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Circulating bone morphogenetic 
protein-9 in relation to metabolic 
syndrome and insulin resistance
Xiaohui Xu1,3, Xiaoqiang Li2, Gangyi Yang   3, Ling Li4, Wenjing Hu5, Lili Zhang3, Hua Liu6, 
Hongting Zheng7, Minghong Tan1 & Danping Zhu1

Our objective is to determine circulating Bone morphogenetic protein-9(BMP-9) levels in subjects with 
Metabolic Syndrome (MetS) and examine the relationship between BMP-9 and conventional markers 
for MetS and insulin resistance (IR). A total of 362 newly diagnosed patients with MetS along with 
healthy controls were recruited for this cross-sectional study. Circulating BMP-9 levels were measured 
by ELISA. Circulating BMP-9 levels were significantly lower in MetS patients compared to those of the 
healthy controls. BMP-9 was associated negatively with Waist hip ratio (WHR), fasting blood glucose 
(FBG), 2-hour blood glucose after glucose overload (2h-OGTT), HbA1c, triglyceride (TG) levels and 
HOMA-IR and positively with free fatty acid (FFA) and HDL after control for age and sex. In a multiple 
linear regression, BMP-9 was independently associated with type 2 diabetes mellitus (T2DM), HOMA-IR 
and FFA. Binary logistic regression showed that plasma BMP-9 concentrations were significantly 
associated with MetS even after controlling for anthropometric variables and lipid profiles. In addition, 
circulating BMP-9 levels reduced progressively with an increasing number of MetS components. The 
best cutoff values for circulating BMP-9 to predict MetS was 56.6 ng/L. Circulating BMP-9 levels were 
associated with the key components of MetS and IR.

Metabolic Syndrome (MetS) is characterized by a cluster of risk factors for insulin resistance (IR) type 2 diabetes 
mellitus (T2DM) and cardiovascular disease, including obesity, hypertension, hyperglycemia, and dyslipidemia1. 
Individuals with MetS have a 24-fold increased risk for the development of T2DM2 and are known to be more sus-
ceptible to the development of cardiac vascular diseases3 and cancers4,5. Due to the increasing prevalence of MetS, 
especially in developing countries6–8, it is urgent to discover new strategies for the assessment and treatment of 
MetS. However, while insulin resistance (IR) is considered to be a major factor in MetS, the exact pathophysiol-
ogy is unknown although complex genetic, metabolic and environmental factors do play a role9. Therefore, it is 
important to study all factors related to MetS in depth.

Bone morphogenetic protein-9 (BMP-9), a member of transforming growth factor (TGF-β) superfamily, was 
initially found in hepatocytes and intrahepatic biliary epithelial cells10. Subsequently, an additional pattern of 
distribution was reported11,12. BMP-9 was originally identified as relating to chondrogenic and osteogenic fac-
tors13. Recently, however, some animal studies have demonstrated that BMP-9 has multiple functions including 
angiogenesis, promoting the differentiation of cholinergic neurons in the central nervous system (CNS) and 
regulating hepatic growth14–16. BMP-9 has also been shown to regulate the key enzymes of fatty acid synthesis 
in the liver, promote insulin release from the pancreas, suppress hepatic glucose production (HGP) and increase 
brown adipogenesis in adipose tissue17,18. In our recently published study, we showed that circulating BMP-9 lev-
els are significantly lower in newly diagnosed patients with T2DM (nT2DM) than in healthy subjects and BMP-9 
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levels are associated with HbA1c, fasting blood glucose (FBG), 2-h plasma glucose after glucose overload (2-h 
OGTT, the area under the curve for glucose (AUCglucose) and homeostasis model assessment of insulin resistance 
(HOMA-IR)19. However, to date, there have been no studies that accurately assess the clinical relevance of the 
relationship between BMP-9 and MetS.

In the current study, our aim is to assess the association between circulating BMP-9 levels and MetS as well as 
the number of components and plasma BMP-9 levels in middle-aged and older Chinese populations.

Results
Anthropometric and metabolic parameters in study subjects.  A total of 362 participants were 
enrolled for the analysis. Baseline characteristics of the study subjects are shown in Table 1. No significant dif-
ferences were observed in age and sex between control subjects and MetS patients. Compared with controls, 
Mets subjects had higher BMI, FAT (%), Waist hip ratio (WHR), Systolic blood pressure (SBP), Diastolic blood 
pressure (DBP), triglyceride (TG), cholesterol (TC), Low-density lipoprotein cholesterol (LDL-C), free fatty acid 
(FFA), HBA1c(%), FBG, 2-h post-glucose load blood glucose (2h-PBG), FIns, HOMA-IR and lower High-density 
lipoprotein cholesterol (HDL-C) (P < 0.01 or P < 0.05). After control for age and sex, the differences still existed.

Subgroup analysis.  In the analysis of subgroup, fasting BMP-9 levels were similar in both male and female 
(Table 2), suggesting that this hormone does not exhibit distinct sexual dimorphism. Subjects with central obesity, 
defined by the MetS (NCEP ATPIII) Asian criteria, had significantly lower circulating BMP-9 levels than lean 
individuals in the study population (P < 0.05, Table 2). In addition, individuals with dyslipidemia or hypertension 
had significantly lower plasma BMP-9 levels than those without (all P < 0.01, Table 2). Importantly, fasting cir-
culating levels of BMP-9 were significantly lower in MetS subjects compared with healthy controls [44.31(29.77, 
66.39) vs. (78.39 (47.78, 140.29) ng/L, P < 0.01; Table 2, Fig. 1A]. To further explore the relationship between 
BMP-9 and the MetS, we stratified the mean levels of circulating BMP-9 by the number of components of the 
MetS. We found that circulating concentrations of BMP-9 significantly decreased with more than 3 compo-
nents of MetS (P for trend < 0.01, Fig. 1B). Subjects with more components of MetS had decreased BMP-9 levels 
(BMP-9 levels were log transformed, mean ± SD) of 4.41 ± 0.81; 4.36 ± 0.94; 3.87 ± 0.76; 3.85 ± 0.73; 3.70 ± 4.36, 
respectively.

Circulating BMP-9 level and its association with anthropometric and biochemical parameters 
in study subjects.  Next, we further analyzed the correlations of plasma BMP-9 levels with anthropomet-
ric and metabolic parameters by using spearman correlations. We found that circulating BMP-9 levels nega-
tively correlated with marker of adiposity (WHR), IR marker (HOMA-IR), parameters of glucose metabolism 
(FBG, 2h-PBG and HbA1c) and parameters of blood fat (TG), while positively correlated with HDL-C and FFA 
(P < 0.05 or P < 0.01, Table 3). All these correlations remained statistically significant after further adjustment for 
age and sex in partial correlations. There were no correlations between circulating BMP-9 with fasting and 2 h 
post-glucose load insulin levels. Multiple stepwise regression analysis showed that FFA, T2DM and HOMA-IR 
were independent related factors with plasma BMP-9 levels (Table 4). The multiple regression equation was: YBMP-9  
= 4.469 + 0.160 XFFA − 0.294XT2DM − 0.296XHOMA-IR (P < 0.01, R2 = 0.10).

Variable Controls (n = 147) MetS (n = 215) P

Age (yr) 53.8 ± 9.2 54.6 ± 8.2 0.124

Sex (femal %) 59.9% (88, 59) 54.4% (117, 98) 0.332

BMI (kg/m2) 22.9 ± 3.0 25.4 ± 2.6 <0.001

FAT (%) 26.3 ± 5.9 31.3 ± 7.0 <0.001

WHR 0.87 ± 0.08 0.93 ± 0.06 <0.001

SBP (mmHg) 116.8 ± 15.0 131.8 ± 18.6 <0.001

DBP (mmHg) 73.5 ± 9.6 82.6 ± 12.1 <0.001

TC (mmol/L) 4.59 ± 1.03 4.90 ± 1.35 0.021

TG (mmol/L) 1.15 (0.80–1.50) 2.00 (1.40–2.70) <0.001

HDL-C (mmol/L) 1.40 ± 0.60 1.10 ± 0.25 <0.001

LDL-C (mmol/L) 2.67 ± 0.76 2.90 ± 0.98 0.015

FFA (µmol/L) 0.51 (0.38–0.65) 0.64 (0.44–0.90) <0.001

HBA1c (%) 5.6 ± 0.4 7.1 ± 1.9 <0.001

FBG (mmol/L) 5.2 ± 0.6 7.8 ± 4.0 <0.001

2h-BG (mmol/L) 6.3 ± 1.2 13.2 ± 8.2 <0.001

FIns (mU/L) 8.6 (5.6–13.0)(143) 15.8 (9.5–22.7)(174) <0.001

HOMA-IR 1.97 (1.30–3.02)(143) 5.04 (3.66–6.75)(174) <0.001

Table 1.  Main clinical features in MetS and control subjects. BMI, Body mass index; FAT (%), the percentage of 
fat in vivo; WHR, Waist hip ratio; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; TG, Triglyceride; 
TC, Total cholesterol; HDL-C, High- density lipoprotein cholesterol; LDL-C, Low-density lipoprotein 
cholesterol; FFA, free fatty acid; HbA1c, Glycosylated hemoglobin; FBG, Fasting blood glucose; 2h-BG, 2 h 
post-glucose load blood glucose; FIns, Fasting plasma insulin; HOMA-IR, HOMA-insulin resistance index. 
Values are means ± SD or median (interquartile Range).
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The predictive value of circulating BMP-9 in detecting MetS and dyslipidemia.  Binary logistic 
regression showed that plasma BMP-9 concentrations were significantly associated with MetS even after con-
trolling for anthropometric variables and lipid profile (Table 5). In addition, we divided BMP-9 into three tertiles 
according to the BMP-9 concentration of the study population (tertile 1, ≤39.49 ng/L; tertile 2, 39.49–75.93 ng/L; 
tertile 3, >75.93 ng/L) and odds of developing MetS were calculated using logistic regression analysis. When 
BMP-9 levels were in the tertile 2 and tertile 3, the odds ratios of developing MetS were 0.461 (95% CI 0.259; 
0.819) and 0.145 (95% CI 0.081; 0.258), respectively (vs. tertile 1, both P < 0.01; Fig. 1C). When concentrations 
were analyzed by row mean score difference and the Cochran-Armitage trend test (Table 6), decreasing BMP9 
levels showed a significant linear trend and were independently associated with MetS. Finally, we performed the 
ROC curve of BMP-9 circulating levels in predicting MetS and dyslipidemia (Fig. 2). The area under the ROC 
curves was 0.70 (P < 0.001) with a sensitivity of 69.4%, specificity of 68.4% for MetS (Figs. 2A) and 0.61 (P < 0.01) 
with a sensitivity of 68.5%, specificity of 58.5% for dyslipidemia (Fig. 2B). The best cutoff values for circulating 
BMP-9 to predict MetS and dyslipidemia were 56.6 and 54.9 ng/L.

Discussion
The major findings of the present study are 1) circulating BMP-9 levels are lower in subjects with MetS compared 
with healthy controls; 2) circulating concentrations of BMP-9 significantly decreased with more than 3 compo-
nents of MetS; 3) plasma BMP-9 concentrations are significantly associated with MetS even after controlling for 
anthropometric variables, lipid profiles and hormone levels.

This study is the first report to analyze circulating BMP-9 levels with ELISA method in MetS subjects. Here, 
we showed that circulating BMP-9 levels in MetS are significantly decreased compared with the healthy controls, 
which is similar to a recent study of T2DM patients19. In a subgroup analyses, we found that central obesity, dys-
lipidemia, hypertension and IR subjects also had lower circulating BMP-9 levels compared with controls. These 
findings further suggest that plasma BMP-9 might be relative to adiposity and obesity-related metabolic diseases, 
such as MetS.

BMP-9 has been shown to be a regulator of glucose and lipid metabolism20. In vitro, BMP-9 inhibited the 
expression of phosphoenolpyruvate carboxykinase (PEPCK), increased fatty acid synthase (FAS) and acti-
vated the serine/threonine kinase AKT. In normal and diabetic mice, BMP-9 was shown to decrease glycemia17. 
Furthermore, treatment with an anti-BMP-9 antibody in fasting rats induced glucose intolerance and IR20. These 
data suggest a beneficial effect of BMP-9 on glucose and lipid metabolism and IR. Therefore, the reduction of cir-
culating BMP-9 in subjects with MetS might be due to the increasing consumption in human body to counteract 
the metabolic stress imposed by MetS, including hyperinsulinemia, hyperglycemia and dyslipidemia. In addition, 
the decreased levels of BMP-9 may also be a result of both decreased formation and increased degradation in an 
IR state. However, the cross-sectional nature of the current study does not permit us to infer the causal relation-
ship between BMP-9 and MetS. Therefore, a follow up study will be necessary.

Dyslipidemia and hyperglycemia have been shown to be two important components of MetS and have been 
added to the MetS definition. This is because it has been suggested that the disease progression in MetS subjects 
towards T2DM and cardiovascular diseases (CVD) is accompanied by increased metabolic abnormalities. Our 
data demonstrates that circulating BMP-9 levels in MetS patients are significantly correlated with FBG, 2h-PBG, 
HbA1c, FFA, HDL and TG, even after adjustment for age and sex. These results also suggest that prolonged 
hyperglycemia and hyperlipidemia in MetS patients are associated with decreased circulating BMP-9 levels. The 
positive correlation of BMP9 levels with HDL and negative correlation with HOMA-IR are concordant with the 
relationship between nonalcoholic fatty liver disease (NAFLD) and those same parameters21. Therefore, we spec-
ulate that it is possible that low levels of BMP-9 predict NAFLD. Our multiple stepwise regression analysis has 
identified the FFA, T2DM and HOMA-IR, as significant independent contributors to circulating BMP-9 levels. 
This clinical evidence suggests that BMP-9 may play a regulatory role in glucose and lipid metabolism in humans, 
in keeping with the findings of an animal study that suggested a role of BMP-9 in the regulation of glucose and 
lipid metabolism18. Taken together, these findings raise the possibility that BMP-9 acts as a mediator that links 

Clinical phenotype n BMP-9 (ng/L) P-value

Female 205 54.75(34.76,88.38)

Male 157 51.38(31.20,97.13) 0.789

Central obesity 237 50.93(32.01,83.48)

Non-central obesity 125 61.58(38.71,102.31) <0.05

Dyslipidemia 270 49.73(32.11,84.29)

Normal lipid 92 75.72(45.93,109.00) <0.001

IR 143 49.17(32.27,82.57)

Non-IR 174 68.48(43.94,114.51) <0.001

Hypertension 193 49.72(31.20,81.25)

Normal BP 169 59.75(35.19,110.75) <0.001

MetS 215 44.31(29.77,66.39)

Non-MetS 147 78.39(47.78,140.29) <0.001

Table 2.  Plasma BMP-9 levels according to gender and various clinical phenotypes. IR, insulin resistance; BP, 
blood pressure. Data are expressed as median (interquartile range).
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glucose and lipid metabolism, IR and MetS. Although it would be premature to conclude a causal effect of BMP-9 
on these parameters, it would be of interest to explore whether interventions that specifically raise circulating 
BMP-9 levels would ameliorate metabolic disorder in MetS subjects.

MetS is a collection of abnormalities that increases the occurrence of CVD and T2DM. To investigate how 
BMP-9 is associated with CVD and T2DM risk, we compared the relationship between circulating BMP-9 levels 

Figure 1.  (A) Circulating BMP-9 levels in control and MetS individuals. (B) Circulating BMP-9 levels in 
relation to the number of MetS components. The values of BMP-9 are log-transformed. (C) Prevalence 
of elevated MetS in different quartiles f BMP-9: tertile 1, ≤ 39.49 ng/L; tertile 2, 39.49–75.93 ng/L; tertile 
3, > 75.93 ng/L (*P < 0.01 vs. controls or tertile 1).

Variable r P

Age (yr) −0.082 0.125

BMI (kg/m2) −0.047 0.378

WHR −0.145 <0.001

FAT (%) −0.099 0.062

SBP (mmHg) −0.017 0.745

DBP (mmHg) −0.024 0.649

FBG (mmol/L) −0.154 <0.001

2h-OGTT (mmol/L) −0.232 <0.001

HbA1c (%) −0.161 <0.001

TG (mmol/L)a −0.116 0.031

TC (mmol/L) 0.016 0.767

HDL-C (mmol/L)a 0.188 <0.001

LDL-C (mmol/L) 0.034 0.538

FFA (µmol/L) 0.189 <0.001

HOMA-IRa −0.150 <0.001

FIns (mU/L) −0.024 0.666

Table 3.  The correlation analysis of plasma BMP-9 levels with other variables in study subjects. In pearson 
correlation analysis, values included for analysis were age, BMI, WHR, BP, FBG, insulin, HOMA-IR, FFA, total 
cholesterol, HDL-C, LDL-C, triglyceride. alog-transformed values.

Coefficient β 95%CI P

Age −0.013 0.826

Sex 0.143 0.886

FFA 0.160 0.029–0.291 <0.01

Central obesity −0.020 0.853

Dyslipidemia −0.049 0.842

T2DM −0.294 −0.497–(−0.090) <0.01

HOMA-IR −0.296 −0.496–(−0.105) <0.01

Table 4.  Multiple stepwise regression showing variables with significant independent associations with plasma 
BMP-9. BMP-9 was log-transformed before analysis.
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and MetS components. We found that circulating concentrations of BMP-9 decreased progressively with con-
tinued increases in the number of MetS components. In particular, circulating BMP-9 levels positively corre-
lated with LDL-C, an important risk factor for CVD. This suggests that low BMP-9 levels in MetS subjects may 
increase cardiovascular risk. In our ROC curve analysis, the results show that circulating BMP-9 may predict both 
MetS and dyslipidemia in our study population. However, the range of AUC (0.6–0.7) was considered to be of 
mild-to-moderate significance. Some possible explanation for this relatively weak result, include the sample size 
and a non-normal distribution of BMP-9 levels in study population. In addition, it is also possible that circulating 
BMP-9 may not be a good marker for predicting MetS. Therefore, further extensive studies are necessary.

Our study has several limitations. First, this cross-sectional study could not directly determine a causal rela-
tionship between BMP-9 and MetS. However, the crossover design minimizes inter-individual differences and 
ensures that the observed effects of BMP-9 are not attributable to differences in the study population; Second, the 
sample size was relatively small. However, it provided more than an 80% power to detect significant associations 
at the r > 0.20 and the conventional P = 0.05 level; Third, this study is confined to specific age groups and a single 
race. The homogeny of our population sample decreases the generalizability of our results and decreases the appli-
cability of the associations observed here between BMP-9 and MetS across populations. Therefore, future studies 
with larger sample sizes examining BMP-9 in various conditions and populations will be needed.

Model adjust

MetS

OR 95%CI P

Age, Sex 0.529 0.393–0.711 <0.001

Age, Sex, BMI, WHR, FAT (%) 0.497 0.3543–0.699 <0.001

Age, Sex, BMI, WHR, FAT (%), SBP, DBP 0.432 0.295–0.632 <0.001

Age, Sex, BP, BMI, WHR, FAT(%), lipid profile 0.361 0.224–0.582 <0.001

Table 5.  Association of circulating BMP-9 levels with MetS in fully adjusted models. Results of binary logistic 
regression analysis are presented as the odds ratio (OR) of being in MetS status decrease in circulating. BMI, 
body mass index; WHR, waist-to-hip; FAT (%), the percentage of fat in vivo; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; lipid profile, including total cholesterol, FFA, triglyceride, LDL- and HDL-cholesterol.

Model adjusted

MetS

χ2 P-value

Row Mean Scores Test 12.2353 <0.001

Cochran-Armitage Trend Test 12.1915 <0.001

Table 6.  Row mean scores and Cochran–Armitage trend test of the impact of plasma BMP-9 level on MetS The 
circulating BMP-9 levels of all subjects were cut-off and adjusted for age, sex, BMI, WHR, SBP, DBP, TC, TG, 
LDL-C and HDL-C.

Figure 2.  ROC curve analysis was performed for the prediction of MetS (A) and dyslipidemia (B).



www.nature.com/scientificreports/

6SCiEnTifiC ReporTs | 7: 17529  | DOI:10.1038/s41598-017-17807-y

In summary, the results of the current study demonstrate that circulating levels of BMP-9 are decreased in 
subjects with MetS and associated with measures of IR (HOMA-IR), marker of adiposity (WHR), parameters of 
glucose metabolism (FBG, 2h-PBG and HbA1c) and parameters of blood fat (TG, HDL and FFA), and the pres-
ence of MetS. The strong negative associations of circulating BMP-9 with key components of MetS suggest that 
BMP-9 may be a potential prediction for risk assessment for cardiovascular disease in obese subjects.

Materials and Methods
Subjects.  This cross-sectional study was conducted from May 2015 to December 2016. A total of 362 sub-
jects with newly diagnosed MetS patients (nMetS group, n = 215) and healthy controls (NGT group, n = 147) 
were recruited from the outpatients attending the Internal Medicine Department, community or schools through 
advertisement, and routine medical check-up. All individuals were screened for MetS. We used the United States 
National Cholesterol Education Program (NCEP) Expert Panel Adult Treatment Panel (ATP) III criteria as the 
recruitment criteria22,23. Individuals meet 3 or more of the following conditions will be diagnosed as MetS: 1) 
central obesity (waist circumference; WC ≥ 90 or 80 cm for Asian male and female, respectively); 2) triglycerides 
(TG) ≥ 1.7 mmol/L; 3) low level of high-density lipoprotein-cholesterol (HDL-C; ≤40 mg/dL for male and ≤50 mg/
dL for female); 4) blood pressure (BP) ≥130/85 mmHg or receiving antihypertensive medication; 5) fasting blood 
glucose (FBG) ≥5.6 mmol/L or known history of T2DM. Individuals with symptomatic heart failure, liver cirrhosis, 
hepatic and renal failure, long-term steroid use, cancer, active infection, or other medical problems that would con-
found the results of this investigation were excluded. All control subjects were selected by FBG < 5.6 mmol/L and 
2-h OGTT glucose < 7.8 mmol/L, no family history of T2DM, no any other major illnesses, and no medication that 
could have affected laboratory test results. Normal subjects were in good health and had normal kidney and liver 
function. This study was conducted in accordance with the Declaration of Helsinki, and was approved by the human 
research ethics committee of Chongqing Medical University, and informed consent was obtained from all subjects.

Anthropometric and biochemical measurements.  After 10–12 hours fasting overnight, all participants 
were scheduled at the same time (0800–0900 h) and received the comprehensive physical examination. Height, body 
weight, WC, hip circumstance and BP were measured by the same observer, and the waist-to-hip ratio (WHR) and 
Body mass index (BMI, weight divided by height squared) were calculated. The percentage of body fat (FAT %) was 
measured by bioelectrical impedance (BIA-101; RJL Systems, Shenzhen, China). The homeostasis model assess-
ment of IR (HOMA-IR) was calculated using the following equations: HOMA-IR = fasting insulin (mU/L) × FBG 
(mmol/L)/22.524. IR was defined as HOMA-IR value ≥ 3.825. A 75-g OGTT was performed between 0730 and 
0830 h. Blood samples were drawn at 0, 30, 60, and 120 min for the demonstration of glucose, insulin, blood fat and 
BMP-9. Blood glucose and HbA1c were measured by the glucose-oxidase method and anion- exchange HPLC, 
respectively. Plasma insulin concentrations were measured in 317 individuals using chemiluminescence. Free fatty 
acids (FFAs) were measured with a commercial kit (Randox Laboratories Ltd., Antrim, UK). Total cholesterol (TC), 
high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) 
were determined enzymatically using an autoanalyzer (Hitachi 747; Hitachi, Tokyo, Japan).

Measurements of circulating BMP-9 levels.  Plasma BMP-9 concentrations were measured in duplicate 
with an ELISA kit according to the manufacturer’s protocol (R&D Systems, Inc., Catalog number DY3209, MN, 
USA). Briefly, 100 µl plasma was applied to the test BMP-9 concentrations. Then, 100 µl of specific biotin-conjugated 
anti-human BMP-9 was added to each well and incubated at 25 °C for 2 h. Each well was then washed three times. 
Colorimetric reaction was performed for 20 min with the use of horseradish peroxidase–conjugated streptavidin 
as substrate. A calibration curve was constructed by plotting the absorbance values at 450 nm versus the BMP-9 
concentrations of the calibrators, and concentrations of samples were determined using this calibration curve. The 
minimum detectable concentration of human BMP-9 is <15.6 µg/L. The intra- and inter-assay coefficients of varia-
tion (CV) were low than 5% and 10%, respectively. The linear range of the assay was 15.60–1,000 µg/L. As in previous 
study10, we did not find that serum lipids or protein have effect on BMP-9 detection.

Statistical analysis.  Data are expressed as means ± standard deviation (SD) or medium (25th and 75th per-
centiles). Kolmogorov-Smirnov test was applied to test the normality of distribution. Data that were not normally 
distributed were log transformed. The differences of the anthropometric measurements and other parameters 
between groups were tested by independent student t-test or ANOVA. spearman correlation coefficients, partial 
correlation coefficients and multiple linear regressions were calculated to analysis the relationship between BMP9 
and other parameters. Binary logistic regression model was applied to control the possible confounding variables 
and assess the relationship between BMP9 levels and MetS. Odds ratio (OR) and 95% confidence interval (CI) 
were also calculated. Logistic regression analysis was also used to assess and compare the odds of developing 
MetS of different BMP-9 tertile categories. The trends of BMP-9 levels associated with MetS were analyzed using 
the Cochran-Armitage trend test and the row mean score difference. Receiver operating characteristics (ROC) 
curves of BMP-9 levels were constructed to determine the optimal cutoff point for the prediction of MetS and IR. 
P value < 0.05 considered statistically significant.
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