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Abstract

Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable 

interest in the medical imaging field. Currently, the main stream low-dose CT methods include 

vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need 

to access raw data whose formats are not transparent to most users. Due to the difficulty of 

modeling the statistical characteristics in the image domain, the existing methods for directly 

processing reconstructed images cannot eliminate image noise very well while keeping structural 

details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution 

network, and shortcut connections into the residual encoder-decoder convolutional neural network 

(RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN 

achieves a competitive performance relative to the-state-of-art methods in both simulated and 
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clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, 

structural preservation, and lesion detection.

Index Terms

Low-dose CT; deep learning; auto-encoder; convolutional; deconvolutional; residual neural 
network

I. Introduction

X-ray computed tomography (CT) has been widely utilized in clinical, industrial and other 

applications. Due to the increasing use of medical CT, concerns have been expressed on the 

overall radiation dose to a patient. The research interest has been strong in CT dose 

reduction under the well-known guiding principle of ALARA (as low as reasonably 

achievable) [1]. The most common way to lower the radiation dose is to reduce the X-ray 

flux by decreasing the operating current and shortening the exposure time of an X-ray tube. 

In general, the weaker the X-ray flux, the noisier a reconstructed CT image, which degrades 

the signal-to-noise ratio and could compromise the diagnostic performance. To address this 

inherent physical problem, many algorithms were designed to improve the image quality for 

low-dose CT (LDCT). These algorithms can be generally categorized into three categories: 

(a) sinogram domain filtration, (2) iterative reconstruction, and (3) image processing.

Sinogram filtering techniques perform on either raw data or log-transformed data before 

image reconstruction, such as filtered backprojection (FBP). The main convenience in the 

data domain is that the noise characteristic has been well known. Typical methods include 

structural adaptive filtering [2], bilateral filtering [3], and penalized weighted least-squares 

(PWLS) algorithms [4]. However, the sinogram filtering methods often suffer from spatial 

resolution loss when edges in the sinogram domain are not well preserved.

Over the past decade, iterative reconstruction (IR) algorithms have attracted much attention 

especially in the field of LDCT. This approach combines the statistical properties of data in 

the sinogram domain, prior information in the image domain, and even parameters of the 

imaging system into one unified objective function. With compressive sensing (CS) [5], 

several image priors were formulated as sparse transforms to deal with the low-dose, few-

view, limited-angle and interior CT issues, such as total variation (TV) and its variants [6]–

[9], nonlocal means (NLM) [10–12], dictionary learning [13], low-rank [14], and other 

techniques. Model based iterative reconstruction (MBIR) takes into account the physical 

acquisition processes and has been implemented on some current CT scanners [15]. 

Although IR methods obtained exciting results, there are two weaknesses. First, on most of 

modern MDCT scanners, IR techniques have replaced FBP based image reconstruction 

techniques for radiation dose reduction. However, these IR techniques are vendor-specific 

since the details of the scanner geometry and correction steps are not available to users and 

other vendors. Second, there are substantial computational overhead costs associated with 

popular IR techniques. Fully model-based iterative reconstruction techniques have greater 

potential for radiation dose reduction but slow reconstruction speed and changes in image 

appearance limit their clinical applications.
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An alternative for LDCT is post-processing of reconstructed images, which does not rely on 

raw data. These techniques can be directly applied on LDCT images, and integrated into any 

CT system. In [16], NLM was introduced to take advantage of the feature similarity within a 

large neighborhood in a reconstructed image. Inspired by the theory of sparse representation, 

dictionary learning [17] was adapted for LDCT denoising, and resulted in substantially 

improved quality abdomen images [18]. Meanwhile, block-matching 3D (BM3D) was 

proved efficient for various X-ray imaging tasks [19–21]. In contrast to the other two kinds 

of methods, the noise distribution in the image domain cannot be accurately determined, 

which prevents users from achieving the optimal tradeoff between structure preservation and 

noise supersession.

Recently, deep learning (DL) has generated an overwhelming enthusiasm in several imaging 

applications, ranging from low-level to high-level tasks from image denoising, deblurring 

and super resolution to segmentation, detection and recognition [22]. It simulates the 

information processing procedure by human, and can efficiently learn high-level features 

from pixel data through a hierarchical network framework [23].

Several DL algorithms have been proposed for image restoration using different network 

models [24–31]. As the autoencoder (AE) has a great potential for image denoising, stacked 

sparse denoising autoencoder (SSDA) and its variant were introduced [24–26]. 

Convolutional neural networks are powerful tools for feature extraction and were applied for 

image denoising, deblurring and super resolution [27–29]. Burger et al. [30] analyzed the 

performance of multilayer perception (MLP) as applied to image patches and obtained 

competitive results as compared to the state-of-the-art methods. Previous studies also 

applied DL for medical image analysis, such as tissue segmentation [32, 33], organ 

classification [34] and nuclei detection [35]. Furthermore, reports started emerging on 

tomographic imaging topics. For example, Wang et al. incorporated a DL-based 

regularization term into a fast MRI reconstruction framework [36]. Chen et al. presented 

preliminary results with a light-weight CNN-based framework for LDCT imaging [37]. A 

deeper version using the wavelet transform as inputs was presented [38] which won the 

second place in the “2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge.” The 

filtered back-projection (FBP) workflow was mapped to a deep CNN architecture, reducing 

the reconstruction error by a factor of two in the case of limited-angle tomography [39]. An 

overall perspective was also published on deep learning, or machine learning in general, for 

tomographic reconstruction [40].

Despite the interesting results on CNN for LDCT, the potential of the deep CNN has not 

been fully realized. Although some studies involved construction of deeper networks [41, 

42], most image denoising models had limited layers (usually 2~3 layers) since image 

denoising is considered as a “low-level” task without intention to extract features. This is in 

clear contrast to high-level tasks such as recognition or detection, in which pooling and other 

operations are widely used to bypass image details and capture topological structures.

Inspired by the work of [31], we incorporated a deconvolution network [43] and shortcut 

connections [41, 42] into a CNN model, which is referred to as a residual encoder-decoder 

convolutional neural network (RED-CNN). In the second section, the proposed network 
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architecture is described. In the third section, the proposed model is evaluated and validated. 

In the final section, the conclusion is drawn.

II. Methods

A. Noise Reduction Model

Our workflow starts with a straightforward FBP reconstruction from a low-dose scan, and 

the image denoising problem is restricted within the image domain [37]. Since the DL-based 

methods are independent of the statistical distribution of image noise, the LDCT problem 

can be simplified to the following one. Assuming that X ∈ Rm×n is a LDCT image and Y ∈ 
Rm×n is a corresponding normal dose CT (NDCT) image, the relationship between them can 

be formulated as

(1)

where σ : Rm×n → Rm×n denotes the complex degradation process involving quantum noise 

and other factors. Then, the problem can be transformed to seek a function f:

(2)

where f is regarded as the optimal approximation of σ−1, and can be estimated using DL 

techniques.

B. Residual Autoencoder Network

The autoencoder (AE) was originally developed for unsupervised feature learning from 

noisy inputs, which is also suitable for image restoration. In the context of image denoising, 

CNN also demonstrated an excellent performance. However, due to its multiple down-

sampling operations, some image details can be missed by CNN. For LDCT, here we 

propose a residual network combining AE and CNN, which has an origin in the work [31]. 

Rather than adopting fully-connected layers for encoding and decoding, we use both 

convolutional and deconvolutional layers in symmetry. Furthermore, different from the 

typical encoder-decoder structure, residual learning [41] with shortcuts is included to 

facilitate the operations of the convolutional and corresponding deconvolutional layers. 

There are two modifications to the network described in [31]: (a) the ReLU layers before 

summation with residuals have been removed to abandon the positivity constraint on learned 

residuals; and (b) shortcuts have been added to improve the learning process.

The overall architecture of the proposed RED-CNN network is shown in Fig. 1. This 

network consists of 10 layers, including 5 convolutional and 5 deconvolutional layers 

symmetrically arranged. Shortcuts connect matching convolutional and deconvolutional 

layers. Each layer is followed by its rectified linear units (ReLU) [44]. The details about the 

network are described as follows.
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1) Patch Extraction—DL-based methods need a huge number of samples. This 

requirement cannot be easily met in practice, especially for clinical imaging. In this study, 

we propose to use overlapped patches in CT images. This strategy has been found to be 

effective and efficient, because the perceptual differences of local regions can be detected, 

and the number of samples are significantly boosted [24, 27, 28]. In our experiments, we 

extracted patches from LDCT and corresponding NDCT images with a fixed size.

2) Stacked Encoders (Noise and Artifact Reduction)—Unlike the traditional 

stacked AE networks, we use a chain of fully-connected convolutional layers as the stacked 

encoders. Image noise and artifacts are suppressed from low-level to high-level step by step 

in order to preserve essential information in the extracted patches. Moreover, since the 

pooling layer (down-sampling) after a convolutional layer may discard important structural 

details, it is abandoned in our encoder. As a result, there are only two types of layers in our 

encoder: convolutional layers and ReLU units, and the stacked encoders

 can be formulated as

(3)

where N is the number of convolutional layers, Wi and bi denote the weights and biases 

respectively, * represents the convolution operator, x0 is the extracted patch from the input 

images, and xi (i > 0) is the extracted features from the previous layers. ReLU (x) = max (0, 
x) is the activation function. After the stacked encoders, the image patches are transformed 

into a feature space, and the output is a feature vector xN whose size is lN.

3) Stacked Decoders (Structural Detail Recovery)—Although the pooling operation 

is removed, a serial of convolutions, which essentially act as noise filters, will still diminish 

the details of input signals. Inspired by the recent results on semantic segmentation [45, 46, 

47] and biomedical image segmentation [48, 49], deconvolutional layers are integrated into 

our model for recovery of structural details, which can be seen as image reconstruction from 

extracted features. We use a chain of fully-connected deconvolutional layers to form the 

stacked decoders for image reconstruction. Since the encoders and decoders should appear 

in pair, the convolutional and deconvolutional layers are symmetric in the proposed network. 

To ensure the input and output of the network match exactly, the convolutional and 

deconvolutional layers must have the same kernel size. Note that the data flow through the 

convolutional and deconvolutional layers in our framework follows the rule of “FILO” (First 

In Last Out). As demonstrated in Fig. 1, the first convolution layer corresponds to the last 

deconvolutional layer, the last convolution layer corresponds to the first deconvolutional 

layer, and so on. In other words, this architecture is featured by the symmetry of paired 

convolution and deconvolution layers.

There are two types of layers in our decoder network: deconvolution and ReLU. Thus, the 

stacked decoders  can be formulated as:
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(4)

where N is the number of deconvolutional layers,  and  denote the weights and biases 

respectively, ⊗ represents the deconvolutional operator, yN = x is the output feature vector 

after stacked encoding, yi (N > i > 0) is the reconstructed feature vector from the previous 

deconvolutional layer, and y0 is the reconstructed patch. After stacked decoding, image 

patches are reconstructed from features, and can be assembled to reconstruct a denoised 

image.

4) Residual Compensation—Like the prior art methods [24, 25], convolution will 

eliminate some image details. Although the deconvolutional layers can recover some of the 

details, when the network goes deeper this inverse problem becomes more ill-posed, and the 

accumulated loss could be quite unsatisfactory for image reconstruction. In addition, when 

the network depth increases the gradient diffusion could make the network difficult to train.

To address the above two issues, similar to deep residual learning [41, 42] we introduce a 

residual compensation mechanism into the proposed network. Instead of mapping the input 

to the output solely by the stacked layers, we adopt a residual mapping, as shown in Fig. 2. 

Defining the input as I and the output as O, the residual mapping can be denoted as F(I ) = O 
– I, and we use stacked layers to fit this mapping. Once the residual mapping is built, we can 

reconstruct the original mapping as R(I ) = O = F(I ) + I. Consequently, we transform the 

direct mapping problem to a residual mapping problem.

There are two benefits associated with the residual mapping. First, it is easier to optimize the 

residual mapping than optimizing the direct mapping. In other words, it helps avoid the 

gradient vanishing during training when the network is deep. For example, it would be much 

easier to train an identity mapping network by pushing the residual to zero than fitting an 

identity mapping directly. Second, since only the residual is processed by the convolutional 

and deconvolutional layers, more structural and contrast details can be preserved in the 

output of the deconvolutional layers, which can significantly enhance the LDCT imaging 

performance.

The use of shortcut connections in [41, 42] was to solve the difficulty in training so that the 

shortcut connections were only applied across convolutional layers of the same size. In our 

work, shortcut connections were used for both preservation of structural details and 

facilitation of training deeper networks. Furthermore, the symmetric structure of convolution 

and deconvolution layer pairs was also utilized to keep more details while suppressing image 

noise and artifacts. The CNN layers in [41] are essentially feedforward long short-term 

memories (LSTMs) without gates, while our RED-CNN network is in general not composed 

of the standard feedforward LSTMs.

In [47] and its variants [48, 49], both shortcut connection and deconvolution were used for 

segmentation. High resolution features were combined with an up-sampled output to 
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improve the image classification. Besides shortcut connection and deconvolution, there are 

the following new features of the proposed RED-CNN over the networks in [47–49]:

i. The idea of the autoencoder, which was originally designed for training with 

noisy samples, was introduced into our model, and convolution and 

deconvolution layers appeared in pairs;

ii. To avoid losing details, pooling layer was discarded;

iii. Convolution layers can be seen as noise filters in our application, but filtering 

leads to loss in details. Deconvolution and shortcutting in our model were used 

for detail preservation, and in the experiment section we will separately analyze 

the improvements due to each of these components. Furthermore, the strides of 

convolution and deconvolution layers in our model were fixed to 1 to avoid 

down-sampling.

5) Training—The proposed network is an end-to-end mapping from low-dose CT images to 

normal-dose images. Once the network is configured, the set of parameters, 

 of the convolutional and deconvolutional layers should be estimated to 

build the mapping function M. The estimation can be achieved by minimizing the loss F(D; 

Θ) between the estimated CT images and the reference NDCT images X. Given a set of 

paired patches P = {(X1, Y1), (X2, Y2), …, (XK, YK )} where {Xi } and {Yi } denote NDCT 

and LDCT image patches respectively, and K is the total number of training samples. The 

mean squared error (MSE) is utilized as the loss function:

(5)

In this study, the loss function was optimized by Adam [50].

III. Experimental Design and Results

A. Data Sources

1) Simulated Data—The normal dose dataset included 7,015 normal-dose CT images of 

256 × 256 pixels per image from 165 patients downloaded from the National Biomedical 

Imaging Archive (NBIA). Different parts of the human body were included for diversity. 

Some typical images are in Fig. 3. The corresponding LDCT images were produced by 

adding Poisson noise into the sinograms simulated from the normal-dose images. With the 

assumed use of a monochromatic source, the projection measurements from a CT scan 

follow the Poisson distribution, which can be expressed as

(6)
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where zi is the measurement along the i -th ray path. li is the line integral of attenuation 

coefficients, bi is the blank scan factor, and ri stands for read-out noise. For the simulation, 

the noise level can be controlled by the blank scan factor bi. In our initial studies, bi was 

uniformly set to 105 photons and denoted as b0 = bi = 105, i = 1, …, I. Siddon’s ray-driven 

method [51] was used to generate the projection data in fan-beam geometry. The source-to-

rotation center distance was 40 cm while the detector-to-rotation center was 40 cm. The 

image region was set to 20 cm × 20 cm. The detector width was 41.3 cm containing 512 

detector elements. There were 1,024 viewing angles uniformly distributed over a full scan 

range.

Since direct processing of an entire CT image is intractable, RED-CNN was applied to 

image patches. Our method benefits from the patch extraction since patch-based processing 

represents the local details required for optimal denoising and the number of samples were 

greatly increased for the training purpose. Deep learning methods require a large amount of 

training samples, but collecting medical images is usually limited by the complicated 

formalities addressing multiple factors such as the patient’s privacy.

In the training step, 200 normal-dose and corresponding simulated low-dose images were 

randomly selected as the training set. Also, 100 image pairs were randomly selected as the 

testing set. Images from the patients in the training set were not in the testing set.

2) Clinical Data—To validate the clinical performance of RED-CNN, a real clinical 

database was used, which was authorized by Mayo Clinics for “the 2016 NIH-AAPM-Mayo 
Clinic Low Dose CT Grand Challenge”. The dataset contained 2,378 3mm thickness full and 

quarter dose 512 × 512 CT images from 10 patients [37]. The network was trained with a 

subset of full dose and quarter dose image pairs. The rest of the image pairs were 

respectively used as the testing set and the gold standard. For fairness, cross-validation was 

utilized in the testing phase. While testing on CT images from each patient, the images from 

the other 9 patients were involved in the training phase.

There are three reasons why we used both simulated and clinical data. First, the database 

from NBIA is more diverse than that at Mayo. It includes more body parts than the database 

at Mayo, and therefore more realistically reflects clinical imaging applications. Second, 

different from the clinical dataset, which has both full-dose datasets and their corresponding 

quarter-dose counterparts, the low-dose images from NBIA were simulated by adding 

Poisson noise into the simulated sinograms. By doing so, we can control the noise levels of 

the data to simulate different doses, and we can evaluate the robustness of our method as 

described in III D (5). Third, the experiments on simulated data were focused on the 

improvement of image quality with our model while the experiments with clinical data 

targeted clinical tasks, such as low contrast lesion detection.

B. Parameter Selection

The patch size η was set to 55 × 55 with the sliding interval of 4 pixels. After the patch 

extraction, the number of training patch pairs reached 106. Furthermore, three kinds of 

transformation operations, including rotation (by 45 degrees), flipping (vertical and 

horizontal) and scaling (scale factors were 2 and 0.5), were used for data augmentation. The 
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network was implemented in Caffe. In our experiments, we evaluated several parameter 

combinations and finalized the parameter settings as follows. The base learning rate was set 

to 10−4, and slowly decreased down to 10−5. The convolution and deconvolution kernels 

were initialized with random Gaussian distributions with zero mean and standard deviation 

0.01. The filter number of last layer was set to 1 and the others were set to 96. The kernel 

size of all layers was set to 5 × 5. The strides of convolution and deconvolution were set to 1 

with no padding. All the experiments were performed with MATLAB 2015b on a PC (Intel 

i7 6700K CPU and 16 GB RAM). The training stage is time-consuming for traditional CPU 

implementation. A common way for acceleration is to work in a parallel manner. In our 

work, the training of RED-CNN was performed on a graphic processing unit card (GTX 

1080). Although the training was done on patches, the proposed network can process images 

of arbitrary sizes. All the testing images were simply fed into the network, without 

decomposition.

The three metrics, including the root mean square error (RMSE), peak signal to noise ratio 

(PSNR) and structural similarity index measure (SSIM), were chosen for quantitative 

assessment of image quality.

Five different state-of-the-art methods were compared against our RED-CNN, including TV-

POCS [6], K-SVD [18], BM3D [20], CNN10 [37], and KAIST-Net [38]. Dictionary learning 

and BM3D are two most popular image-based denoising methods already applied for LDCT. 

ASD-POCS is a widely used iterative reconstruction method under the TV regularization. 

CNN10 is a simplified version of the proposed RED-CNN without shortcuts and 

deconvolutional layers. It also can be viewed as a deeper version of the CNN-based LDCT 

restoration model [37]. KAIST-Net is the most recently proposed CNN-based LDCT 

denoising method. It can be considered as a deepened variant of the lightweight CNN model 

[37]. The parameters of these competing methods were set per the suggestions from the 

original papers.

C. Experimental Results

1) Simulated Data—Two representative slices from the testing dataset were used to 

demonstrate the performance of RED-CNN, which are through the chest and abdominal 

regions respectively. It can be seen that the normal-dose images from different scan 

protocols contained different noise levels. Fig. 4 shows our results from the chest image. In 

Fig. 4(b), there was high image noise and streaking artifacts adjacent to structures with high 

attenuation coefficients such as bones. All applied methods suppressed image noise to 

various degrees. However, in Fig. 4(c), TV-POCS suffered from a blocky effect and also 

smoothened some important small structures in the lungs. K-SVD and BM3D preserved 

more details than TV-POCS, but there were artifacts near the bones. CNN10, KAIST-Net 

and RED-CNN eliminated most image noise and artifacts while preserving the structural 

features better than the other methods. Furthermore, RED-CNN discriminated low contrast 

regions in the best way. Fig. 5 shows the zoomed images over a region of interest (ROI). 

Clearly, the blood vessels in the lungs, highlighted by the blue arrow, were smoothened by 

TV-POCS in Fig. 5(c). The other methods could identify these details to different extents, 

and the details were retained without blurring in Fig. 5(h). Meanwhile, in Fig. 5(d) and (e) 
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the streaking artifacts were evident near the bone, marked by the red arrow. To further show 

the merits of RED-CNN, the absolute difference images relative to the original image are in 

Fig. 6. It can be clearly observed that RED-CNN yielded the smallest difference from the 

original normal-dose image, preserving all details and suppressing most noise and artifacts.

For quantitative evaluation, four ROIs were chosen as highlighted by red dotted boxes in 

Fig. 4(a). The results are in Fig. 7. The quantitative results followed similar trends per visual 

inspection. The RED-CNN had the lowest RMSE and the highest PSNR/SSIM for all the 

ROIs.

Fig. 8 presents the results from the abdominal image. Since the image quality of the original 

normal-dose image (Fig. 8(a)) is worse than the chest image (Fig. 4(a)), the simulated LDCT 

image suffered from severe deterioration and many structures cannot be distinguished in Fig. 

8(b). TV-POCS and K-SVD cannot recover the image well. The blocky effect appeared in 

Fig. 8(c). BM3D eliminated most noise but the artifacts close to the spine were evident. 

CNN10, KAIST-Net and RED-CNN suppressed most of the noise and artifacts but the result 

in Fig. 9(f) and (g) suffered a bit from over-smoothing, which is consistent to the previous 

results with a lightweight CNN as reported in [37]. The red arrows indicate several 

noticeable structural differences between different methods. The linear high attenuation 

structure in the liver likely representing a contrast enhanced blood vessel was best retained 

by RED-CNN in Fig. 9. The low attenuation pseudo lesions noted in the posterior aspect of 

the liver on other techniques were not seen on RED-CNN. The thin and subtle right adrenal 

gland was best appreciated on the RED-CNN image as well. Finally, margins of different 

tissues were also better delineated and retained on the RED-CNN image.

The quantitative results for the whole images restored using these methods are listed in 

Table I. It can be seen that RED-CNN obtained the best scores on all the indexes.

Table II gives the mean measurements for all the 100 images from the testing dataset. Again, 

it can be seen that the proposed RED-CNN outperformed the state-of-the-art methods in 

terms of each of the metrics.

2) Clinical Data—Two representative slices from real clinical CT scans were chosen to 

evaluate the performance of the proposed RED-CNN. The results are in Figs. 10–13. In Figs. 

10 and 12, it is clear that RED-CNN delivered the best performance in terms of both noise 

suppression and structure preservation. In the zoomed parts in Figs. 11 and 13, the low-

contrast liver lesions highlighted by the red circles were processed using our and others’ 

methods, and our proposed method gave the best image quality. TV-POCS and K-SVD 

generated some artifacts and lowered the detectability of lesions. BM3D blurred the low-

contrast lesions. All the methods except KAIST-Net and RED-CNN could not distinguish 

the contrast enhanced blood vessel marked by the red arrow in Fig. 11. Although KAIST-Net 

had a performance similar to that of our method, KAIST-Net smoothened the low contrast 

lesions in Fig. 11(g) while our RED-CNN preserved the edges very well in Fig. 11(h). 

Meanwhile, two tiny focal low attenuation lesions were hard to detect in Fig. 12(f) and (g) 

but they can be noticed in Fig. 12(h).
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Table III summarizes the quantitative results from the aforementioned two images. RED-

CNN gave better performance in terms of most of the metrics than the other methods. Table 

IV shows the quantitative results on the full cross validation in terms of means ± SDs 

(average scores ± standard deviations). All our visual observations are supported by the 

quantitative evaluation as shown in Table IV.

For qualitative evaluation, 10 LDCT images with lesions and the processed images using 

different methods were selected for a reader study. Artifact reduction, noise suppression, 

contrast retention, lesion discrimination, and overall quality were used as subjective 

indicators on the five-point scale (1 = unacceptable and 5 = excellent). Two radiologists (R1 

and R2) with 6 and 8 years of clinical experience respectively evaluated these images 

independently to provide their scores. The NDCT images were used as the gold standard. 

For each set of images, the scores were reported as means ± SDs (average scores of the two 

radiologists ± standard deviations). The student t-test with p < 0.05 was performed. The 

statistical results are in Table V. For all the five indicators, the LDCT images had the lowest 

scores due to their severe image quality degradation. All the LDCT methods significantly 

improved the scores. KAIST-Net and RED-CNN produced substantially higher scores than 

the other methods, and RED-CNN performed slightly better than KAIST-Net and ran 

significantly faster than KAIST-Net in both the training and testing processes.

D. Model and Performance Trade-Offs

In this subsection, several critical factors of the proposed RED-CNN were examined, 

including deconvolutional decoder, shortcut connection, number of the layers, patch size and 

robustness with respect to the training and testing datasets. Computational costs were also 

discussed. The data used to plot the curves in the following sections were randomly selected 

from the NBIA dataset (average values from 40 images).

1) Deconvolutional Decoder—Different from the traditional convolutional layers, 

deconvolutional layers, also referred to as learnable up-sampling layers, can produce 

multiple outputs with a single input. This architecture has been successful in sematic 

segmentation coupled with convolutional layers [45–49]. With traditional fully-connected 

CNNs [27, 28, 37], some important details could be lost in the convolution. That is why the 

number of layers of these CNNs are usually less than 5, for low-level tasks, such as 

denoising, deblurring and super resolution [24–30]. In our proposed model, we have 

balanced the conventional CNN layers with an equal number of deconvolutional layers, 

forming the network capable of bringing the details back to the image of the original size. In 

our network, pooling and unpooling operations are avoided to keep structural information in 

the images. We assessed the performance of the networks with and without deconvolutional 

layers as shown in Fig. 14. It can be seen that our model with the deconvolution mechanism 

performed better than the fully-convolutional counterpart.

2) Shortcut Connection—Shortcut connection is another trick we used to improve the 

structural preservation. It has been proven useful in the both high- and low-level tasks, such 

as image recognition [40, 41, 47–49] and image restoration [31]. We evaluated the impact of 
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shortcuts in the proposed RED-CNN. The results are in Fig. 15. The model with shortcuts 

produced better PSNR and RMSE values and converged more rapidly.

subsubsectionNumber of Layers Recent studies suggested that deeper network architectures, 

especially CNN-based models, produced better performance for image recognition [41, 42]. 

Here we investigated the trade-off between performance and the number of layers by testing 

the use of 10, 20 and 30 layers. The quantitative results are in Fig. 16. It can be seen that the 

differences were not easily noticeable. This observation is consistent to the statement in [28, 

31] that deeper networks do not always result in better performance in low-level image 

processing tasks. Although the utilization of shortcut connections enables much more layers 

than the preliminary explorations [28, 37], it seems that the enhanced performance by 

adding more layers is limited, and better understanding for training dynamics of deep 

networks may help overcome this bottleneck.

3) Patch Size—For CNN-based image restoration [24, 28, 31], in the training stage image 

patch pairs were used, and in the testing stage the whole images were directly fed into the 

trained network. Training with patches can enhance the detectability of perceptual 

differences of local regions, and the amount of samples are significantly boosted. Once the 

filters in each layer are trained well, due to the property of convolution operators, there is no 

difference between different patch sizes with which the network is fed. Here we tried to 

sense the impact with different training patch sizes. The result is in Fig. 17. We increased the 

patch size from 55 to 100 and there was no significant difference shown up. Based on this 

observation, in our experiments we fixed the patch size to 55 × 55 for better trade-off 

between training time and imaging performance.

4) Performance Robustness—In our experiments, the noise level was fixed, and the 

corresponding network was trained under the assumption of a uniform noise level. In 

practice, it is impossible to train with different parameter sets subject to different noise 

levels. Since the IR methods usually have several parameters, it is inconvenient to explore 

the possible parameter space for optimal image quality. We believe that the proposed RED-

CNN model is robust for different noise levels. To show the robustness of RED-CNN, 

several combinations of noise levels in the training and testing datasets were simulated to 

generate the quantitative results in Table VI. In this table, the training dataset of CNN10, 

KAIST-Net and RED-CNN were made for b0 = 105. CNN10+, KAIST-Net+ and RED-CNN

+ denote the same networks as CNN10, KAIST-Net and RED-CNN with randomly mixed 

training data at different noise levels for b0 = 105, b0 = 5 × 105 and b0 = 5 × 104. It is clear 

that RED-CNN+ obtained the best performance in most of the situations, which means that 

if an accurate noise level cannot be determined, a good solution is to train the network with 

mixed data at possible noise levels. In the column ‘RED-CNN’, it is seen that even if 

training is done with a single noise level, RED-CNN is still competitive in handling the 

cases of inconsistent noisy data.

5) Computational Cost—The computational cost is another advantage of deep learning. 

Although the training is time-consuming, it can be improved with GPU. For the dataset 

involved in our experiments, training took about 4 hours for about 106 patches and 12 hours 

for about 107 patches. CNN10 has the same number of layers as that of RED-CNN, but 
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without the shortcut, it took more time in training. It ran 6 hours for about 106 patches and 

15 hours for about 107 patches. KAIST-Net has a complex architecture with 26 layers and 15 

channel inputs, and as a result the training time was much longer (also implemented in 

Caffe). For 106 and 107 patches, it took 12 hours and 30 hours respectively. The other 

methods, especially for iterative reconstruction, do not need a training process, but the 

execution time is much longer than CNN10, KAIST-Net and RED-CNN. In this study, the 

average execution times for ASD-POCS, K-SVD, BM3D, CNN10, KAIST-Net and RED-

CNN are 21.36, 38.45, 4.22, 3.22, 30.22 and 3.68 seconds respectively. Actually, after the 

network is trained offline, the proposed model is much more efficient than any other 

methods in terms of execution time.

IV. Conclusion

In brief, we have designed a symmetrical convolutional and deconvolutional neural network, 

aided by shortcut connections. Two well-known databases have been utilized to evaluate and 

validate the performance of our proposed RED-CNN in comparison with the state of the art 

methods. The simulated and clinical results have demonstrated a great potential of deep 

learning for noise suppression, structural preservation, and lesion detection at a high 

computational speed. In the future, we plan to optimize RED-CNN, extend it to higher 

dimensional cases such as 3D reconstruction, dynamic/spectral CT reconstruction, and adapt 

the ideas to other imaging tasks or even other imaging modalities.
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Fig. 1. 
Overall architecture of our proposed RED-CNN network.

Chen et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Shortcut in the residual compensation structure.
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Fig. 3. 
Examples from the normal-dose CT image dataset.
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Fig. 4. 
Results from the chest image for comparison. (a) NDCT, (b) LDCT, (c) TV-POCS, (d) K-

SVD, (e) BM3D, (f) CNN10, (g) KAIST-Net, and (h) RED-CNN. The blue box indicates the 

region zoomed in Fig. 5. The red dotted boxes define several ROIs.
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Fig. 5. 
Zoomed parts over the region of interest (ROI) marked by the blue box in Fig. 4(a). (a) 

NDCT, (b) LDCT, (c) TV-POCS, (d) K-SVD, (e) BM3D, (f) CNN10, (g) KAIST-Net, and 

(h) RED-CNN ((a)–(h) from Fig. 4(a)–(h)). The arrows indicate two regions for visual 

differences.
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Fig. 6. 
Absolute difference images relative to the NDCT image. (a) LDCT, (b) TV-POCS, (c) K-

SVD, (d) BM3D, (e) CNN10, (f) KAIST-Net, and (g) RED-CNN.
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Fig. 7. 
Performance comparison of the six algorithms over the ROIs marked in Fig. 4(a) in terms of 

the selected metrics.
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Fig. 8. 
Results from the abdominal image for comparison. (a) NDCT, (b) LDCT, (c) TV-POCS, (d) 

K-SVD, (e) BM3D, (f) CNN10, (g) KAIST-Net, and (h) RED-CNN. The arrows indicate 

three regions to observe the visual effects.
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Fig. 9. 
Zoomed ROI images from Fig. 8. (a) NDCT, (b) LDCT, (c) TV-POCS, (d) K-SVD, (e) 

BM3D, (f) CNN10, (g) KAIST-Net, and (h) RED-CNN ((a)–(h) from Fig. 8(a)–(h)). The 

arrows indicate two regions containing features revealed differently by the competing 

algorithms.
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Fig. 10. 
Results from the abdominal image with a metastasis in the liver for comparison. (a) NDCT, 

(b) LDCT, (c) TV-POCS; (d) K-SVD, (e) BM3D, (f) CNN10, (g) KAIST-Net, and (h) RED-

CNN.
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Fig. 11. 
Zoomed parts from Fig. 10. (a) NDCT, (b) LDCT, (c) TV-POCS, (d) K-SVD, (e) BM3D, (f) 

CNN10, (g) KAIST-Net, and (h) RED-CNN. The circle indicates the lesion while the arrow 

points to the contrast enhanced blood vessel.
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Fig. 12. 
Results from the abdominal image with two focal fatty sparings in the liver for comparison. 

(a) NDCT, (b) LDCT, (c) TV-POCS, (d) K-SVD, (e) BM3D, (f) CNN10, (g) KAIST-Net, 

and (h) RED-CNN.
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Fig. 13. 
Zoomed parts from Fig. 12. (a) NDCT, (b) LDCT, (c) TV-POCS, (d) K-SVD, (e) BM3D, (f) 

CNN10, (g) KAIST-Net, and (h) RED-CNN.
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Fig. 14. 
PSNR and RMSE values on the testing dataset during training. Our network exhibits a better 

performance than CNN10. The display ranges of PSNR and RMSE are [20 45] and [0 0.04] 

respectively.
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Fig. 15. 
PSNR and RMSE values on the testing dataset during training. Our network with shortcut 

connections exhibits a better performance than the one without shortcuts. The display ranges 

of PSNR and RMSE are [20 45] and [0 0.04] respectively.
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Fig. 16. 
PSNR and RMSE values on the testing dataset during training based on different numbers of 

layers. The display ranges of PSNR and RMSE are [40 44] and [0.006 0.013] respectively.
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Fig. 17. 
PSNR and RMSE values on the testing dataset during training based on different patch sizes. 

The display ranges of PSNR and RMSE are [40 44] and [0.006 0.013] respectively.
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TABLE I

Quantitative Results Associated With Different Algorithms for the Abdominial Image.

PNSR RMSE SSIM

LDCT 34.3094 0.0193 0.8276

TV-POCS 37.5485 0.0133 0.8825

K-SVD 38.3841 0.0120 0.9226

BM3D 38.9903 0.0112 0.9295

CNN10 38.9907 0.0104 0.9288

KAIST-Net 38.9908 0.0102 0.9283

RED-CNN 39.1959 0.0097 0.9339

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 34

TABLE II

Quantitative Results (Mean±SDs) Associated With Different Algorithms for the Images in the Testing Dataset

PNSR RMSE SSIM

LDCT 36.3975±5.24 0.0158±0.0062 0.8644±0.0754

TV-POCS 41.5021±2.11 0.0087±0.0010 0.9498±0.0126

K-SVD 40.8445±2.54 0.0096±0.0013 0.9447±0.0168

BM3D 41.5358±2.09 0.0088±0.0010 0.9509±0.0127

CNN10 41.9892±2.10 0.0082±0.0011 0.9658±0.0129

KAIST-Net 42.2746±2.05 0.0078±0.0009 0.9688±0.0098

RED-CNN 43.7871±2.01 0.0069±0.0007 0.9754±0.0086
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TABLE IV

Quantitative Results (Mean±SDs) Associated With Different Algorithms on the Full Cross Validation

PNSR RMSE SSIM

LDCT 39.4314±1.5206 0.0109±0.0021 0.9122±0.0280

TV-POCS 41.7496±1.1522 0.0083±0.0012 0.9535±0.0143

K-SVD 42.7203±1.4260 0.0074±0.0014 0.9531±0.0167

BM3D 42.7661±1.0471 0.0073±0.0009 0.9563±0.0125

CNN10 43.6561±1.1323 0.0066±0.0009 0.9664±0.0100

KAIST-Net 43.9668±1.2169 0.0064±0.0009 0.9688±0.0110

RED-CNN 44.4187±1.2118 0.0060±0.0009 0.9705±0.0087
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