjw116
https://doi.org/10.1007/s10493-016-0099-1
https://doi.org/10.1186/s13071-017-2112-x
https://doi.org/10.1186/s13071-017-2112-x
https://doi.org/10.1603/me11150
https://doi.org/10.1186/1476-072X-8-1
https://doi.org/10.1089/vbz.2005.5.267
https://doi.org/10.1186/s13071-015-1092-y
https://doi.org/10.1186/s13071-015-1092-y
https://doi.org/10.1007/s10493-013-9671-0
https://doi.org/10.1016/j.ijmm.2008.01.010
https://doi.org/10.1371/journal.pone.0131021
https://doi.org/10.1371/journal.pone.0131021
https://doi.org/10.1007/s10354-012-0100-5
https://doi.org/10.1186/1756-3305-6-344
https://doi.org/10.3389/fcimb.2013.00029
https://doi.org/10.3389/fcimb.2013.00029
http://www.dwd.de/DE/leistungen/klimadatendeutschland/klimadatendeutschland.html
http://www.dwd.de/DE/leistungen/klimadatendeutschland/klimadatendeutschland.html
https://doi.org/10.1017/s0007485300008543
https://doi.org/10.1017/s0007485300008543
https://doi.org/10.1023/A:1006070416135
https://doi.org/10.1023/A:1006070416135
https://doi.org/10.1016/j.ttbdis.2016.05.006
https://doi.org/10.1016/j.ttbdis.2016.05.006
https://doi.org/10.1186/s13071-017-2484-y
https://doi.org/10.1186/s13071-017-2484-y

Exp Appl Acarol (2017) 73:439-450 449

Hayes LE, Scott JA, Stafford KC (2015) Influences of weather on Ixodes scapularis nymphal densities at
long-term study sites in Connecticut. Ticks Tick-Borne Dis 6:258-266. https://doi.org/10.1016/j.ttbdis.
2015.01.006

Hillyard P (1996) Ticks of north-west Europe: keys and notes for identification of the species. Linnaean
Society, London

Imholt C, Reil D, Plasil P, Rodiger K, Jacob J (2017) Long-term population patterns of rodents and
associated damage in German forestry. Pest Manag Sci 73:332-340. https://doi.org/10.1002/ps.4325

Kazimirova M, Hamsikova Z, Kocianova E, Marini G, Mojsova M, Mahrikova L, Berthova L, Slovak M,
Rosda R (2016) Relative density of host-seeking ticks in different habitat types of south-western
Slovakia. Exp Appl Acarol 69:205-224. https://doi.org/10.1007/s10493-016-0025-6

Kiewra D, Kryza M, Szymanowski M (2014) Influence of selected meteorological variables on the questing
activity of Ixodes ricinus ticks in Lower Silesia, SW Poland. J Vec Ecol 39:138-145. https://doi.org/10.
1111/5.1948-7134.2014.12080.x

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Kdppen—Geiger climate clas-
sification updated. Meteorol Z 15:259-263. https://doi.org/10.1127/0941-2948/2006/0130

Kunze U, The ISW-TBE (2016) Tick-borne encephalitis-still on the map: report of the 18th annual meeting
of the international scientific working group on tick-borne encephalitis ISW-TBE). Ticks Tick-Borne
Dis 7:911-914. https://doi.org/10.1016/j.ttbdis.2016.04.009

Lebl K, Brugger K, Rubel F (2013) Predicting Culex pipiens/restuans population dynamics by interval
lagged weather data. Parasit Vectors 6:129. https://doi.org/10.1186/1756-3305-6-129

Li S, Heyman P, Cochez C, Simons L, Vanwambeke SO (2012) A multi-level analysis of the relationship
between environmental factors and questing Ixodes ricinus dynamics in Belgium. Parasit Vectors
5:149. https://doi.org/10.1186/1756-3305-5-149

Lockaby G, Noori N, Morse W, Zipperer W, Kalin L, Governo R, Sawant R, Ricker M (2016) Climatic,
ecological, and socioeconomic factors associated with West Nile virus incidence in Atlanta, Georgia,
U.S.A. J Vec Ecol 41:232-243. https://doi.org/10.1111/jvec.12218

Matuschka FR, Fischer P, Musgrave K, Richter D, Spielman A (1991) Hosts on which nymphal Ixodes
ricinus most abundantly feed. Am J Trop Med Hyg 44:100—107. https://doi.org/10.4269/ajtmh.1991.
44.100

Mays SE, Houston AE, Trout Fryxell RT (2016) Comparison of novel and conventional methods of trapping
ixodid ticks in the southeastern U.S.A. Med Vet Entomol 30:123-134. https://doi.org/10.1111/mve.
12160

Mihalca AD, Sandor AD (2013) The role of rodents in the ecology of Ixodes ricinus and associated
pathogens in Central and Eastern Europe. Front Cell Infect Microbiol 3:56. https://doi.org/10.3389/
fcimb.2013.00056

Norman RA, Worton AJ, Gilbert L (2016) Past and future perspectives on mathematical models of tick-
borne pathogens. Parasitology 143:850-859. https://doi.org/10.1017/S0031182015001523

Osipova T, Grigoryeva L, Samoylova E, Shapar A, Bychkova E (2017) The influence of meteorological
factors on the activity of adult taiga ticks (Ixodes persulcatus Sch., Ixodinae) in St. Petersburg and its
environs. Entomol Rev 97:554-563. https://doi.org/10.1134/S0013873817040169

Ostfeld RS, Brunner JL (2015) Climate change and Ixodes tick-borne diseases of humans. Philos Trans R
Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2014.0051

Palo RT (2014) Tick-borne encephalitis transmission risk: Its dependence on host population dynamics and
climate effects. Vector Borne Zoonotic Dis 14:346-352. https://doi.org/10.1089/vbz.2013.1386

Perret JL, Guigoz E, Rais O, Gern L (2000) Influence of saturation deficit and temperature on Ixodes ricinus
tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res 86:554-557.
https://doi.org/10.1007/s004360000209

Pfiffle M, Petney T, Skuballa J, Taraschewski H (2011) Comparative population dynamics of a generalist
(Ixodes ricinus) and specialist tick (I. hexagonus) species from European hedgehogs. Exp Appl Acarol
54:151-164. https://doi.org/10.1007/s10493-011-9432-x

Randolph SE, Asokliene L, Avsic-Zupanc T, Bormane A, Burri C, Gern L, Golovljova I, Hubalek Z, Knap
N, Kondrusik M, Kupca A, Pejcoch M, Vasilenko V, Zygutiene M (2008) Variable spikes in tick-borne
encephalitis incidence in 2006 independent of variable tick abundance but related to weather. Parasit
Vectors 1:44. https://doi.org/10.1186/1756-3305-1-44

R Development Core Team (2017) R: a language and environment for statistical computing, R Foundation
for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. Version 3.3.1. http://www.R-project.
org/

Reil D, Imholt C, Eccard JA, Jacob J (2015) Beech fructification and bank vole population dynamics-
combined analyses of promoters of human puumala virus infections in Germany. PLoS ONE
10(e0134):124. https://doi.org/10.1371/journal.pone.0134124

@ Springer


https://doi.org/10.1016/j.ttbdis.2015.01.006
https://doi.org/10.1016/j.ttbdis.2015.01.006
https://doi.org/10.1002/ps.4325
https://doi.org/10.1007/s10493-016-0025-6
https://doi.org/10.1111/j.1948-7134.2014.12080.x
https://doi.org/10.1111/j.1948-7134.2014.12080.x
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1016/j.ttbdis.2016.04.009
https://doi.org/10.1186/1756-3305-6-129
https://doi.org/10.1186/1756-3305-5-149
https://doi.org/10.1111/jvec.12218
https://doi.org/10.4269/ajtmh.1991.44.100
https://doi.org/10.4269/ajtmh.1991.44.100
https://doi.org/10.1111/mve.12160
https://doi.org/10.1111/mve.12160
https://doi.org/10.3389/fcimb.2013.00056
https://doi.org/10.3389/fcimb.2013.00056
https://doi.org/10.1017/S0031182015001523
https://doi.org/10.1134/S0013873817040169
https://doi.org/10.1098/rstb.2014.0051
https://doi.org/10.1089/vbz.2013.1386
https://doi.org/10.1007/s004360000209
https://doi.org/10.1007/s10493-011-9432-x
https://doi.org/10.1186/1756-3305-1-44
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1371/journal.pone.0134124

450 Exp Appl Acarol (2017) 73:439-450

Rizzoli A, Hauffe HC, Tagliapietra V, Neteler M, Ros R (2009) Forest structure and roe deer abundance
predict tick-borne encephalitis risk in Italy. PLoS ONE 4:e4336. https://doi.org/10.1371/journal.pone.
0004336

Rubel F, Brugger K, Monazahian M, Habedank B, Dautel H, Leverenz S, Kahl O (2014) The first German
map of georeferenced ixodid tick locations. Parasit Vectors 7:477. https://doi.org/10.1186/s13071-014-
0477-7

Rubel F, Brugger K, Haslinger K, Auer I (2017) The climate of the European Alps: shift of very high
resolution Koppen—Geiger climate zones 1800-2100. Meteorol Z 26:115-125. https://doi.org/10.1127/
metz/2016/0816

Schulz M, Mahling M, Pfister K (2014) Abundance and seasonal activity of questing Ixodes ricinus ticks in
their natural habitats in southern Germany in 2011. J Vec Ecol 39:56-65. https://doi.org/10.1111/j.
1948-7134.2014.12070.x

Schulze TL, Jordan RA, Schulze CJ, Hung RW (2009) Precipitation and temperature as predictors of the
local abundance of Ixodes scapularis (Acari: Ixodidae) nymphs. ] Med Entomol 46:1025-1029. https://
doi.org/10.1603/033.046.0508

Shone SM, Curriero FC, Lesser CR, Glass GE (2006) Characterizing population dynamics of Aedes sol-
licitans (Diptera: Culicidae) using meteorological data. ] Med Entomol 43:393-402. https://doi.org/10.
1093/jmedent/43.2.393

Stanek G, Wormser GP, Gray J, Strle F (2012) Lyme borreliosis. The Lancet 379:461-473. https://doi.org/
10.1016/s0140-6736(11)60103-7

Stoddard ST, Wearing HJ, Reiner RC Jr, Morrison AC, Astete H, Vilcarromero S, Alvarez C, Ramal-Asayag
C, Sihuincha M, Rocha C, Halsey ES, Scott TW, Kochel TJ, Forshey BM (2014) Long-term and
seasonal dynamics of dengue in Iquitos, Peru. PLoS Negl Trop Dis 8:¢3003. https://doi.org/10.1371/
journal.pntd.0003003

Talleklint L, Jaenson TG (1993) Maintenance by hares of European Borrelia burgdorferi in ecosystems
without rodents. J Med Entomol 30:273-276. https://doi.org/10.1093/jmedent/30.1.273

Taylor DB, Berkebile DR (2011) Phenology of stable fly (Diptera: Muscidae) larvae in round bale hay
feeding sites in eastern Nebraska. J Med Entomol 40:184—193. https://doi.org/10.1603/en10245

Taylor DB, Berkebile DR, Scholl PJ (2007) Stable fly population dynamics in eastern Nebraska in relation to
climatic variables. J Med Entomol 44:765—771. https://doi.org/10.1093/jmedent/44.5.765

Vollack K, Sodoudi S, Névir P, Miiller K, Richter D (2017) Influence of meteorological parameters during
the preceding fall and winter on the questing activity of nymphal Ixodes ricinus ticks. Int J Biometeorol
61:1787-1795. https://doi.org/10.1007/s00484-017-1362-9

Walsh AS, Glass GE, Lesser CR, Curriero FC (2008) Predicting seasonal abundance of mosquitoes based on
off-season meteorological conditions. Environ Ecol Stat 15:279-291. https://doi.org/10.1007/s10651-
007-0056-6

Weidmann M, Frey S, Freire CCM, Essbauer S, Ruzek D, Klempa B, Zubrikova D, Vogerl M, Pfeffer M,
Hufert FT, Zanotto PM, Dobler G (2013) Molecular phylogeography of tick-borne encephalitis virus in
central Europe. J Gen Virol 94:2129-2139. https://doi.org/10.1099/vir.0.054478-0

World Meteorological Organization (2008) Guide to meteorological instruments and methods of observa-
tion. WMO-No. 8

Zhang D (2016) RSQ: coefficient of determination. R package version 6

Zhang D (2017) A coefficient of determination for generalized linear models. Am Stat. https://doi.org/10.
1080/00031305.2016.1256839

Zuur AF, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extentions in ecology
with R. Statistics for biology and health. Springer, New York

@ Springer


https://doi.org/10.1371/journal.pone.0004336
https://doi.org/10.1371/journal.pone.0004336
https://doi.org/10.1186/s13071-014-0477-7
https://doi.org/10.1186/s13071-014-0477-7
https://doi.org/10.1127/metz/2016/0816
https://doi.org/10.1127/metz/2016/0816
https://doi.org/10.1111/j.1948-7134.2014.12070.x
https://doi.org/10.1111/j.1948-7134.2014.12070.x
https://doi.org/10.1603/033.046.0508
https://doi.org/10.1603/033.046.0508
https://doi.org/10.1093/jmedent/43.2.393
https://doi.org/10.1093/jmedent/43.2.393
https://doi.org/10.1016/s0140-6736(11)60103-7
https://doi.org/10.1016/s0140-6736(11)60103-7
https://doi.org/10.1371/journal.pntd.0003003
https://doi.org/10.1371/journal.pntd.0003003
https://doi.org/10.1093/jmedent/30.1.273
https://doi.org/10.1603/en10245
https://doi.org/10.1093/jmedent/44.5.765
https://doi.org/10.1007/s00484-017-1362-9
https://doi.org/10.1007/s10651-007-0056-6
https://doi.org/10.1007/s10651-007-0056-6
https://doi.org/10.1099/vir.0.054478-0
https://doi.org/10.1080/00031305.2016.1256839
https://doi.org/10.1080/00031305.2016.1256839

	Seasonal cycles of the TBE and Lyme borreliosis vector Ixodes ricinus modelled with time-lagged and interval-averaged predictors
	Abstract
	Introduction
	Materials and methods
	Study site and tick flagging
	Explanatory variables
	Statistical analysis

	Results
	Discussion
	Acknowledgements
	References




