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Key Points

•CHL broadly expresses
the PD-1/PD-L1 path-
way, but EBV1 CHL
displays a Th1 profile,
whereas EBV2 tumors
have a pathogenic
Th17 profile.

• These findings support
further studies to define
the role of the IL-23/IL-
17 axis in CHL
response/resistance to
anti-PD-1 therapy.

Classical Hodgkin lymphoma (CHL) is a neoplasm characterized by robust inflammatory

infiltrates and heightened expression of the immunosuppressive PD-1/PD-L1 pathway.

Although anti-PD-1 therapy can be effective in .60% of patients with refractory CHL,

improved treatment options are needed for CHLs which are resistant to anti-PD-1 or relapse

after this form of immunotherapy. A deeper understanding of immunologic factors in the

CHL microenvironment might support the design of more effective treatment combinations

based on anti-PD-1. In addition, because the Epstein-Barr virus (EBV) residing in some CHL

tumors is strongly immunogenic, we hypothesized that characteristics of the tumor immune

microenvironment in EBV1 CHL would be distinct from EBV2 CHL, with specific

implications for designing combination treatment regimens. Employing immunohisto-

chemistry for immune cell subsets and checkpoint molecules, as well as gene expression

profiling, we characterized 32 CHLs from the Johns Hopkins archives, including 12 EBV1 and

20 EBV2 tumors. Our results revealed a dichotomous cellular and cytokine immune milieu

in EBV1 vs EBV2 CHL. EBV1 tumors displayed a T helper 1 (Th1) profile typical of effective

antitumor immunity, with increased infiltration of CD81 T cells and coordinate expression

of the canonical Th1 transcription factor Tbet (TBX21), interferon-g (IFNG), and the IFN-g–

inducible immunosuppressive enzyme indoleamine 2,3-dioxygenase. In contrast, EBV2

tumors manifested a pathogenic Th17 profile and ongoing engagement of the interleukin-23

(IL-23)/IL-17 axis, with heightened phosphorylated signal transducer and activator of

transcription 3 expression in infiltrating lymphocytes. These findings suggest that drugs

blocking the IL-23/IL-17 axis, which are already in the clinic for treating certain autoimmune

disorders, may enhance the therapeutic impact of anti-PD-1 therapy in EBV2 CHL.

Introduction

The inflammatory component of classical Hodgkin lymphoma (CHL) dominates tumor masses. As a
consequence, for much of the twentieth century, there was no certainty that the inflammatory masses
harbored tumor cells, and clinicians referred to Hodgkin “disease” rather than lymphoma. Ultimately, it
became clear that clonal tumor cells of B-cell lineage (Hodgkin/Reed-Sternberg cells [HRS]) were
present, and that a variable proportion of cases were associated with Epstein-Barr virus (EBV) in tumor
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cells.1,2 However, the pathogenesis of the inflammatory infiltrate
remained elusive as did the role of the virus.

Primary EBV infection is usually asymptomatic but may be as-
sociated with infectious mononucleosis.3 After infection, a vigorous
immune response typically controls but does not eradicate viral
infection, and the virus persists for the life of the host. In rare
individuals, EBV-associated malignancies develop, and in some
cases, immune dysfunction contributes to the process. For in-
stance, both genetic lesions affecting immune response and certain
immunosuppressants are associated with increased risk of EBV
lymphoproliferative disease.4-6 These EBV-associated hematolym-
phoid tumors often respond to immune interventions such as
adoptive cellular therapy with EBV-specific T cells or withdrawal of
immunosuppressive pharmacologic agents.7

Immune dysfunction as a predisposing factor is poorly defined in
EBV1 tumors not associated with overt systemic immunosuppres-
sion, including CHL, nasopharyngeal carcinoma, and gastric
carcinoma.8 EBV1 HRS cells in CHL express EBV-associated
proteins that are also expressed in the course of primary EBV
infection, including Epstein-Barr virus nuclear antigen-1, latency
membrane protein 1, and latency membrane protein 2.9-11

Immunohistochemistry (IHC) shows high-level expression of
major histocompatibility complex class I molecules by the tumor cells
of EBV-associated CHL vs either low-level or absent expression of
major histocompatibility complex class I molecules on tumor cells
of EBV-negative tumors.11 Because the inflammatory infiltrate in both
EBV-associated and EBV-negative CHL is rich in CD41 and CD81

T cells,12 and commonly recognized epitopes in some of the proteins
expressed in EBV infection are not mutated when expressed in EBV-
associated tumors, it would appear that EBV-associated tumor cells
should be readily cleared by the host. However, T-cell function in
these tumors appears inhibited, consistent with the demonstration
that CHL is exquisitely sensitive to drugs that inhibit the immune
checkpoint receptor anti-PD-1.13-16 In addition, the remarkable
response rate of CHL to anti-PD-1 has led to an appreciation that
copy number alterations in PD-L1 and PD-L2 are a defining feature of
CHL without regard to EBV association.13,15,17

In this study, we sought to further characterize the expression of
immune checkpoint molecules and the inflammatory milieu in EBV1

and EBV2 CHL, in order to provide a more complete understanding
of CHL biology and to develop more effective treatment strategies
for this neoplasm. We find that the Th profiles are strikingly different,
with EBV1 CHL demonstrating a T helper 1 (Th1) profile, whereas
EBV2CHL has a Th17 profile. The therapeutic implications of these
findings are discussed.

Methods

Patients and tumor specimens

This study was conducted under approval from the Johns Hopkins
Hospital Institutional Review Board in accordance with The
Declaration of Helsinki. The Johns Hopkins Hospital pathology
database was searched to identify patients diagnosed with CHL
at our institution. Clinical history was reviewed, and specimens
from patients with human immunodeficiency virus infection were
excluded. All appropriate specimens with sufficient tissue for
additional immunohistochemical and molecular analyses were
included in this study.

IHC

Immunohistochemical stains were performed on 4- to 5-mm-thick,
formalin-fixed, paraffin-embedded (FFPE) tissue sections, to char-
acterize the tumor immune microenvironment. CD3, CD4, CD8,
CD20, CD68, and FoxP3 IHCs were performed according to
standard automated methods. PD-L1, PD-1, and LAG-3 IHCs were
performed manually, as previously described.18-20 TIM-3, GITR, and
indoleamine 2,3-dioxygenase (IDO) stains were performed using
monoclonal antibody (mAb) clones F38-2E2 (Biolegend 345001),
6G10 (provided by Bristol-Myers Squibb), and V1NC3IDO
(Affymetrix 14-9750-82), respectively. Antigen retrieval for TIM-3
and GITR was performed in a decloaking chamber (Biocare
Medical) at 120°C for 10 minutes, in a pH 6.0 citrate buffer (Dako
S1699). The primary antibodies were applied at concentrations of
1.5 mg/mL and 0.1 mg/mL, respectively, and allowed to incubate at
4°C overnight. The secondary antibodies included an anti-mouse
IgG1-biotin (BD Pharmingen 553441) at 1 mg/mL for the TIM-3
protocol, and a biotinylated rabbit anti-mouse immunoglobulin
(Dako K1500) at ready-to-use concentration for the GITR protocol.
A TSA plus biotin kit (Perkin Elmer NEL749B001KT, 1:50 dilution)
was used to amplify the signal. Amplification was performed for
7 minutes for the TIM-3 protocol and 5 minutes for the GITR protocol.
A 15-minute treatment with streptavidin–horseradish peroxidase
(HRP; Dako P0397) at a dilution of 1:300 followed the amplification
steps, followed by visualization with 3,39‐diaminobenzidine (DAB;
Sigma D4293). A polymer-based IHC method was used for the
detection of IDO. The primary antibody was used at 2 mg/mL and
incubated at 4°C overnight, followed by the application of anti-
mouse-HRP Polymer (VectorLabs MP-7402) for 30 minutes, and
subsequent visualization with DAB. Immunolabeling for phosphor-
ylated signal transducer and activator of transcription 3 (pSTAT3)
was performed as follows. Briefly, after dewaxing in xylene and
rehydration through a graded ethanol series, slides were immersed
in 1% Tween 20 for 1 minute; then, heat‐induced antigen retrieval
was performed in a steamer using a commercial Target Retrieval
Solution (Dako S170084-2) for 45 minutes. Slides were rinsed in
phosphate-buffered saline with Tween 20, and endogenous perox-
idase and phosphatase were blocked (Dako S2003). Sections
were then incubated with primary anti-pSTAT3 rabbit mAb (1:25
dilution; Cell Signaling 9145) for 16 hours at 4°C. The primary Ab
was detected by 30-minute incubation with HRP-labeled secondary
Ab (Leica Microsystems PV6119), followed by detection with DAB
(Sigma‐Aldrich D4293), counterstaining with Harris hematoxylin,
rehydration, and coverslip mounting. For diagnostic purposes, a
CD30 IHC stain was performed (Ventana, Tucson, AZ 790-2926),
and EBV-encoded RNA (EBER) in HRS tumor cells was detected
with an in situ hybridization (ISH) probe against EBER (Ventana
760-1209 DNP Probe).

All IHC stains were independently quantified 3 times, with the
reader blinded to previous estimates and to the EBV status of
the specimen. The slides were scored by A.S.D., with R.A.A. confirming
at least 30% of the cases for each antibody, including a review of
discrepant cases. The percentages of CD68, FoxP3, PD-1, LAG-3,
TIM-3, GITR, and IDO-positive cells in relation to overall cellularity
were determined.21 The percentages were recorded as 0%, 1%,
5%, and then in increments of 10%; the final score was reported as
an average of 3 independent scores. Areas of adjacent tissue not
involved by tumor as well as areas of sclerosis or necrosis were
excluded. To determine the CD20:CD3 and CD4:CD8 ratios, all
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areas involved by tumor, including any admixed lymphoid follicles,
were included. pSTAT3 expression was quantified as the percent of
either HRS tumor cells or infiltrating lymphocytes with positive
nuclear staining. Statistical comparisons between the EBV1 and

EBV2 groups were conducted with a 2-sided Wilcoxon rank sum
test using the wilcox_test function in the R “coin” package, with
distribution set to “exact,” except for pSTAT3 staining, which was
evaluated with a 1-sided test aimed at confirming the Th17 cytokine
profile observed in EBV2 tumors with quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR) testing.

qRT-PCR

Areas of tumor were identified with hematoxylin and eosin staining
on neighboring tissue sections in FFPE specimens derived from
21 patients with CHL, including EBV1 (n 5 8) and EBV2 (n 5 13)
cases. Tissue was macrodissected by scalpel from 5-mm sections,
as described.22 RNA was isolated with the High Pure RNA
Paraffin Kit (Roche, Indianapolis, IN), as described.22,23 Seventy-
five nanograms of total RNA was reverse transcribed in a 10-mL
reaction volume using qScript cDNA SuperMix (Quanta Biosci-
ences, Gaithersburg, MD) per protocol. From each RT reaction,
7.5 mL was preamplified in a total volume of 30 mL using a
14-cycle PCR reaction per PreAmp protocol (Applied Biosystems,
Foster City, CA). Fourteen microliters of each preamplification
reaction was expanded into a 440-mL total volume reaction mix
and added to TaqMan Array Micro Fluidic Cards per protocol
(Applied Biosystems) containing triplicate wells for each of
60 candidate immune genes of interest and 4 endogenous control
genes, as previously detailed.19 Subsequently, FFPE tumor spec-
imens were analyzed for the expression of 6 candidate genes
involved in Th17 and IL-23 pathways, includingCD5L,CSF2, EBI3,
IL27p28, PRDM1, and RORC. PCR was conducted for 40 cycles.
Results were analyzed using the 22DDCt method24 with the Welch
t test and visualized with TIBCOSpotfire Software (Somerville, MA).
Undetermined Ct values were assigned a value of 40 for purpose of
analysis. Statistical comparisons between the EBV1 and EBV2

groups were conducted with a 2-sided test, except for subsequent
analysis of the 6 Th17-involved genes, which was conducted with
a 1-sided test based on the prior findings that EBV2 tumors displayed
a Th17 gene expression profile.

Cytokine-induced PD-L1 expression on human

immune cells

Peripheral blood mononuclear cells (PBMCs) from normal donors
were used to generate immune cell subpopulations, as follows.
Monocytes were enriched by negative selection with the Pan
Monocyte Isolation Kit (Miltenyi Biotec, San Diego, CA) and were
confirmed to be .85% pure by flow cytometry for CD141 cells.
Dendritic cells (DCs) were generated from enriched monocytes by
a 3-day culture in 100 U/mL IL-4 and granulocyte-macrophage
colony-stimulating factor 200 U/mL. T cells were enriched from
PBMCs by negative selection with the Pan T Cell Isolation Kit
(Miltenyi) and were confirmed to be .90% pure by flow cytometry
for CD31 cells. T cells were activated by culturing with a com-
bination of plate-bound anti-CD3 (clone OKT3; ATCC, Manassas,
VA) and soluble anti-CD28 (clone 28.2; BD Bioscience, San Jose,
CA), each at 0.2 mg/mL, for 2 days. B cells were enriched from
PBMCs by negative selection (Miltenyi kit); in some experiments,
B cells were activated by culturing PBMCs with 200 U/mL IL-4 for
7 days prior to negative selection. EBV-transformed immortal B-cell
lines were maintained in suspension culture in RPMI 1640 medium
containing 10% fetal calf serum and antibiotics.

Table 1. Patients and tumor specimens

Patient and

specimen ID* Patient age (y)† Sex Clinical stage‡ Histologic subtype

CHL, EBV
2

CHL-1§ 34 M IVB NS

CHL-2§ 9 M IIIB NS

CHL-3§ 22 F IIB NS

CHL-4 19 M IIIBX NS

CHL-5§ 47 F IVA NS

CHL-6 60 F IVA NS

CHL-7§ 60 F IIIB NS

CHL-8§ 13 F IVB NS

CHL-9 16 M IIB NS

CHL-10§ 15 M IIIA NS

CHL-11 41 M IIB NS

CHL-12§ 19 M IIIB NS

CHL-13§ 14 M IIIAS NS

CHL-14 36 F IIA NS

CHL-15§ 16 F IA NS

CHL-16§ 12 M IIA NS

CHL-17 12 M IVA NS

CHL-18 50 M IIA NS

CHL-19§ 24 M IIIA NS

CHL-20§ 10 F IIIB NS

CHL, EBV1

CHL-21§ 33 F IVB NS

CHL-22§ 66 F IA NS

CHL-23§ 22 M IA NS

CHL-24§ 10 M IIB NS

CHL-25§ 26 F IA MC

CHL-26§ 25 M IVB MC

CHL-27 55 M IVB Interfollicular

CHL-28 19 M IIA Interfollicular

CHL-29§ 21 F IIA NS

CHL-30 39 M IA MC, recurrent‖

CHL-31 52 M IIIB NS, recurrent{
CHL-32§ 38 M IIA NS, recurrent#

F, female; M, male; MC, mixed cellularity; NS, nodular sclerosis.
*Tumor biopsies were obtained prior to therapy, with the exception of CHL-30, -31, and -32,

which were derived from recurrent tumors. All specimens were evaluated with IHC and
EBER ISH.
†Age at time of biopsy.
‡According to the modified Ann Arbor staging system.46

§Gene expression assessed with qRT-PCR, in 21 specimens from which sufficient material
was available.
‖Recurrent tumor, biopsy obtained 5.5 y after completing multidrug chemotherapy plus

radiation therapy.
{Recurrent tumor, biopsy obtained 1.7 y after completing combination chemotherapy,

rituximab, and tumor vaccine.
#Recurrent tumor, biopsy obtained 15 years after completing primary radiation therapy.
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To assess the effects of various cytokines on PD-L1 protein ex-
pression on the surface of immune cells, cells were cultured in the
presence of IL-1a (10 ng/mL), IL-17A (50 ng/mL), IL-23 (50 ng/mL),
or IL-27 (50 ng/mL), with or without IFN-g (50 or 100 U/mL), for
2 days. Recombinant cytokines were purchased from R&D Systems
(Minneapolis, MN). Flow cytometry was used to detect cell-surface
expression of PD-L1 (mAb MIH1; eBioscience, San Diego, CA) and
CD86, with or without cytokine exposure. Gating was performed on
CD141 cells for monocytes, CD11c1 cells for DCs, CD31 cells for
T cells, and CD191 cells for B cells. Data were acquired on the BD
FACSCalibur and analyzed with FlowJo software (v10.2; Treestar,
Ashland, OR).

Results

Patient and specimen characteristics

By searching the Johns Hopkins Hospital pathology archives from
2008 to 2014, ;400 cases of CHL were identified. Approximately
95 cases were diagnosed on excisional biopsy. After review of the
diagnostic material and elimination of specimens from HIV-positive
patients, 20 EBV2 and 12 EBV1 CHLs having sufficient FFPE
material for further study were identified (Table 1).

Immune cell subsets and expression of immune

regulatory pathways in EBV1 vs EBV2 CHL

Initially, to characterize the tumor immune microenvironment in
EBV1 compared with EBV2 CHL, IHC for immune cell subsets and
select immune-modulatory molecules was performed (Figures 1
and 2). In general, CHL specimens contained robust immune cell
infiltrates. However, EBV1 CHL was associated with a higher pro-
portion of CD201 B cells compared with CD31 T cells (P 5 .051),
and among the CD31 cells, CD81 cytolytic T cells predominated
in EBV1 tumors (P 5 .006). The IFN-g–inducible enzyme IDO

produced in macrophages, which mediates immunosuppression
locally in the tumor microenvironment (TME), was more highly ex-
pressed in EBV1 specimens (P 5 .0004). These findings sug-
gested that EBV1 tumors contained a Th1 cytokine milieu, which
was further explored with gene expression profiling as described
below. PD-L1 was abundantly expressed by HRS tumor cells as well
as infiltrating immune cells in both EBV1 and EBV2 CHL and could
not be reliably quantified (Figures 2A-B). Furthermore, we did not
observe significant differences in the expression of CD68 (macro-
phages), FoxP3 (regulatory T cells), or the immune checkpoint
receptors PD-1, LAG-3, and TIM-3 between the 2 groups of CHL
specimens. However, the T-cell costimulatory receptor glucocorticoid–
induced TNFR-related protein (GITR) was significantly overex-
pressed in EBV2 CHL (P 5 .005) and was found in distinct and
diverse patterns, which included immune cell and HRS cell ex-
pression (Figure 3). A potential functional role for GITR expressed
on HRS cells is unknown.

Distinct gene expression profiles associated with

EBV1 vs EBV2 CHL

EBV1 CHLs were compared with EBV2 CHLs for the expression of
genes involved in innate and adaptive immunity and in checkpoint
pathways, employing a multiplex array of 60 candidate genes as
previously described.19Among them, 10 genes were found to be
differentially expressed (fold change magnitude $1.7 and P value
#.10) when normalized to either PTPRC (CD45, pan leukocyte
marker) or GUSB (b-glucuronidase) (Figure 4A; supplemental
Table 1). In particular, genes considered to be hallmarks of Th1
immune responses were found to be overexpressed in the EBV1

TME, including IFNG (interferon-g), CD8A (CD8 a chain), TBX21
(T-box transcription factor Tbet regulating IFNG expression), and
LAG3 (coinhibitory receptor on activated T cells). There was also a
trend toward overexpression of PRF1, encoding the cytolytic
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Figure 1. Immune cell subsets and expression of immunoregulatory molecules in EBV1 compared with EBV2CHL specimens. Markers were detected by IHC

and quantified as detailed in “Methods.” Diamond symbols indicate average values for triplicate scores for an individual tumor specimen (see “Methods”). Bars indicate

mean values and standard error of the mean. P values from the Wilcoxon rank sum test were ..1 unless indicated.
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effector molecule perforin 1, in EBV1 tumors (fold change mag-
nitude 3.4 or 3.0, P 5 .13 or .11, when normalized to PTPRC or
GUSB, respectively). These findings suggested an association
between EBV1 CHL and an inflamed TME characterized by
activated IFN-g–secreting CD81 T cells and were consistent with
IHC results showing an increased proportion of CD81 vs CD41

T cells in EBV1 CHL (Figure 1). Also, consistent with IHC results,
EBV1 tumors overexpressed the IDO1 gene.

In contrast to EBV1 tumors, a gene profile associated with Th17-
mediated immunity was overexpressed in EBV2 CHL. Specifically,
the genes IL17A (interleukin-17A), IL1A (interleukin-1 a), and

IL23R (interleukin-23 receptor) were significantly upregulated.
Because the molecules they encode may be associated with
procarcinogenic Th17 inflammation as well as autoimmunity,25,26

we investigated additional genes associated with Th17/IL-23 axis,
which were not included in our original assessment (Figure 4B;
supplemental Table 2). Among them, CD5L, a metabolic regulator
that restrains pathogenic Th17 cells, and IL27p28, encoding a
subunit of IL-27 that promotes Th1 and inhibits Th17 responses,27

were found to be upregulated in EBV1 tumors. This result was
consistent with the observed upregulation of Th1 markers and
down-modulation of Th17 markers in EBV1 compared with

CD30 EBER

CD68 IDO PD-L1

CD3 CD8 GITR

H&E

CD30 EBER

CD68 IDO PD-L1

CD3 CD8 GITR

H&E

A

B

Figure 2. Inflammatory composition of EBV
1
and EBV

2

CHL. Representative images from (A) EBV1 and (B) EBV2 CHL

(specimens CHL-23 and CHL-12, respectively; see Table 1) are

shown. HRS tumor cells are identified by anti-CD30 IHC and

EBER ISH. A predominance of CD81 T cells and IDO1

histiocytes was observed in EBV1 cases, whereas increased

GITR1 lymphocytes were seen in EBV2 cases. Robust CD31

T-cell infiltrates and PD-L1 expression on HRS cells and

infiltrating immune cells were observed regardless of EBV

status. Slides were imaged on an Olympus BX46 microscope

with an Olympus DP72 camera at 3200 magnification with an

aperture of 0.5, and Olympus cellSens Standard 1.5 image

acquisition software was used. Bar, 50 mm. H&E, hematoxylin

and eosin.
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EBV2CHLs. Thus, the immune TMEs of EBV1 vs EBV2CHLs were
characterized by dichotomous gene expression profiles, illustrating
proinflammatory Th1 vs pathogenic Th17 profiles, respectively.

EBV2 tumors also had increased expression of the gene encoding
IL-13, which is not a Th17 cytokine but rather a prototypical Th2
cytokine, which stimulates antibody-mediated but inhibits CD8-
mediated immunity.28 IL-13 has also been reported to be expressed
by HRS cells and to provide autocrine growth stimulation29; its role
in modulating the character of the TME in general is unclear,
because no other Th2-associated genes were upregulated in either
EBV1 or EBV2 CHL in our study. Markers characteristic of
T follicular helper cells, which have been proposed to underlie the
pathophysiology of some lymphomas, including IL-21, ICOS, and
PD-1,30 were not differentially expressed in EBV1 compared with
EBV2 CHLs.

Effects of Th17-modulating cytokines on PD-L1

protein expression

The CHL specimens in this study displayed robust levels of the
immunosuppressive ligand PD-L1 on HRS tumor cells and/or
infiltrating immune cells, as detected at the protein level with IHC
(Figure 2). Consistent with this observation, gene expres-
sion analysis failed to detect significant differences in CD274
(PD-L1) expression between EBV1 and EBV2 tumors. Furthermore,
although IFN-g, known to be a major driver of PD-L1 expression by
tumor and normal cells, was detected by qRT-PCR in 20 of
21 specimens tested, there was increased expression in EBV1

CHL (Figure 4A; supplemental Table 1). To explore whether other
cytokines detected in EBV1 or EBV2 CHL at the mRNA level could
modulate PD-L1 expression on tumor or immune cells, we exposed
enriched human B cells (fresh, IL-4-activated, or EBV-transformed),
T cells, monocytes, and DCs to recombinant IL-1a, IL-17A, IL-23, or
IL-27 in vitro, in the absence or presence of IFN-g. Cell-surface
PD-L1 expression was then quantified with flow cytometry. As

shown in Figure 5, IL-27 increased PD-L1 expression on mono-
cytes, DCs, and resting or activated T lymphocytes, compared with
cells cultured without cytokines; IFN-g induced PD-L1 on mono-
cytes and DCs as expected (Figures 5A-B), but we found no further
augmentation when IL-27 was combined with IFN-g. The induction
of PD-L1 expression on human monocyte-derived DCs by IL-27 has
been previously reported.31 In contrast, IL-1a specifically increased
PD-L1 expression only on monocytes (Figure 5A); when combined
with IFN-g, IL-1a further augmented PD-L1 expression on mono-
cytes. IL-17A and IL-23 did not appear to influence PD-L1
expression on monocytes, DCs, or T cells in these experiments.
None of the cytokines tested appeared to influence PD-L1 exp-
ression on resting, IL4-activated, or EBV-transformed B cells, which
generally expressed low levels of PD-L1, nor did they affect the
viability or proliferation of these cells over the 2-day incubation
period (data not shown). Taken together, these results suggest that
beyond the known effects of IFN-g in promoting PD-L1 expression
on tumor cells, monocytes, and DCs, additional cytokines cha-
racteristic of EBV1 or EBV2 CHLs, IL-27 and IL-1a, respectively,
can also enhance PD-L1 expression on distinct immune cell
subsets and hence may influence immunosuppression in the
TME.

STAT3 activation in tumor infiltrating lymphocytes

distinguishes EBV2 from EBV1 CHL

Activation of the STAT3 transcription factor has been shown to be
required for generating Th17 responses in murine models of
inflammation and cancer.32,33 Constitutive STAT3 activation has
also been reported in HRS cells, in situ and in culture.13,34 To
investigate whether the upregulated Th17 cytokine profile observed
in EBV2 CHL correlated with STAT3 activation in the lymphocytes
infiltrating these tumors, IHC for pSTAT3 was performed. As
shown in Figure 6, nuclear expression of pSTAT3 was observed in
HRS tumor cells at similar levels in both EBV2 and EBV1 CHL. In

A

C

B

H&E GITR CD3

H&E GITR CD3

H&E GITR CD3

Figure 3. Patterns of GITR expression observed in CHL.

Serial FFPE tumor sections were stained as indicated. (A) Diffuse

GITR expression on infiltrating T lymphocytes (case CHL-2). (B)

Rosettes of GITR1 T cells surrounding HRS tumor cells (case

CHL-19). (C) GITR expression on the plasma membrane of a

subset of the HRS cells (case CHL-7). All cases shown are

EBV2 specimens. Slides were imaged at 3500 magnification

with an aperture of 0.9. Bar, 20 mm.
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contrast, pSTAT3 was significantly overexpressed specifically in
tumor-associated lymphocytes in EBV2 CHL, consistent with the
selective Th17 cytokine profile characterizing these tumors.

Discussion

Because the PD-1/PD-L1 immunosuppressive pathway acts
primarily in peripheral tissues, intratumoral expression of PD-L1
has been investigated as a potential marker predicting the re-
sponsiveness of individual tumors or tumor types to drugs blocking
this pathway.35 Hodgkin lymphomas are known to express PD-L1
constitutively on HRS tumor cells regardless of EBV status. This
phenomenon is driven by chromosome 9 alterations, which induce
JAK/STAT signaling and STAT3 phosphorylation, or by EBV-
encoded gene products in the case of EBV1 CHL.15,36 PD-L1 is
also abundantly expressed on immune cells infiltrating CHL, in-
cluding macrophages, DCs, and lymphocytes, presumably through
cytokine-induced mechanisms.36 These findings provided a strong
rationale to explore anti-PD-1 therapy in refractory CHL, leading to

the demonstration of objective response rates exceeding 60% and
culminating in US Food and Drug Administration approval.13,14

However, some CHLs are resistant to anti-PD-1 monotherapy, or
they relapse after an initial response, raising the question of whether
more effective anti-PD-1-containing treatment combinations could
be rationally devised based on immunologic and gene expression
analyses of the CHL TME.22,37 For example, although the LAG3
gene was overexpressed in EBV1 CHL, every tumor in our study
expressed LAG-3 protein on $1% of cells by IHC (Figure 1),
supporting current clinical testing of the combination of anti-PD-1
and anti-LAG-3 in CHL (NCT02061761). In addition, because
the EBV residing in some CHLs is strongly immunogenic, we
hypothesized that differences in the immune TME of EBV1 vs
EBV2 CHL would have specific implications for designing com-
bination treatment regimens. Our finding that IDO is coexpressed
along with PD-L1 in EBV1 CHL supports the notion that combining
PD-1 pathway blockade with IDO inhibitors may be a particularly
valuable strategy in EBV1 tumors.
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In the current study, we have demonstrated a dichotomous cellular
and cytokine immune milieu in EBV1 vs EBV2 CHL. EBV1 tumors
displayed a Th1 profile, with increased infiltration of CD81 T cells
and coordinate expression of the transcription factor Tbet (TBX21),
which controls IFN-g expression; of IFN-g itself; and of the IFN-g–
inducible immunosuppressive enzyme IDO. The Th1 signature in
EBV-associated CHL confirms a previous report demonstrating
enrichment in genes characteristic of Th1 and antiviral responses.12

In contrast, EBV2 tumors manifested a Th17 profile and engage-
ment of the IL-23/IL-17 axis. Th17-mediated inflammation can be
productive in eliminating pathogens, or can be pathogenic in
autoimmunity and carcinogenesis.38-40 In the current study, EBV2

CHL specimens overexpressed the IL-23 receptor, a required
component for IL-23–driven STAT3 activation in T cells and a
hallmark of the pathogenic Th17 phenotype.27,41 They also over-
expressed genes encoding the proinflammatory cytokines IL-17A
(the canonical Th17 cytokine) and IL-1a. The TNF receptor family
member GITR, which costimulates T effector cells as well as Tregs,
was significantly overexpressed on lymphocytes infiltrating EBV2

CHL, by IHC analysis; interestingly, GITR ligand has been
implicated in promoting Th17-associated autoimmune arthritis.42

In contrast, EBV1 CHL overexpressed CD5L and IL27p28,
principal factors mitigating against IL17-associated pathogenic
inflammation.43 Although larger studies are warranted, these
findings support the notion that the cytokine milieu of EBV1 CHL,
in addition to promoting Th1 responses, actively inhibits Th17
skewing.

Importantly, we found that nuclear expression of pSTAT3 was
significantly increased in lymphocytes infiltrating EBV2 CHL,
confirming sustained intratumoral activation of this key Th17-
associated transcription factor. These findings raise the possibility
that IL-17–driven inflammation, which can be carcinogenic, might
also play a role in tumor maintenance. Indeed, Th17 responses have
been shown to promote cancer growth in some murine models and

are associated with worse prognosis in human colon cancer.44,45 If
so, then blocking IL-17A or IL-23/IL-23R might confer therapeutic
benefit in EBV2 CHL. mAbs blocking IL-17A (secukinumab,
ixekizumab) or IL-23 (ustekinumab) are currently in clinical use for
patients with moderate to severe psoriasis, and additional drugs
blocking the IL-23/IL-17 pathway are in testing for a variety of
autoimmune disorders, including rheumatoid arthritis and Crohn
disease.27,39

Of note, none of the 32 CHL patients whose tumors were charac-
terized in the current study received anti-PD-1 therapy. Therefore,
the preliminary results presented here warrant further investigation
to address potential correlations of tumor response or resistance
with EBV status, and with expression of a pathogenic Th17 profile,
in CHL patients receiving anti-PD-1 monotherapy. If confirmatory,
such studies would support incorporating anti-IL-23/IL-17 drugs
into clinical trials of combination therapy with drugs blocking the
prominently expressed PD-1/PD-L1 pathway in CHL, as a means of
enhancing therapeutic efficacy in EBV2 tumors.
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