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The representation of colored objects in macaque
color patches
Le Chang1, Pinglei Bao1 & Doris Y. Tsao1,2

An important question about color vision is how does the brain represent the color of an

object? The recent discovery of “color patches” in macaque inferotemporal (IT) cortex, the

part of the brain responsible for object recognition, makes this problem experimentally

tractable. Here we recorded neurons in three color patches, middle color patch CLC (central

lateral color patch), and two anterior color patches ALC (anterior lateral color patch) and

AMC (anterior medial color patch), while presenting images of objects systematically varied

in hue. We found that all three patches contain high concentrations of hue-selective cells, and

that the three patches use distinct computational strategies to represent colored objects:

while all three patches multiplex hue and shape information, shape-invariant hue information

is much stronger in anterior color patches ALC/AMC than CLC. Furthermore, hue and object

shape specifically for primate faces/bodies are over-represented in AMC, but not in the other

two patches.
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We see the world in color because different objects are
composed of materials with different reflectance
spectra. The perception of color involves processing at

multiple stages of the visual system. Recordings in early parts of
the visual system reveal double-opponent cells in area V11, 2 and
hue-selective cells in areas V2 and V43, 4; these cells allow the

brain to compute the local hue at each location across a surface.
But color processing does not end with extraction of local hue: the
brain needs to integrate information about hue distributions
across space with information about large-scale object shapes, to
enable an organism to recognize and respond appropriately to
colored objects. For example, in Fig. 1a, we readily perceive a red
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apple, which requires (1) correctly discriminating the object from
the background, and (2) extracting the dominant hue within the
object (Fig. 1a).

In theory, there are two possible mechanisms by which the
brain could effectively organize information about the color and
the shape of colored objects (we use the term “shape” to refer to
all aspects of an object’s identity independent of hue, not simply
overall shape). Color and shape information could be segregated
into parallel channels, resulting in shape-invariant color-selective
units and color-invariant shape-selective units (Fig. 1b, top).
Alternatively, the units could be sharply tuned to both color and
shape (Fig. 1b, bottom). Our ability to name colors independent
of shape (e.g., a “red” traffic light or a “red” apple) supports the
first scheme, while our ability to respond to specific color-shape
combinations (e.g., stop at a red traffic light, eat a red apple)
supports the second scheme (though it is also possible that such
semantic representations are not directly related to visual repre-
sentations). In addition to asking how single cells encode shape
and color at different stages of visual processing, we can also ask
how the representation of colored objects at different stages of
visual processing is transformed at the population level: are shape
and color co-represented within intermingled cell populations
along the entire visual pathway, or do they become segregated
into separate populations?

To clarify how the representation of object color is transformed
in the visual system following the extraction of local hue infor-
mation at both the single-cell and population level, we targeted
fMRI-identified “color patches” in inferotemporal (IT) cortex5 for
electrophysiological recordings in three macaque monkeys. IT
cortex has long been believed to be responsible for the repre-
sentation of object shape6, 7, but a recent fMRI study revealed a
set of regions in macaque IT selective for colored compared to
grayscale gratings5. Interestingly, color patches were yoked in
position to face patches5, regions in IT cortex selective for faces8.
The localization of color patches within IT cortex implicates their
role in representing color within the context of object recognition,
while the stereotyped relative localization of color patches and
face patches raises the possibility that a hierarchical functional
organization for processing colored objects exists, mirroring that
for processing facial identity in the face patches9. Previous studies
of color processing in monkeys have mostly used artificial stimuli,
such as white noise, sinusoidal gratings, or simple geometric
shapes5, 10–12, while previous studies of object representation
in IT have mostly used grayscale images, ignoring color varia-
tions13, 14. This is unsatisfying, given that colored objects are the
only natural visual inputs. Here, we explored the co-
representation of color and object identity by presenting images
of objects systematically varied in color, while recording from
color patches in IT.

Results
Recording sites, connectivity, and stimulus generation. We first
localized color patches in three monkeys with fMRI using colored
vs. black–white gratings5 (Fig. 1c). This revealed the central lat-
eral, anterior lateral, and anterior medial color patches (CLC,
ALC, and AMC) in monkey M1; CLC, ALC, and the anterior
fundus color patch (AFC) in monkey M2 (we could not find
AMC in this animal); and CLC, ALC, and AFC in monkey M3
(we could not find AMC in this animal). Next, we electrically
microstimulated color patches while performing simultaneous
fMRI (see Methods) to reveal the anatomical connectivity of color
patches and to potentially identify AMC in monkeys M2 and M3.
This technique has previously been used to study the connectivity
of face patches15 and to reveal a place-selective region down-
stream of another place-selective region that had been identified
using fMRI16. Stimulating ALC in monkey M2’s left hemisphere
activated three additional patches. Two of these patches over-
lapped with AFC and CLC identified by the color localizer
(Fig. 1d), while one of these patches was located anterior to the
stimulation site, on the ventral surface of the inferotemporal
gyrus medial to the anterior middle temporal sulcus. Based on its
location and connectivity to ALC, we designated this patch AMC
(Fig. 1c, d). Possibly patch AMC was actually missing and we
found another one; however, importantly, physiology was con-
sistent between monkeys for AMC identified in the two ways.
Stimulating CLC in the right hemisphere of monkey M2 activated
a patch overlapping with ALC as identified by the color localizer
(Supplementary Fig. 1). Overall, these results suggest that color
patches in IT cortex form a strongly and specifically inter-
connected network, similar to face patches15, and allowed us to
identify a color patch anterior to ALC in an animal in which it
was missing based on the color localizer experiments.

We next targeted middle color patch CLC and anterior color
patches ALC and AMC for electrophysiological recordings. For
comparison, we also targeted several sites in IT outside the color
patches, including face patch AM. To study the co-representation
of color and object shape, we generated a stimulus set of 82
images from 10 different categories (Supplementary Fig. 2a), each
rendered in 8 different hues (Fig. 1e; see Methods). In this way,
we varied hue information and object shape information
independently and simultaneously. Grayscale images and the
original color images were also included in the stimulus set.

Representation of hue by neurons in color patches. Color sti-
muli were presented for 200 ms (ON period) interleaved by a gray
screen for 200 ms (OFF period) during recording. The full sti-
mulus set was presented 7–10 times for each cell recorded.
Responses of all the cells in each patch as well as cells outside the

Fig. 1 Recording sites, connectivity, and color stimuli. a To identify the correct color of an object, e.g., an apple (left), local hue information (right) needs to
be integrated with global shape information. b Schemes for co-representing color and object shape information in visual system. Initially, before the visual
system has explicitly segmented objects, color information and object shape information are largely entangled, with individual cells participating in the
coding of multiple hues and object shapes. Two main strategies could be used to represent colored-objects in an organized way: (1) segregation of color
and object information into parallel channels, resulting in object shape-invariant color-selective units and color-invariant shape selective units (top); (2)
formation of units sharply tuned to both color and object shape (bottom). c Coronal and sagittal slices showing location of fMRI-identified face (blue) and
color patches (yellow) in one monkey (M2) targeted for recording; dark-black line indicates electrode. The most anterior color patch was not observed with
fMRI using the color localizer in this animal, and was located by electrical microstimulation in ALC (bottom panel, changes in BOLD signal of the identified
voxels during microstimulation shown below). d Comparison between color patches identified by color localizer (top) and by microstimulation (bottom).
The contrasts are overlaid on high-resolution coronal slices. Asterisk (*) indicates the stimulation site (ALC). The anterior–posterior position of each slice
in mm relative to the interaural line is given in the top right corner. e 82 images of 10 categories were used (see Supplementary Fig. 2a for all the stimuli).
Each image underwent a series of transformation in hues. For each pixel of the image, luminance was kept constant, while chromatic coordinates (CIE
1960) fell on a circle with the same distance to “white” (filled circle) as the original pixel. Eight hues with different angles were used (open circles, starting
from 0°, going clockwise at 45° step). A grayscale image with the same luminance and the natural color image were also presented
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color patches to grayscale images and a subset of color images are
shown in Fig. 2. ANOVA analysis was performed to test the
significance of color tuning (see Methods). A total of 74.7% (65/
87) of cells recorded in CLC, 84.6% (55/65) of cells in ALC, and
88.9% (80/90) of cells in AMC were significantly color tuned
(ANOVA, p< 0.001); outside the color patches, only 27.3% (9/33)
of cells were significantly color tuned. Within color patches, only
significantly tuned cells were used for further analysis.

Responses to the 10 color conditions for all color-selective cells,
grouped according to object category, are shown in Fig. 3a. Each
row represents one cell; cells in each patch are sorted according to
hue preference, computed using responses of each cell to 8 hues
averaged across all 82 objects. There is clear consistency of
hue tuning across categories, especially for ALC and AMC. Hue
consistency was quantified by computing the correlation of
hue tuning across categories (Supplementary Fig. 3a; see
Supplementary Fig. 3b for correlations between all pairs of
categories). We found that all neurons demonstrated a positive

correlation, with ALC and AMC significantly more consistent
than CLC (W(65,55) = 3215, p = 2×10−4 between CLC and ALC;
W(65,80) = 3473, p = 4×10−7 between CLC and AMC; W(55,80)
= 3767, p = 0.91 between ALC and AMC, Wilcoxon rank sum test;
average correlation value: 0.533 for CLC, 0.686 for ALC, 0.706 for
AMC, and 0.119 for outside color patches). Outside the color
patches, consistency of hue tuning was much lower (Supplemen-
tary Fig. 3a, W(33,200) = 803, p = 5×10−17, Wilcoxon rank sum
test).

We observed a difference between hue tuning in CLC/ALC
compared to AMC. Most AMC cells preferred red or yellow to
other hues, leading to an under-representation of green and blue
(Fig. 3a, arrow); in CLC and ALC, different hues were more-
evenly represented (Fig. 3a; the proportion of cells preferring the
4 hues, from purple to green in CLC, ALC, and AMC is 33.9%,
47.3%, and 8.7%. Chi-square test, χ2(1) = 12.61 and p = 3×10−4
between CLC and AMC; χ2(1) = 23.11 and p = 2×10−6 between
ALC and AMC; χ2(1) = 2.22 and p = 0.13 between CLC and ALC).
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Multidimensional scaling (MDS) analyses on population
responses revealed an additional difference in hue representation
between AMC and the other two patches. In CLC and ALC, the
neural representation of all 8 hues was homogenous, with gray
located in the center of eight hues; in AMC, yellow was over-
represented, with gray located in the periphery, very close to cyan
and green (Fig. 3b). Note that gray is surrounded by the eight
hues in the original CIE color space (Fig. 1e), analogous to the
population representation in ALC visualized with MDS.

We quantified the transformation in hue representation across
CLC, ALC, and AMC by computing the “neural” distance
between neighboring hues based on population responses. AMC

neurons displayed stronger inhomogeneity in distance between
neighbors than the other two patches (Fig. 3c). The difference in
color tuning between CLC/ALC and AMC was further confirmed
by representation similarity matrices quantifying the correlation
between mean population responses to pairs of colors in each of
the three patches (Fig. 3d). The correlation between gray and
cyan/green is evident in AMC, but almost absent in the other two
patches (mean correlation = 0.02± 0.08 for CLC; −0.02± 0.12 for
ALC; and 0.45± 0.09 for AMC; p< 0.001 between CLC and
AMC; p< 0.001 between ALC and AMC; and p = 0.385 between
CLC and ALC, 20000 iterations of bootstrapping). In all three
patches, the representation of the original color images was
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closest to yellow/red (Fig. 3b, d). This could be due to the fact that
pixel intensities of the original color images turned out to be
tightly distributed around yellow, especially for the faces and
bodies (Supplementary Fig. 2b–h). This last fact could also
explain why AMC preferred red/yellow hues: it could be biased to
represent the color of faces and bodies. However, it’s worth
noting that AMC neurons showed preference for red/yellow even
for objects that are not naturally red/yellow, e.g., grapes,
watermelons, and abstract shapes without any natural color
association (Fig. 3e). Thus, AMC cells were not simply over-
representing correctly colored objects.

One concern is that the preference for red/yellow observed in
AMC could be due to undersampling in our single-unit
recordings. We recorded from AMC in ten different penetrations
in two monkeys, and results were consistent across both animals.
To further address this concern, we performed an fMRI
experiment in which we presented red, yellow, blue, and grayscale
monkey faces (see below for rationale for showing monkey faces).
Contrasting red/yellow vs. grayscale monkey faces revealed
activation in CLC, ALC, and AMC (Supplementary Fig. 4a).
Importantly, activation to red/yellow was significantly stronger
than blue in AMC, but not in CLC/ALC (Supplementary Fig. 4b).
The presence of the bias for red/yellow in the global AMC fMRI
signal shows that it was not due to selective sampling.

We also compared sharpness of hue tuning across the three
patches, and found evidence for gradual sharpening from CLC to
ALC to AMC (Supplementary Fig. 5). Overall, the results so far
show that (1) each color patch contains a large population of hue-
tuned cells, and (2) a transformation in hue tuning occurs
between CLC/ALC, where different hues are uniformly repre-
sented, and AMC, where red and yellow are over-represented
compared to green/blue.

Representation of object shape by neurons in color patches.
Thus far, we have examined tuning to hue, averaged across object
identity. However, since the color patches have a stereotyped
location relative to face patches, which represent facial shape, a
natural question is: how is the object shape represented across
color patches? To quantify the representation of object shape, we
computed responses to 82 objects averaged across 8 hues. MDS
was conducted on population responses of color-selective cells in
three patches (Fig. 4a). All three patches displayed clear grouping
according to object category. But the amount of information
about object shape was very different between the three patches:
the accuracy for identifying images, quantified by a nearest
neighbor classifier (see Methods), was significantly higher in CLC
than ALC across all 10 categories (Fig. 4b, p< 0.05, 20,000
iterations of random sampling with replacement, cell numbers
were equalized to 55 for all three patches). Comparing ALC with
AMC, identification accuracy was significantly higher in AMC for
humans and monkeys (p< 0.05), but not other categories

(Fig. 4b). Comparing CLC with AMC, accuracy was significantly
higher for all categories (p< 0.05), except from monkeys (p =
0.496). A two-way ANOVA analysis to test significant interaction
between area (2 levels) and category (10 levels) revealed sig-
nificant interactions for ALC and AMC (F(9) = 2.03, p = 0.040),
CLC and AMC (F(9) = 3.36, p = 0.001), but not ALC and CLC (F
(9) = 0.98, p = 0.459).

Could the shape information observed in the color patches be a
vestige of low-level shape selectivity present in presumptive
inputs to the color-patch system, e.g., orientation-tuned cells in
area V4? To address this, we compared object shape representa-
tions in each color patch with those in two models, AlexNet17 and
HMAX18, a model for visual processing in V1–V4. The results
show that the shape representations in CLC, ALC, and AMC are
high-level, consistent with those in other parts of IT cortex
(Supplementary Fig. 6a–d). Note that here we only investigated
representation of shape independent of hue, thus the similarity
between color patches and other regions in IT (Supplementary
Fig. 6a) is restricted to shape and does not indicate anything
about color representation.

Within the face patch system, the most salient difference
between patches is how they represent facial identity across
different views, with an increasingly view-invariant representa-
tion as one moves anterior9. Does a similar transformation in
view-invariant object identity occur in the color patches? We
presented facial images of different identities at eight hues and
three views: left/right profiles and frontal (Supplementary Fig. 2i).
In AMC, we found cells mirror-symmetrically tuned to views
(Fig. 4c, d shows one example cell). The population response
showed a correlation between responses to left and right profile
views of the same identity (Fig. 4e, f; t(68) = −4.02, p = 1×10−4
between CLC and AMC; t(82) = −3.48, p = 8×10−4 between ALC
and AMC; and t(64) = −1.22, p = 0.23 between CLC and ALC,
Student’s t-test), similar to anterior face patch AL9. This mirror-
symmetric view invariance was weaker in CLC and ALC
(Fig. 4e, f). This result shows that the representation of facial
shape in AMC is not simply inherited from CLC.

Co-representation of hue and shape by neurons in color pat-
ches. The analyses so far have examined color and shape repre-
sentations in isolation, and revealed that both color and shape
information are present in all the three color patches. To gain a
full picture of information flow across patches, we next examined
co-representation of the two information channels across patches.

We first conducted MDS analyses on responses to all human
face images in the stimulus set (Fig. 5a). We found that the neural
representation of colored faces differed between the three patches;
although all three patches showed grouping of images according
to hue, this grouping was clearer in ALC and AMC than CLC.
Outside the color patches, the images were grouped according to
identity rather than hue. This difference is illustrated by similarity

Fig. 3 Representation of color by color-selective neurons in color patches. a Responses of all color-selective neurons averaged across stimuli within each
category to images of 8 different hues, together with gray (left-most column) and natural color (right most-column), sorted in the same way as Fig. 2. b
Neural representation of colors in the activities of color-selective neurons. Shown are two-dimensional plots of the results of multi-dimensional scaling
(MDS) analyses conducted for neurons in three color patches. Responses to each color condition were averaged across all mammal images (humans faces,
monkey faces, and mammal bodies; these were selected because color tuning was most consistent between these three categories across all three
patches, see Supplementary Fig. 3b). Original color is indicated by a disk of mixed color. c Neural distances of each hue to its two neighboring hues, for all
three patches, computed using population responses of color-selective cells. Error bars represent s.d. of 20,000 iterations of bootstrapping. Inhomogeneity
was quantified by computing the ratio between the s.d. of the 8 bars and the mean of the 8 bars: 0.21± 0.02 for CLC; 0.12± 0.02 for ALC; 0.35± 0.02 for
AMC (p< 0.001 between CLC and AMC; p< 0.001 between ALC and AMC; p= 0.0103 between CLC and ALC, 20000 iterations of bootstrapping, see
Methods). d Population similarity matrices of 10 color conditions in three color patches. A 10×10 matrix of correlation coefficients was computed between
responses of all color-selective neurons averaged across objects. e For five different types of objects: grapes, watermelon, birds, gratings, and rubik’s cube,
the number of AMC cells preferring each of the eight hues was counted. In all five cases, the distribution was significantly different from homogeneity (chi-
square test: p< 0.001; χ2(7)= 26.3, 28.6, 31.0, 38.6 and 28.4, respectively)
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matrices (Fig. 5b; for full similarity matrices see Supplementary
Fig. 7): the 11×11 squares along the diagonal reflecting hue-
specific representation are strongest in ALC, followed by AMC,

and least clear in CLC; the para-diagonal stripes indicating hue-
invariant identity information are only clearly observed in CLC,
but not the other two patches. Outside the color patches, strong
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para-diagonal stripes are visible. To quantify relative contribu-
tions of hue and identity for each category, we averaged
correlation coefficients between population responses to images
with the same hue, but different identity or same identity with
different hue (Fig. 5c). We found comparable amounts of hue and

identity information for all 10 categories in CLC (p = 0.053, 0.359,
0.203, 0.128, 0.006, 0.025, 0.421, 0.001, 0.287, and 0.329, 20,000
iterations of bootstrapping), but a clear bias for hue information
in ALC (p = 0, 0, 0, 0, 0, 0, 0.027, 0, 0, 0.004). AMC was similar to
ALC, showing a strong bias for hue, with one prominent
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exception: for the category of monkey images, hue and identity
information were comparable (p = 0.34). The presence of hue-
invariant identity information about monkeys in AMC is
consistent with the superior ability to identify monkeys compared
to other objects using AMC population responses (Fig. 5b). The
enhanced representation of monkey identities compared to other
objects in AMC adds support to our hypothesis that it is biased to
represent colored faces and bodies. Outside the color patches,
there was significantly more information about identity compared
to hue for all the natural image categories (Fig. 5c).

We further analyzed the co-representation of hue information
and category information using responses averaged across all
identities within one category. This revealed a bias for category
information in CLC and IT regions outside the color patches, and
hue information in ALC and AMC (Fig. 5e, f). Examination of the
time course of color information and identity information in all
three patches revealed that color was always faster than identity,
even in CLC where identity information was slightly stronger at
the peak (Fig. 5d, g). To quantify the difference in temporal
dynamics, we defined latency as the first time point hue/shape
information differed significantly from baseline (p< 0.01, 20,000
iterations of bootstrapping, note that the each time point t
indicates a time window (t − 25 ms, t + 25 ms)). In all cases, color
was faster than shape (shape identity vs. color: i.d. = 50 ms and
color = 25 ms for CLC, i.d. = 75 ms and color = 50 ms for ALC,
i.d. = 75 ms, and color = 50ms for AMC; shape category vs. color:
category = 50 ms and color = 25 ms for CLC, category = 75 ms and
color = 25 ms for ALC, and category = 75ms and color = 50 ms
for AMC).

Previous studies on object representation in IT from other labs
employed linear classifiers to quantify the amount of “linearly”
decodable information from population response of neurons14, 19.
This provides a useful way to measure whether a particular
dimension of information coded by a certain brain area is
“untangled” from other dimensions. We applied the same method
to our data to quantify the amount of shape-invariant hue
information and hue-invariant shape information. Consistent
with our analyses with similarity matrices, we found that shape-
invariant hue information was higher in anterior color patches
than in CLC, while hue-invariant shape information showed the
opposite trend (Fig. 6). This suggests that hue information does
indeed become untangled from shape information along the
color-patch pathway.

Co-representation of hue and object shape at the single-cell
level. So far, we have shown that all three patches contain
information about both object shape and hue. What is the relative
contribution of these two variables within single cells?

Furthermore, what integration rule is used by single cells in color
patches to combine hue and shape information? To answer these
two questions, we performed a two-way ANOVA analysis on
single-cell responses (Fig. 7a), with 82 levels of shape and 8 levels
of hue. A scatter plot of explained variance due to hue vs. that due
to shape revealed an inverse relationship between the two, as
expected (Fig. 7b). Consistent with previous population analyses,
AMC and ALC neurons were more biased to hue than CLC
neurons (Fig. 7c) (t (118) = −7.61, p = 7×10−12 and t (143) = −9.0,
p = 2×10−15, respectively, Student’s t-test); CLC was significantly
more hue-biased than outside (t (96) = −6.1, p = 3×10−8); ALC
and AMC were not significantly different (t (133) = 0.2, p = 0.85).
However, it is worth noting that all three color patches did carry a
significant amount of shape information. In CLC, the mean
amount of variance accounted for by shape was 37.4%. In ALC,
the mean amount of variance accounted for by shape was 18.8%,
while in AMC, it was 20.2% (Fig. 7c; note that given noise in the
data, the relative contribution from shape is over-estimated, since
there are more parameters for shape (82) than for hue (8)). We
performed a similar analysis, but using 10 coarse shape categories
or shape-within-categories (on average 8.2 shapes in each cate-
gory) to define the shape variables. We found that in these two
cases, AMC and ALC neurons, but not CLC neurons, were clearly
hue biased (Fig. 7d, e). Comparing four regions for coarse shape
categories: ALC and AMC were significantly more hue-biased
than CLC (t (118) = −4.5, p = 1×10−5 and t (143) = −4.6, p = 8×10
−6, respectively, Student’s t-test); CLC was significantly more hue-
biased than outside (t(96) = −7.9, p = 4×10−12); ALC and AMC
were not significantly different (t (133) = 0.6, p = 0.53). Compar-
ing four regions for shape-within-categories: ALC and AMC were
significantly more hue-biased than CLC (t (118) = 9.0
p = 3×10−15 and t (143) = 9.5 p = 3×10−17, respectively, Student’s
t-test); CLC was significantly more hue-biased than outside (t
(96) = −6.5 p = 3×10−9); ALC and AMC were not significantly
different (t (133) = −0.8 p = 0.41). As expected, all color-patch
neurons showed a significant main effect for hue (ANOVA, p<
0.001), while most color-patch neurons (with the exception of 2
ALC neurons and 1 AMC neuron) showed a significant main
effect for shape (Fig. 7f). Finally, we found a large portion of
color-patch neurons that showed a significant interaction
between hue and shape (41/65 (=63%) CLC cells, 40/55 (=73%)
ALC cells, 47/80 (=59%) AMC cells, and 0/33 cells outside color
patches, Fig. 7g).

The nonlinear interaction between shape and hue is further
supported by comparison of MDS analysis of shape responses at
the best and worst hues. If the cells were linearly adding the two
variables, then the MDS plots at the two hues should be identical;
however, we found that shape representation at the worst hue was
compressed compared to that at the best hue (Fig. 7h, i; t (96) =

Fig. 5 Co-representation of hue and object identity in color patches. a Comparison of MDS plots of responses to all human face images in all three color
patches and outside color patches. For clarity, the original natural color images are not shown. In ALC and AMC, the images were clearly grouped
according to hue, while in CLC, this grouping is less clear. Outside the color patches, images were grouped according to identity, but not hue. b Population
similarity matrices computed from responses to human face images in three color patches and outside color patches. Correlation coefficients were
computed between responses to 11 identities and 8 hues. c Hue information and identity information for images of 10 categories in three color patches and
outside color patches. Hue information was quantified as the mean correlation between responses to images with the same hue, but different identity
within the same category, while identity information was quantified as the mean correlation between responses to images of the same identity with
different hues. Note that here we are quantifying shape-invariant hue tuning, which will be affected by both shape tuning and color tuning; in particular,
cells with strong shape tuning will show low shape-invariant hue tuning, even if they have perfectly consistent hue tuning across shapes. Error bars
represent s.d. of 2000 iterations of bootstrapping. Statistical significance was determined between hue and identity information for each category in three
color patches and outside color patches (* p< 0.05, **p< 0.01). d Amplitudes of hue and identity information for three patches and outside color patches,
computed over a 50ms sliding time window, were averaged across all 10 categories. Shaded regions indicate s.d. estimated by 2000 iterations of
bootstrapping. e Co-representation of hue and category in all three patches and outside color patches. Responses of each cell were averaged across
different identities within a category. A matrix of correlation coefficients was computed between responses to 10 categories* 8 hues. f and g Same as c and
d, but for hue and category information quantified by matrices in e, **p< 0.01
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6.36 and p = 7×10−9 between outside vs. CLC; t (86) = 11.78 and p
= 1×10−15 between outside and ALC; t(111) = 9.03 and
p = 6×10−15 between outside and AMC, Student’s t-test). Overall,
these results suggest that the cells in color patches are not simply
summing shape and color inputs, but are nonlinearly combining
the two.

The presence of nonlinear interaction between shape and hue
raises the question whether the main effects for hue and shape are
real, i.e., the main effects may appear only in some conditions, but
not at all in others. To address this, for each cell in each patch, we
quantified hue tuning for each shape by computing the variance
of responses across hue to the shape, and selected 27 shapes with
the best and worst hue tuning. Similarly, we selected 3 hues with
the best and worst shape tuning for each cell. We computed the
correlation between hue tuning for the “best” and the “worst”
shapes, and did the same for shape tuning. We found that all cells
except one ALC cell showed positive correlation between
hue tuning for the “best” and the “worst” shapes, and most cells

(65/65 CLC cells, 51/55 ALC cells, and 71/80 AMC cells) showed
positive correlation between shape tuning for the “best” and the
“worst” hues. Furthermore, we performed ANOVA on the “worst”
shapes/hues, and a high percentage of cells showed significant
(p< 0.001) main effects for hue (34/65 CLC cells, 42/55 ALC
cells, and 69/80 AMC cells)/shape (64/65 CLC cells, 47/55 ALC
cells, and 69/80 AMC cells). We note that different selection
criteria were applied to neurons in color patches and neurons
outside the color patches in the above two analyses (Figs. 5 and 7):
while only color-selective cells were used for color patches, all
cells were pooled for “outside”. However, all the results comparing
color patches to outside the color patches remained consistent
when we pooled all cells in color patches.

Discussion
In this study, we found that three macaque color patches, CLC,
ALC, and AMC, all encode significant information about both
hue and object identity. Two clear transformations occur across
the three patches. The first transformation, from CLC to ALC,
reduces information about object identity. The second transfor-
mation, from ALC to AMC, mainly affects representation of hue:
color space is represented in a dramatically distorted way in
AMC, with over-representation of yellow and red, the natural
colors of mammal faces and bodies. Furthermore, AMC develops
an expanded representation of primate faces compared to other
categories, displaying hue-invariant representation of monkey
identity.

Our study broadens our conception of the function of IT
cortex. A generally accepted notion is that the purpose of IT is to
represent object identity invariant to accidental changes, and this
is achieved through a hierarchy culminating in cells in anterior IT
tuned to object identity invariant to accidental changes9, 18, 20.
For example, in the face patches, tuning to facial identity becomes
more invariant to view going from ML/MF to AL to AM9.
Applying this principle to colored objects, one might expect to
find a sequence of areas tuned to object hue and shape combi-
nations that show increasing invariance to accidental transfor-
mations in view, lighting, etc. (Fig. 8d). Instead, we found that the
existence of a specialized network in which shape information
decreases along the IT hierarchy, while hue information increases
(Fig. 8a-c). Since shape is one of the strongest cues to object
identity, this calls into question the current picture of IT as a
monolithic hierarchical feedforward network for computing
object identity20. IT appears to generate an array of high-level
representations of objects that can facilitate different object-
related tasks, including the fundamental task of identifying the
color of an object.

What is the role of AMC? Why should there exist an area with
neurons that represent hue irrespective of shape, but mainly for
red and yellowish things, but then also the shape of faces irre-
spective of hue? At first glance, this seems unparsimonious. One
possible explanation is that AMC provides an important inter-
mediate link between a multi-purpose shape-invariant hue
representation and a representation specialized for the color of
animal faces/bodies. The diversity in responses to different faces
in AMC could be exploiting the coding space previously occupied
(in ALC) by bluish hues. This would facilitate the wiring of
classifiers trained to identify faces using both shape and color
cues. Future experiments exploring responses in color patches
during performance of active tasks including face and color
categorization may shed further light on the functional role of
each patch.

Few previous studies have examined color tuning in IT cortex.
Most have reported aggregate statistics based on random sam-
pling of IT cortex21–25, and have come to conflicting conclusions
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Fig. 6 Decoding shape-invariant color and color-invariant shape from color
patches. a SVM models were trained to classify hues independent of shape.
The population response of a set of randomly-selected units was used as
the input to each model. Half of the trials were used for training and the
remaining half for cross-validation. Shape-invariant hue could be
significantly better decoded by AMC and ALC populations than by CLC (for
50 units, p< 0.01 for both comparisons, 2000 iterations of bootstrapping).
Furthermore, ALC showed better overall decoding than AMC (p= 0.013).
Dashed line indicates chance level (1/8= 12.5%). Results are averages
across 2000 iterations of random sampling. Errorbars represent s.d. b
similar to (a), but only quantifies decoding accuracy for two hue categories:
red and yellow. Decoding based on AMC is better than ALC, but not
significant (p= 0.185). c similar to (a), but for a combined population of
anterior color-patch neurons. d similar to (a), but for hue-invariant shape
decoding. CLC is significantly better than ALC and AMC (for 50 units, p<
0.01 between CLC and ALC, p= 0.028 between CLC and AMC).
Furthermore, neurons outside color patches showed better performance
than color-patch neurons, but only significantly better than ALC and AMC
(For 25 units, p< 0.01 between outside and ALC, p= 0.019 between
outside and AMC and p= 0.186 between outside and CLC). Dashed line
indicates chance level (1/82= 1.2%)
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regarding the prevalence of hue-tuned cells, from 15%21 to 69%22,
as well as the extent to which shape and hue interact in single
cells; Komatsu and Ideura22 reported no interaction, while
Edwards et al.23 reported strong nonlinear interaction. One pio-
neering study of color transformations in IT reported two clusters
of color-selective cells in IT cortex, one in posterior and one in
anterior IT, and showed a difference between these two regions in
their color tuning as a function of luminance12. Our study shows

that there are at least three clusters of color-selective cells in IT
that are strongly anatomically connected. Most importantly, our
study demonstrates the importance of (1) studying the co-
representation of color and object shape within each color patch,
and (2) studying multiple patches within the IT color network
using the same stimuli. Only by taking both of these steps, could
we reveal the transformations in the brain’s representation of
colored objects for the first time.
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Methods
Color patch localization. All procedures conformed to local and US National
Institutes of Health guidelines, including the US National Institutes of Health
Guide for Care and Use of Laboratory Animals. All experiments were performed
with the approval of the Caltech Institutional Animal Care and Use Committee
(IACUC).

Four male rhesus macaques were trained to maintain fixation on a small spot
for juice reward (three of the animals were used for color-patch recordings, while
the fourth animal was used solely for control recordings outside color patches). The
monkeys were scanned in a 3 T TIM (Siemens, Munich, Germany) magnet
equipped with AC88 gradient insert while passively viewing images on a screen.
Feraheme contrast agent was injected to improve signal/noise ratio. Color patches
were determined by identifying regions responding significantly more to moving
equiluminant red/green color gratings (2.9 cycles per degree, drifting 0.75 cycles
per s) than moving black–white gratings, the same stimuli as a previous study5, and
were confirmed across multiple independent scan sessions. In monkey M1, color
patches CLC, ALC, and AMC were found bilaterally. In monkey M2, color patches
CLC and ALC were found bilaterally; color patches AMC and AFC were found
unilaterally in the left hemisphere (AMC was found by microstimulating ALC in
the same hemisphere, see below). In monkey M3, color patches CLC and ALC were
found bilaterally; color patch AFC was found unilaterally in the left hemisphere.

Microstimulation. To reveal the anatomical connectivity of color patches and to
localize the most anterior color patch AMC in monkey M2, we stimulated ALC15.
The stimulation protocol followed a block design. We normally interleaved nine
blocks of fixation-only with eight blocks of fixation plus electrical microstimula-
tion; we always started and ended with a fixation-only block. During micro-
stimulation of blocks, we applied one pulse train per second, lasting 200 ms with a
pulse frequency of 300 Hz. Bipolar current pulses were charge balanced, with a
phase duration of 300 µs and a distance between the two phases of 150 µs. We used
a current amplitude of 300 µA. Stimulation pulses were delivered with a computer-
triggered pulse generator (S88X; Grass Technologies) connected to a stimulus
isolator (A365; World Precision Instruments), which interfaced with different and
indifferent electrodes through a coaxial cable. All stimulus generation equipment
was stored in the scanner control room; the coaxial cable was passed through a
wave guide into the scanner room. We performed electrophysiological recording at
the site of stimulation immediately prior to stimulation, to confirm correct elec-
trode placement, as revealed by a high number of hue-selective units.

Single-unit recording. Tungsten electrodes (18–20Mohm at 1 kHz, FHC) were
back-loaded into plastic guide tubes. Guide tubes length was set to reach ~ 3–5 mm
below the dura surface. The electrode was advanced slowly with a manual advancer
(Narishige Scientific Instrument, Tokyo, Japan). Neural signals were amplified and
extracellular action potentials were isolated using the box method in an on-line
spike sorting system (Plexon, Dallas, TX, USA). The spikes were sampled at 40
kHz. All spike data was re-sorted with off-line spike sorting clustering algorithms
(Plexon). Only well-isolated units were considered for further analysis. We targeted
patches CLC (n = 35; right hemisphere) and AMC (n = 24; right hemisphere) in
monkey M1, patches CLC (n = 52; right hemisphere), ALC (n = 43; left hemi-
sphere), and AMC (n = 66; left hemisphere) in monkey M2, and patch ALC (n = 22;
right hemisphere) in monkey M3 for single-unit recordings. In addition, we tar-
geted face patch AM (n = 10; right hemisphere) and a region of anterior IT on the
ventral bank of the inferotemporal gyrus outside the color patches in M1 (n = 10;
right hemisphere), and a region of middle IT on the ventral bank of superior
temporal sulcus outside the color patches in M4 (n = 13; left hemisphere). Elec-
trodes were lowered through custom-angled grids that allowed us to reach the
desired targets; custom software was used to design the grids and plan the electrode
trajectories26. For each patch, results were qualitatively the same across different
monkeys and therefore, were pooled together for population analyses. Multiple
different tracks were used to target each patch; in particular, for AMC, we designed
ten distinct approach angles using different grids to ensure even sampling.

Behavioral task and visual stimuli. Monkeys were head fixed and passively
viewed the screen in a dark room. Stimuli were presented on a CRT monitor
(DELL P1130). The intensity of the screen was measured using a colorimeter
(PR650, Photo Research) and linearized for visual stimulation. Screen size covered
27.7×36.9 visual degrees and stimulus size spanned 5.7°. The fixation spot size was
0.2° in diameter. Images were presented in random order using custom software.
Eye position was monitored using an infrared eye tracking system (ISCAN). Juice
reward was delivered every 2–4 s if fixation was properly maintained.

For visual stimulation, all images were presented for 200 ms interleaved by 200
ms of a gray screen. Each image was presented 7–10 times to obtain reliable firing
rate statistics. In this study, two different stimulus sets were used:

1. A set of 82 images of 10 different categories, varied in 8 different hues.
Original images and grayscale images with the same luminance profile were
also presented (Supplementary Fig. 2a, for details see below).

2. A set of 33 human face images (Supplementary Fig. 2i), 3 different views of 11
identities, varied in 8 different hues.

Color stimulus generation. For our color stimuli, we started with a set of 55 object
images collected from the internet, and 11 frontal human faces from an on-line
database (FEI face database: http://fei.edu.br/~cet/facedatabase.html). Note that the
object images shown in various figures are not exactly the same as the ones shown
to the animal, due to copyright restrictions. We transformed the color of each
image in the following way: For a given pixel with RGB value (r, g, and b), its
chromaticity coordinates and luminance (u,v,L, CIE 1960) were estimated by first
computing the frequency spectrum of the pixel by summing the frequency spectra
for r, g, and b, each measured separately using a spectrophotometer (PR650, Photo
Research), and then converted into chromaticity coordinates (http://www.cvrl.org).
The mean luminance of each image was equalized to the background (2.9 cd/m2).
We then computed the distance of chromatic coordinates of each pixel to “white”
(u = 0.2105, v = 0.3158, filled circle in Fig. 1e). Eight different colors with the same
distance, but varying angles (open circles in Fig. 1e, starting from 0°, going
clockwise at 45° step) were then computed and converted back into an RGB value
keeping the luminance (L) unchanged. Repeating this for every pixel resulted in 8
images of pure hues (Fig. 1e right). A grayscale image with same luminance, but
“white” chromatic coordinate, was also generated. The stimulus set included simple
geometric patterns (8th and 9th row in Supplementary Fig. 2a). For these images,
we set the hue of the original image to orange, with mean luminance equal to
background. We also included a category of phase scrambled images (last row in
Supplementary Fig. 2a). Eight images from the first nine categories were randomly
selected and phase-scrambled, keeping the relative phase between different cone
components constant.

The other stimulus set was generated in the same way, but using only face
images with different head orientations (left profile, frontal and right profile,
Supplementary Fig. 2i).

Color selectivity. For each repetition of the stimulus set, responses to each of the
eight hues were averaged across 82 objects. Classical analysis of variance (ANOVA)
was performed to test the statistical significance of the differences among eight hue
groups, each group containing multiple repetitions of the stimulus set. Only sig-
nificantly tuned cells (p< 0.001) were used for further analysis.

Multi-dimensional scaling. The number of spikes in a time window of 50–350 ms
after stimulus onset was counted for each stimulus. The responses of each cell to all
stimulus conditions were normalized to 0 mean and unit variance. To study the
neural representation of a single feature, such as hue (Fig. 3b) or object shape
(Fig. 4a), responses were averaged across the irrelevant feature (shape in Fig. 3b and
hue in Fig. 4a). Classical multi-dimensional scaling was performed on the popu-
lation responses in each patch, using a Euclidean distance metric and the MATLAB
command cmdscale.

Fig. 7 Analysis of single-cell responses. a Responses of 12 example neurons to the full stimulus set. Each row represents one color condition, and each
column represents one object shape. b-g Two-way ANOVA analysis examining main effects of shape and hue, as well as interactions. Two-way ANOVA
analysis with 8 levels of hue and 82 levels of shape was performed on responses of each individual neuron. b Relationship between explained variances by
two main effects for all neurons. Lines represent linear fits to cells in each patch. c Distribution of shape preference in all three patches and outside the
color patches, defined by the explained variance by shape divided by the sum of both main effects. Arrows indicate population averages. d similar to (c),
but using only coarse shape categories as shape variables. e similar to (c), but using only fine shapes within each shape category as shape variables.
ANOVA analysis was carried out for each shape category independently, with 8 levels of hue and n levels of shape (n= number of shapes within this shape
category). For each neuron, shape preference was computed and averaged across categories. f For 2-way ANOVA with 8 levels of hue and 82 levels of
shape, F-values for both main effects are plotted against each other in log-scale. Gray lines indicate significance level (p= 0.001). g Distribution of F-values
for the interaction between hue and shape. Gray dashed-lines indicate significance level (p= 0.001). h For each cell in ALC, we determined the best hue
and the worst hue based on responses to 8 hues averaged across 82 object shapes. MDS analyses were conducted on shape responses for the best hue or
the worst hue of each cell. Two MDS plots are shown at the same scale. i For each cell, the ratio between standard deviations of shape responses at the
worst hue and the best hue was computed. If the cells were linearly adding hue and shape, the two standard deviations should be identical. Therefore, the
ratio between these two reflects the extent of nonlinearity in the interaction of hue and shape. **p< 0.01, Student’s t-test
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Neural distance. The responses of each cell to all stimulus conditions were nor-
malized to 0 mean and unit variance. Euclidean distance between the normalized
population responses to two stimulus conditions was used to quantify the “neural”
distance between these two conditions (Fig. 3c).

Similarity matrix. Based on the same normalized population response, an n×n
similarity matrix of correlation coefficients was computed between the population
response vectors (across all color-selective cells, averaged over stimulus repeats) to
each of the n interested conditions.

Decoding analysis. To quantify the amount of information about object shape in
all three patches, we trained a nearest neighbor classifier: the population response
for one particular object averaged across hues in two-thirds of the trials was used to
define a “template” response for that object. For testing, the population response to
one image averaged across the remaining one-third of the trials (but not across
hues) was compared to each of the 82 “templates”, and the object “template” with
minimal distance to actual response was defined as the output of the classifier.

We also employed SVM decoding models as in previous papers14, 19. In brief,
we randomly selected a number of units from each area, and trained an SVM
model for each selection to decode hue information independent of shape or shape
information independent of hue using “one vs. rest” approach. We used half the
trials to train the SVM model and the remaining half to validate the model. The
results shown are validated accuracies.

Convolutional neural network modeling. To investigate shape representation in
three color patches, we loaded 82 objects with 8 different hues into two pre-trained
neural networks: (1) a matlab implementation of Alexnet17: http://www.vlfeat.org/
matconvnet/pretrained/. This network contains 21 layers: 1st, 5th, 9th, 11th, and
the 13th layers are the outputs of convolution units; 2nd, 6th, 10th, 12th and 14th,
and the 17th and 19th layers are the results of rectification; 3rd and 7th layers are
the results of normalization; 4th, 8th, and the 15th layers are the results of max
pooling; 16th, 18th and the 20th layers are fully connected layers; and the 21st layer
is the output layer (softmax). This network has been pre-trained to identify a
thousand objects. (2) a matlab implementation of HMAX model18: http://maxlab.
neuro.georgetown.edu/hmax.html#code. This network implements the basic
architecture of the HMAX model (S1, C1, S2, and C2), and has been pre-trained
with a set of random natural images. Activations of each unit to each object were
averaged across hues to analyze the representation for shape alone. For the case of
the HMAX model, since the network only allows grayscale images as input, we

presented the grayscale version of the 82 objects to the network to analyze shape
representation.

Population statistics. To determine statistical significance for parameters esti-
mated using population responses, such as correlation, a bootstrap method was
employed: neurons were randomly sampled from the population with replacement;
20,000 bootstrap samples with equal numbers of neurons were created. A popu-
lation statistic was computed for each bootstrap sample. The P-value of the null
hypothesis was determined by comparing population statistics from 20,000 itera-
tions of bootstrapping.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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