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A B S T R A C T

Trypanosoma cruzi induces serious cardiac alterations during the chronic infection. Intense inflammatory re-
sponse observed from the beginning of infection, is critical for the control of parasite proliferation and evolution
of Chagas disease. Peroxisome proliferator-activated receptors (PPAR)-α, are known to modulate inflammation.

In this study we investigated whether a PPAR-α agonist, Fenofibrate, improves cardiac function and in-
flammatory parameters in a murine model of T. cruzi infection. BALB/c mice were sequentially infected with two
T. cruzi strains of different genetic background. Benznidazole, commonly used as trypanocidal drug, cleared
parasites but did not preclude cardiac pathology, resembling what is found in human chronic chagasic cardio-
myopathy. Fenofibrate treatment restored to normal values the ejection and shortening fractions, left ventricular
end-diastolic, left ventricular end-systolic diameter, and isovolumic relaxation time. Moreover, it reduced car-
diac inflammation and fibrosis, decreased the expression of pro-inflammatory (IL-6, TNF-α and NOS2) and heart
remodeling mediators (MMP-9 and CTGF), and reduced serum creatine kinase activity. The fact that Fenofibrate
partially inhibited NOS2 expression and NO release in the presence of a PPAR-α non-competitive inhibitor,
suggested it also acted through PPAR-α-independent pathways. Since IκBα cytosolic degradation was inhibited
by Fenofibrate, it can be concluded that the NFκB pathway has a role in its effects. Thus, we demonstrate that
Fenofibrate acts through PPAR-α-dependent and -independent pathways.

Our study shows that combined treatment with Fenofibrate plus Benznidazole is able both to reverse the
cardiac dysfunction associated with the ongoing inflammatory response and fibrosis and to attain parasite
clearance in an experimental model of Chagas disease.

1. Introduction

Almost 7 million people worldwide are estimated to be infected
with Trypanosoma cruzi, the etiological agent of Chagas disease (WHO -
World Health Organization, 2016). This disease is endemic throughout
Central and South America, representing a major public health pro-
blem. The acute phase of infection is characterized by the presence of
parasites in the host bloodstream and other tissues, promoting a severe
inflammatory response (Teixeira et al., 2002). After the acute phase,
generally asymptomatic, the infection evolves to a silent chronic phase.
However, after a variable period of time (10–30 years after the onset of
infection), 30–40% of the patients develop symptomatic cardiac al-
terations, including heart failure, arrhythmias, and thromboembolism,

which cause major disabilities with high economic and social impact
(Benziger et al., 2017). Diverse factors contribute to the development of
chagasic dilated cardiomyopathy. Disruptions of the capillary network,
due to the inflammatory infiltrate, induce focal myocytolysis, gen-
erating microvascular injury and myocardial remodeling. Substantial
evidence has shown that the cardiac tissue, an important target of T.
cruzi infection, induces the production of marked amounts of pro-in-
flammatory cytokines, chemokines and enzymes, including inducible
nitric oxide synthase (NOS2) and metalloproteinases (MMPs), resulting
in inflammation and cardiac remodeling due to the parasite infection
(Penas et al., 2013). In response, fibroblasts proliferate and the inter-
stitial collagen matrix is increased (Mitelman and Argentinian Society
of Cardiology, 2011).
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Benznidazole (N-benzyl-2-nitroimidazole acetamide, Bzl) is the
trypanocidal drug of choice in the majority of the endemic countries,
including Argentina, since has less severe side effects than Nifurtimox
(Maguire, 2015). Although this drug is effective reducing the parasite
load during the acute and the chronic phases of the disease, treatment
during the latter does not correlate with a better outcome, since both
Bzl-treated and placebo-treated patients have similar clinical progres-
sion in terms of development of chronic chagasic cardiomyopathy
(Morillo et al., 2015). Besides, unwanted side effects are common at the
currently used doses (Pérez-Molina et al., 2009; Viotti et al., 2009;
Miller et al., 2015; Noguerado-Mellado et al., 2016). These side effects
force about 10% of patients to abandon the treatment being the main
disadvantage of its use.

Peroxisome proliferator-activated receptors (PPARs), members of
the steroid hormone receptor superfamily, are ligand-dependent nu-
clear transcription factors. Fenofibrate (Fen), a PPAR-α ligand, is a
third-generation fibric acid derivative currently used clinically as a
hypolipidemic agent to lessen the risk of atherosclerosis (Ling et al.,
2013).

Growing evidence has demonstrated the efficacy of PPAR agonists,
including Fen, as regulators of inflammation and extracellular matrix
remodeling of the heart (Lockyer et al., 2010). Fen can prevent myo-
cardial inflammation and fibrosis in diabetic mice (Zhang et al., 2016).
Moreover, Fen has been shown to exert cardioprotective effects against
various cardiac disorders in in vivo and in vitro rat models (Zou et al.,
2013; Cheng et al., 2016) and in patients (Yin et al., 2013).

We have previously reported that PPAR-γ ligands reduce the in-
flammatory reaction using in vivo and in vitro models of T. cruzi infec-
tion (Penas et al., 2013) and LPS-stimulated (Hovsepian et al., 2010) or
T. cruzi-stimulated cardiomyocytes (Hovsepian et al., 2011). Other
authors have shown that PPAR-α can inhibit the cardiovascular in-
flammatory response by reducing NF-kB activity, and through regula-
tion of cytokine-receptor and growth-factor receptor signaling (Lockyer
et al., 2010). However, the role of PPAR-α ligands in Chagas disease is
currently unknown.

Based on the premise of the Drugs for Neglected Diseases Initiative
(DNDi), to develop new therapeutical strategies for the treatment of
neglected tropical diseases, relying on drugs already available in the
pharmaceutical market, we sought to determine whether the adminis-
tration of Fen, as an anti-inflammatory drug, improves the cardiac
outcome in an experimental model of T. cruzi infection in the context of
low-dose Bzl treatment.

Our results show, for the first time, that Fen treatment restores
echocardiographic parameters to normal, and reduces tissue in-
flammation and fibrosis in a murine model of mixed T. cruzi infection,
while a low dose of Bzl is capable to clear blood parasitaemia and heart
parasite load.

2. Methods

2.1. Ethics statement

Mice used in this study were bred and maintained in the animal
facility at the Instituto de Investigaciones en Microbiología y
Parasitología Médica, Universidad de Buenos Aires – CONICET. All
procedures carried out with mice were approved by the Institutional
Committee for the Care and Use of Laboratory Animals (CICUAL,
Facultad de Medicina de la Universidad de Buenos Aires, CD No 2271/
2014) and are in accordance with guidelines of the Argentinean
National Administration of Medicines, Food and Medical Technology
(ANMAT), Argentinean National Service of Sanity and Agrifoods
Quality (SENASA) and also based on the US NIH Guide for the Care and
Use of Laboratory Animals.

2.2. Mice and infection

Eight-week-old BALB/c mice (7 per group) were infected by in-
traperitoneal route with 1x105 bloodstream trypomastigotes of the non-
lethal K-98 clone of T. cruzi (TcI) for 6 weeks, followed by re-infection
with 100 bloodstream trypomastigotes of the lethal RA (pantropic/re-
ticulotropic) strain of T. cruzi (TcVI) for 4 weeks (Celentano and
González Cappa, 1993; Zingales et al., 2009).

2.3. In vitro model: neonatal mouse primary cardiomyocytes culture and
infection

One-to 3-day old neonatal outbred CF-1 strain mice were eu-
thanized by decapitation after CO2 exposure, and cardiomyocytes were
obtained as previously described (Hovsepian et al., 2013). Cardio-
myocytes were cultured in FBS 10%-DMEM-M199 medium at 37 °C
under 5% CO2 atmosphere, and infected at a 5:1 (parasite: cell) ratio in
six well polystyrene plates. After 3 h, the infected cultures were washed
five times with fresh 1% FBS-DMEM: M-199 medium to remove free
parasites. Each experiment was carried out 3 times with 5 replicates per
group.

2.4. Treatments

2.4.1. In vivo treatments
Mice were treated by oral gavage with Benznidazole (Abarax®,

ELEA, Argentina. PubChem Compound Database CID = 31593, Bzl)
and/or Fenofibrate (Daunlip®, Montpellier S.A, Argentina. PubChem
Compound Database CID = 3339, Fen) suspended in corn oil. Fen dose
optimization was carried out using 50, 100, 200 or 300 mg/kg/day for
30 consecutive days. The chosen doses were 25 mg/kg/day for Bzl
(Cevey et al., 2016) for 15 consecutive days and 100 mg/kg/day for Fen
treatment, for 30 consecutive days. Each experiment was carried out
three times.

2.4.2. In vitro treatments
Fen was suspended in PBS. According to the experiment, cells were

treated with 50, 100 or 150 μM Fen for 30 min before T. cruzi infection.
In some experiments cells were pre-treated for 30 min with the non-
competitive antagonist of PPAR-α (MK886, 10 μM) before the addition
of Fen.

2.5. Parasitaemia and survival

Parasitaemia was evaluated by microhematocrit (Feilij et al., 1983)
or the method of Pizzi modified by Brener (1962) every three to seven
days. Survival was registered daily until the end of the experiment.

2.6. Doppler echocardiography

Transthoracic echocardiography was performed using an Acuson
Sequoia C 512 ultrasound system with a 14-MHz linear transducer.
Echocardiographic experiments were performed under light anesthesia
(287.5 mg/kg of 2.5% filtered 2,2,2-Tribromoethanol; Sigma-Aldrich).
The two-dimensional parasternal short-axis imaging plane was used to
obtain M-mode tracings at the level of the papillary muscles. Left
ventricular (LV) internal dimensions and LV wall thickness (LVWT)
were determined at systole and diastole using leading-edge methods
and guidelines of the American Society of Echocardiography (Sahn
et al., 1978). End-diastolic measurements were taken at the maximal LV
diastolic dimension, and end systole was defined as the time of the most
anterior systolic excursion of the posterior wall. Measurements were
taken from three consecutive beats for each mouse. Ejection fraction
(EF) and shortening fraction (SF) were calculated and used as ejective
indexes of systolic function. EF was estimated from LV dimensions by
the cubed method as follows: EF (%) = [(LVEDD3 − LVESD3)/
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LVEDD3] × 100, where LVEDD is LV end-diastolic diameter and LVESD
is LV end-systolic diameter. The isovolumic relaxation time (IVRT) was
measured from the Doppler-echo study.

2.7. Histopathological studies

Mouse hearts were fixed in PBS-buffered 4% formaldehyde and in-
cluded in paraffin. Six non-contiguous sections (5 μm) were stained
with hematoxylin-eosin or picrosirius red. Images from thirty random
microscopic fields (400x) were acquired using an Eclipse E600 micro-
scope (Nikon Inc.) equipped with a Spot RT digital camera. Image
analysis was performed using the Image J software (NIH, USA).

2.8. Creatine kinase (CK) activity

Serum CK activity was determined using photometric NADP re-
duction assay according to manufacturer's instructions (Wiener Lab,
Rosario, Argentina). Absorbance was measured at 340 nm.

2.9. mRNA and gDNA purification

Total RNA was obtained from heart tissue homogenates using
Quickzol reagent (Kalium), treated with DNAse (Life Technologies).
Total RNA was reverse transcribed using Expand Reverse Transcriptase
(Promega Corporation), according to manufacturer's instructions. gDNA
was obtained from heart tissue using phenol-chloroform extraction
(Laird et al., 1991).

2.10. Quantitative real-time polymerase chain reaction (qPCR) and
quantitative reverse transcription polymerase chain reaction (RT-qPCR)

Both qPCR and RT-qPCR were performed using 5X HOT FIREPOL
EVAGREEN qPCR (Solis BioDyne) in an Applied Biosystems 7500 se-
quence detector. mRNA expression was analysed by RT-qPCR. The
parameters were: 52 °C for 2 min, 95 °C for 15 min, and 40 cycles of
95 °C for 15 s, 60 °C for 30 s and 72 °C for 1min. Normalization was
carried out using 18S rRNA. Parasite load was assessed by qPCR with
the TCZ primers (Cummings and Tarleton, 2003; Duffy et al., 2009).
These amplify a 146-bp sequence of the highly repetitive satellite
genomic DNA. The sensitivity of the technique allows the detection of
less than 1 parasite/ml, which is defined as parasite equivalents.
Quantification was performed using the comparative Ct method
(Schmittgen and Livak, 2008).

2.11. Primer sequences

TCZ:Fw 5′ TCCCTCTCATCAGTTCTATGGCCC 3′;
Rv 5′ CAGCAAGCATCTATGZCACTTAGACCCC.
18S:Fw 5′ AACACGGGAAACCTCACCC 3′;
Rv 5′ CCACCAACTAAGAACGGCCA 3′.
IL-6: Fw 5′ TGATGCACTTGCAGAAAACAA 3′;
Rv 5′ GGTCTTGGTCCTTAGCCACTC 3′.
TNF-α:Fw 5′ CGGGCAGGTCTACTTTGGAG 3′;
Rv 5′ ACCCTGAGCCATAATCCCCT 3′.
NOS2: Fw 5′ CACAGCAATATAGGCTCATCCA 3′;
Rv 5′GGATTTCAGCCTCATGGTAAAC 3′.
CTGF: Fw 5′ CCTAAAATCGCCAAGCCTGT 3′;
Rv 5′ CACCCCGCAGAACTTAGCC 3′.
PPAR-α: Fw 5′ GCTGGTGTACGACAAGTG3′;
Rv 5′ GTGTGACATCCCGACAGAC3′.

2.12. Cytokine ELISA

IL-6 and TNF-α serum concentrations were measured using ELISA
kits according to the manufacturer's instructions (BD Biosciences
OptEIA). The reaction was detected by peroxidase-conjugated

Streptavidin, followed by incubation with hydrogen peroxide as a
substrate and ABTS (Sigma Aldrich Co., St. Louis, USA) as a chromogen.
Sample cytokine concentrations were interpolated from standard curves
of recombinant IL-6 and TNF-α. Absorbance readings were made at
405 nm.

2.13. Protein extraction and Western blot analysis

Heart total and cytosolic protein extracts were prepared as pre-
viously described by our group (Cevey et al., 2016). Protein con-
centration was determined by the method of Bradford using a com-
mercial protein assay (Bio-Rad, USA) and bovine serum albumin (BSA)
(Sigma-Aldrich Co.) as a standard (Kruger, 1994).

Fifty μg of protein extracts separated by 8–12% SDS-PAGE gels were
blotted onto a Hybond-P membrane (GE Health-care, Spain) to detect
NOS2, MMP-9, PPAR-α and IkBα (Santa Cruz Biotechnology, USA), and
α-actin (Sigma-Aldrich Co), using specific antibodies. Blots were re-
vealed by enhanced chemoluminiscence in an Image Quant 300 cabinet
(GE Healthcare Biosciences, USA). Band intensity was analysed using
the Image J software.

2.14. NO measurement

To determine the amount of NO released into the culture medium,
nitrate was reduced to nitrite and measured spectrophotometrically by
the Griess reaction (Díaz-Guerra et al., 1996; Bryan and Grisham,
2007). The absorbance at 540 nm was compared with a standard curve
of NaNO2.

2.15. Statistical analysis

Data are expressed as the mean of 3 independent
experiments ± SEM for each treatment (Seven mice or five culture
replicates/group). One-way ANOVA was used to analyse the statistical
significance of the differences observed between the infected, treated or
untreated groups. The Tukey post-hoc test was performed to compare
every mean with every other mean. Differences were considered sta-
tistically significant when P < 0.05. All analyses were performed using
the Prism 7.00 Software (GraphPad, USA).

3. Results

3.1. Fenofibrate reverses cardiac functional failure in mice infected with
Trypanosoma cruzi

Human populations in endemic areas are exposed to repeated in-
fections by T. cruzi. Since reinfection with strains differing in their
genetic background may have a significant effect in the development of
pathology, we designed an experimental model that took this fact into
account. BALB/c mice were first infected with 1x105 bloodstream try-
pomastigotes of the K-98 clone (CA-I strain) for six weeks, and re-in-
fected with 100 bloodstream trypomastigotes of the RA strain for four
additional weeks (Fig. 1A). Parasitaemia was detectable by micro-
hematocrit method from 3 weeks post-infection (w.p.i) and could be
measured by the method of Pizzi since 4 w.p.i, increasing up to 6 w.p.i.
Thereafter, parasitaemia decreased up to 10 w.p.i, remaining steady
until the end of the experiment (14 w.p.i). Besides, heart parasitism was
detected by qPCR at 14 w.p.i. (Fig. 1B).

We have previously shown that treatment with 25 mg/kg/day of Bzl
clears parasitaemia and tissue parasitism in an acute model of Chagas
disease (Cevey et al., 2016). To assess whether this treatment was ef-
fective in the mixed infection model, mice were treated with Bzl from
week 10 p.i, as soon as the left ventricular systolic dysfunction (eval-
uated by echocardiography) was detected. Parasites were undetectable
in mouse blood and heart after 2 weeks of treatment, time at which it
was suspended (Fig. 1B).
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Infection with T. cruzi induced a significant decrease in both indexes
of systolic function, Ejection fraction (EF) and Shortening Fraction (SF),
in comparison with uninfected mice. Interestingly, Bzl treatment did
not modify EF and SF in comparison with infected untreated mice. In
this regard, our model mimics what was found in the BENEFIT trial
(Morillo et al., 2015) (Fig. 1C).

Since PPAR ligands have emerged as key regulators of inflammation
and cardiac function we sought to determine whether Fen treatment
might be a rational approach to ameliorate the cardiac alterations in
our experimental model. First, we analysed the expression of the PPAR-
α receptor in T. cruzi-infected mice. PPARα mRNA level was more than
5-fold higher in infected than in uninfected mice, as measured by RT-
qPCR. Accordingly, WB showed increased PPAR-α protein expression in
infected mice (Fig. 2A). Thus, PPARα seems a feasible target to improve
cardiac function in T. cruzi-infected mice. To test the effectiveness of the
treatment of infected mice with Fenofibrate (Fen), a synthetic PPAR-α
agonist, we performed a dose-response study. We found that treatment
with Fen 100 mg/kg/day for 30 days, was the lower dose capable to
restore EF and SF (Fig. 2B) when treatment was initiated at the 10
weeks p.i., time at which the cardiac dysfunction was already observed.
Thus, Fen improves the ventricular function in T. cruzi-infected mice.
These changes occurred without significant differences in the heart rate
(data not shown). The LVEDD and LVESD were significantly increased
in T. cruzi-infected mice, evidencing LV dilatation. Interestingly, treat-
ment with Fen attenuated LV dilatation and restored LVESD. Left ven-
tricular diastolic function was evaluated through the IVRT. The IVRT
was also prolonged in untreated T. cruzi-infected mice and Fen restored
its behavior. Treatment with Bzl alone was unable to restore any of the
cardiac parameters to normal values (Fig. 2C).

Noteworthy, combined Fen plus Bzl treatment was as effective as
Fen alone to restore cardiac parameters. Besides, Fen neither modified
the course of parasitaemia nor heart parasite load of T. cruzi-infected
and Bzl-treated or Bzl-untreated mice (Fig. 2D).

3.2. Fenofibrate reduces the inflammatory response and cardiac injury

Mixed infection resulted in intense mononuclear cell infiltration in
the heart at 14 w.p.i. Treatment with Fen significantly reduced the
inflammatory infiltrates in comparison with infected untreated mice
(Fig. 3A). Moreover, the combined treatment with Bzl did not modify
this effect. Creatine kinase (CK) activity increased in the sera of infected
mice, as expected. Interestingly, Fen reduced CK serum activity irre-
spectively of Bzl treatment. Therefore, it can be concluded that Fen is
able to ameliorate cardiac damage associated with T. cruzi infection
(Fig. 3B).

3.3. Fenofibrate reduces pro-inflammatory mediators in Trypanosoma
cruzi-infected mice

The expression of TNF-α and IL-6 increased significantly in the heart
and sera of T. cruzi-infected mice. Interestingly, Fen inhibited the ex-
pression of pro-inflammatory cytokines in T. cruzi-infected mice
(Fig. 4A). Also, increased NOS2 mRNA and protein levels were ob-
served in the mixed infection model, while Fen treatment reduced their
expression (Fig. 4B). Noteworthy, these effects were unchanged when
Fen was combined with Bzl.

3.4. Fenofibrate attenuates heart fibrosis and remodeling in Trypanosoma
cruzi-infected mice

Fibrosis was observed in heart sections of T. cruzi-infected mice, as
shown by picrosirius red staining. Increased interstitial and perivas-
cular collagen deposits were detected in untreated animals (Fig. 5A). In
agreement with this, the expression of CTGF and MMP-9 were higher in
the heart of infected mice (Fig. 5B). Also, Fen treatment significantly
reduced fibrosis (Fig. 5A) and mediators of connective tissue
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Fig. 1. Benznidazole reduces parasitaemia but does not ameliorate cardiac dys-
function in Trypanosoma cruzi-infected mice. BALB/c mice were infected by in-
traperitoneal route with 1 x 105 bloodstream trypomastigotes of the non-lethal K-98 clone
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trypomastigotes of the lethal RA strain of T. cruzi for 4 weeks. Infected mice were treated
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remodeling in infected mice (Fig. 5B).

3.5. Participation of PPARα-independent pathways in the effects of
Fenofibrate on the cardiomyocyte inflammatory response

We have previously reported that PPAR-γ agonists potently inhibit
MAPK and NF-κB pathways by additional PPAR-γ-independent me-
chanisms in isolated cardiomyocytes (Hovsepian et al., 2010, 2011). To
determine whether Fen acts through PPARα-independent mechanisms,
primary culture cardiomyocytes were infected with the RA strain of T.
cruzi. Then, activation of signaling pathways such as NF-κB were ana-
lysed. To test T. cruzi ability to induce a typical inflammatory response,
NOS2 expression was evaluated by WB. To this end, first we analysed
the optimal cardiomyocyte:parasite ratio to induce nitric oxide (NO)
production. We found that 1:5 was the minimum ratio necessary to
induce a significant NO level, which could be detected in supernatants
of infected cardiac cells (Fig. 6A). Also, we determined that 100 μM Fen
was the optimal concentration in vitro able to inhibit NOS2 expression
after infection (Fig. 6B). A significant increase in NOS2 expression was
observed in infected cardiomyocytes in comparison with uninfected

cells (Fig. 6C). In agreement with this, high levels of NO were detected
in supernatants of infected cells (Fig. 6D). The pre-treatment with Fen
inhibited NOS2 expression and NO release (Fig. 6C and D). As it is
known, Fen is a high-affinity PPAR-α ligand. To evaluate PPAR-α
participation in the effects of Fen, infected cells were pre-treated with
MK886, a potent non-competitive PPAR-α inhibitor. In the presence of
MK886, Fen partially inhibited both NOS2 expression and NO release
(Fig. 6C and D), suggesting the possible participation of PPAR-α-in-
dependent pathways of Fen.

It is widely reported that Fen inhibits NF-κB signaling in different
experimental models (Shen et al., 2014; Zuo et al., 2015; Garcia-
Ramírez et al., 2016). In light of our results showing the ability of Fen
to inhibit inflammatory parameters, we sought to determine whether
Fen effects were also exerted through the NF-κB pathway. Results
shown in Fig. 7 confirm NF-κB activation, since IκBα inhibitor was
reduced after 30 min of infection. Furthermore, Fen treatment inhibited
IκBα degradation, confirming its role in the regulation of inflammation
not only through PPAR-α but also through the NF-κB pathway.

4. Discussion

The use of a mouse model involving mixed T. cruzi strain infection,
that reveals systolic and diastolic dysfunction resembling human cha-
gasic chronic cardiomyopathy, allowed us to test whether Fen is able to
ameliorate the cardiac dysfunction. Most experimental murine models
of infection with T. cruzi that study the immunological and/or patho-
physiological consequences of chronic Chagas disease, address these
issues using single parasite strain infection. While this fact may be of
benefit in terms of model simplicity, this does not represent what
usually happens in nature. Furthermore, we couldn't reproduce the
cardiac dysfunction characteristic of human Chagas disease, using
single population infections. Besides, in the context of active vector-
driven transmission in rural and some suburban areas, an individual
may be exposed to reinfection by several T. cruzi populations (Tomasini
et al., 2017), some of which may differ in their virulence, tropism,
immunogenicity and genetics. This, of course, may be conditioned by
the diversity of genotypes present in a specific geographic area. Thus,
the model described herein, includes this variable, representing a si-
tuation that is closer to what happens in the actual world. The biolo-
gical (tissue tropism, lethality, etc) (González Cappa et al., 1980;
1981a, 1981b, Mirkin et al., 1994, 1997), immunological (development
of humoral and cellular response) (Muller et al., 1986; Vogt et al., 2008)
and genetic (DTU) (Zingales et al., 2009) characteristics of the parasite
populations used in this study have already been characterized. This
allowed us to design a mixed infection model that, both in terms of
cardiac dysfunction as well as in its pathophysiological consequences,
resembles what happens in chronic Chagas disease patients. In support
of this, previous studies have shown that multiple infections lead to
worsening of the inflammatory reaction (Bustamante et al., 2002, 2003,
2004; Andrade et al., 2006) and immunopathological (Guerreiro et al.,
2015) consequences.

The main finding of our study is the ability of Fen to reverse left
ventricular dysfunction. It is known that Bzl is highly effective in the
acute stage of the disease, especially in childhood. In contrast, data on
the effectiveness of treatment of chronic disease have been

Fig. 2. Fenofibrate reverses cardiac functional failure in mice infected with Trypanosoma cruzi. BALB/c mice were infected by intraperitoneal route with 1 x 105 bloodstream
trypomastigotes of the non-lethal K-98 clone of T. cruzi for 6 weeks, followed by intraperitoneal re-infection with 100 bloodstream trypomastigotes of the lethal RA strain of T. cruzi for 4
weeks. PPAR-α mRNA levels and PPAR-α expression were determined by RT-qPCR and Western blot with specific primers and antibodies, respectively. The RT-qPCR results were
normalized against 18S rRNA. Protein levels were normalized against α-actin (A). Infected mice were treated with different doses of Fenofibrate (Fen). Ejection fraction and Shortening
fraction were evaluated by echocardiography (B). Infected mice were treated with 25 mg/kg/day Bzl for 15 consecutive days. At the same time treatment with 100 mg/kg/day Fen was
initiated and continued for 30 consecutive days. The ejection fraction, shortening fraction, left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD)
and isovolumic relaxation time (IVRT) were evaluated by echocardiography (C). Parasitaemia (parasites/mL x 103) and heart parasite load were analysed in infected or infected-treated
mice (D). Results are expressed as the mean of three independent experiments (seven mice/group) ± SEM. White bar: Uninfected control mice. Black bar: T. cruzi-infected mice. Hatched
white bar: T. cruzi and Bzl treated mice. Grey bar: T. cruzi and Fen treated mice. Hatched grey bar: T. cruzi and Fen-Bzl treated mice. **P<0.001, ***P<0.0001, T. cruzi-infected and
treated mice (Fen or Fen plus Bzl) vs. T. cruzi-infected mice; ##P<0.001, ###P<0.0001, T. cruzi-infected mice vs. uninfected mice.
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controversial (Garcia et al., 2005; Viotti et al., 2006). It has been de-
monstrated that, although Bzl is effective in parasite clearance in the
chronic phase it is unable to ameliorate or preclude the progression of
cardiac pathology (Morillo et al., 2015). Additionally, treatment with

Bzl has serious limitations, such as the side effects exhibited by a sig-
nificant percentage of patients (Pérez-Molina et al., 2009; Viotti et al.,
2009; Miller et al., 2015; Noguerado-Mellado et al., 2016). Therefore, it
is very desirable to find antiparasitic doses lower than those currently
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used, since its known that the adverse effects are dose-dependent. In a
previous work we showed that optimal effects of Bzl, in terms of
parasite clearance from blood and heart tissue, can be achieved at a
dose significantly lower than those usually used for the treatment in an
experimental murine model, using a highly virulent Bzl-susceptible T.
cruzi strain (Cevey et al., 2016). In the present study, we show that such
low dose of Bzl completely eliminates blood parasites, but is unable to
restore the EF and SF in infected mice. These results are in agreement

with those of Zaidenberg et al., who showed that high doses of Bzl re-
duce the PR interval prolongation but failed to sustain an improvement
of cardiac function at the end of the study (Zaidenberg et al., 2006).
Moreover, a recent study carried out in a mouse model of experimental
Chagas heart disease with a Colombian strain showed that Bzl does not
restore to normal the heart rate-corrected QT (QTc) intervals (Vilar-
Pereira et al., 2016b).

Our work shows, for the first time, that treatment with Fen, a potent
hypolipidemic drug with additional anti-inflammatory properties, im-
proves heart dysfunction in experimental Chagas disease. We demon-
strate that Fen improves LV function, decreases the IVRT and attenuates
ventricular remodeling. From our point of view, these effects are closely
linked to the anti-inflammatory effects of Fen. These anti-inflammatory
and protective effects have been previously evaluated in models of
autoimmune myocarditis (Cheng et al., 2016), skeletal muscle in-
flammation (Dai et al., 2016), and cardiac ischemia/reperfusion (Sugga
et al., 2012). Moreover, we have previously demonstrated that a PPAR-
γ agonist modulates the exacerbated heart inflammatory response using
in vivo models of early lethal and non-lethal T. cruzi infection, as well as
using in vitro models with a highly virulent T. cruzi strain (Hovsepian
et al., 2011; Penas et al., 2013).

Here we show that mixed infection with T. cruzi for 14 weeks re-
sulted in intense inflammatory reaction with high TNF-α and IL-6 heart
expression, consistent with increased serum levels of these pro-in-
flammatory cytokines. Noteworthy, we demonstrate that after 4 weeks
of treatment with Fen, the inflammatory infiltrates were significantly
reduced and that pro-inflammatory markers like NOS2, TNF-α and IL-6
were inhibited and restored to control levels. A similar response was
observed in terms of the effects of Fen on the reduction of cardiac fi-
brosis and tissue-remodeling mediators such as MMP-9 and CTGF. As a
whole, these results reveal that Fen treatment prevents myocardial
damage. In this context, fibrates have been regarded as potent ther-
apeutic agents. Clofibrate and Fen exert cardioprotection in I/R-in-
duced myocardial injury in rats, as assessed in terms of reduction in
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myocardial infarct size, LDH and CK activity in coronary effluent, along
with reduction in I/R-induced oxidative stress (Sugga et al., 2012). In
agreement with these results, we observed a significant reduction in
serum CK activity following the Fen treatment, further suggesting re-
duction of cardiac injury.

In this study, we also analysed the ability of in vitro treatment with
Fen to down-regulate inflammatory mechanisms of cardiomyocytes in
response to T. cruzi infection. We determined that treatment with Fen
exerted an anti-inflammatory effect, reducing NOS2 protein expression
and NO levels. Previously, our group demonstrated that PPAR-γ ago-
nists inhibit the induction of inflammatory genes in both lipopoly-
saccharide-stimulated and in in vitro T. cruzi-infected cardiomyocytes
through PPAR-γ-dependent or -independent pathways, like NF-κB
(Hovsepian et al., 2010, 2011). Moreover, other authors have demon-
strated that the natural PPAR-γ ligand 15-deoxy-Δ12,14 prostaglandin J2
exerts a strong anti-inflammatory effect by attenuating the expression
of pro-inflammatory mediators in activated monocytes/macrophages,
an effect mainly exerted through the inhibition of NF-κB-dependent
transcription of inflammatory genes (Straus et al., 2000). In this sense,
the inhibition of the NF-κB signaling pathway by Fen has been reported
in different experimental models (Shen et al., 2014). Jen et al. sug-
gested that activated PPAR-α can decrease the activation of adiponectin
and NF-κB and inhibit Endothelin-1-induced cardiomyocyte hyper-
trophy in human cardiomyocyte cultures (Jen et al., 2016). Other
findings suggest that the anti-inflammatory effects of Fen through in-
hibition of NF-κB activity are beneficial for treating diabetic macular
edema (Garcia-Ramírez et al., 2016). Because NF-κB has a pivotal role
in the regulation of inflammation and cell survival (Papa et al., 2009), a
fine tuned targeting to this factor may be needed to properly treat
diseases in which its dysregulation is involved. It must be noted,
however, that the treatment with Fen precludes its activation, resulting
in a beneficial outcome in terms of tissue inflammation and functional
restoration.

Finally, this work shows that Fen reverses relevant aspects of
Chagas cardiac dysfunction like EF, SF, LVESD and IVRT. It is known
that the alteration of these parameters are involved in the high mor-
bidity of Chagas disease patients (Ribeiro et al., 2012; Vilar-Pereira
et al., 2016a). Fen effects add up to the complete reduction of the
parasite burden by Bzl in low doses, reducing the inflammatory re-
sponse and attenuating heart fibrosis and pro-fibrotic cytokines in T.
cruzi-infected mice. Lastly, this study is in line with the WHO/DNDi
proposal that promotes new therapeutic approaches for neglected tro-
pical diseases, using drugs already available for the treatment of other
diseases. Taking into account all the above, we believe that the com-
bined therapy of Fen plus Bzl has potential for clinical trials in patients
with chronic Chagas disease.
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