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Plants measure day or night lengths to coordinate specific developmental changes with a favorable season. In rice (Oryza
sativa), the reproductive phase is initiated by exposure to short days when expression of HEADING DATE 3a (Hd3a) and RICE
FLOWERING LOCUS T 1 (RFT1) is induced in leaves. The cognate proteins are components of the florigenic signal and move
systemically through the phloem to reach the shoot apical meristem (SAM). In the SAM, they form a transcriptional activation
complex with the bZIP transcription factor OsFD1 to start panicle development. Here, we show that Hd3a and RFT1 can form
transcriptional activation or repression complexes also in leaves and feed back to regulate their own transcription. Activation
complexes depend on OsFD1 to promote flowering. However, additional bZIPs, including Hd3a BINDING REPRESSOR
FACTOR1 (HBF1) and HBF2, form repressor complexes that reduce Hd3a and RFT1 expression to delay flowering. We
propose that Hd3a and RFT1 are also active locally in leaves to fine-tune photoperiodic flowering responses.

INTRODUCTION

The floral transition sets the beginning of the reproductive phase
and is completed upon switching of the shoot apical meristem
(SAM) from indeterminate vegetative to determinate reproductive
growth. In many plant species, these changes are triggered
by daylength (or photoperiod), which is measured in leaves to
synchronize inflorescence development with the most favorable
seasons. This signaling mechanism requires systemic commu-
nication signals that integrate environmental inputs and connect
distant tissues of the plant.

Rice (Oryza sativa) preferentially flowers under short days (SDs).
When daylength falls under a critical threshold, proteins encoded
by theHEADINGDATE 3a (Hd3a) andRICE FLOWERING LOCUS
T 1 (RFT1) loci are produced in leaves and delivered through
the phloem to the SAM, where they induce developmental re-
programming (Tamaki et al., 2007, 2015;Komiyaet al., 2009).Both
proteins share homology with FLOWERING LOCUS T (FT) of

Arabidopsis thaliana andbelong to the phosphatidylethanolamine
binding protein (PEBP) family of regulators, which includes also
TERMINAL FLOWER1 (TFL1) homologs (Kojima et al., 2002; Ho
and Weigel, 2014). However, whereas FT-like proteins are strong
activators of flowering, TFL1-like proteins are flowering inhibitors
(Wickland and Hanzawa, 2015).
Under inductive photoperiods, both Hd3a and RFT1 are tran-

scribed, and their protein products are essential for flowering to
theextent that artificial reductionof theirmRNAexpression results
in never-flowering plants (Komiya et al., 2008; Tamaki et al., 2015).
However, transcription of RFT1 can be induced also under long
days (LDs), and its floral promotive activity under these conditions
contributes to the facultative natureof thephotoperiodicflowering
response of rice (Gómez-Ariza et al., 2015; Komiya et al., 2009).
Induction of Hd3a and RFT1 expression in leaves results from

the integration of photoperiodic informationwithdiurnal timing set
by the circadian clock. Environmental signals ultimately converge
on the transcriptional activation of Early heading date 1 (Ehd1),
encoding a B-type response regulator unique to rice (Brambilla
and Fornara, 2013; Doi et al., 2004;Cho et al., 2016). Transcription
of Ehd1, Hd3a, and RFT1 thus correlates under SD in leaves,
showing a transient induction that persists only for the time re-
quired to irreversibly commit flowering at the SAM (Galbiati et al.,
2016; Doi et al., 2004; Cho et al., 2016; Komiya et al., 2008). Once
a sufficient amount of Hd3a and/or RFT1 proteins reaches the
SAM, expression of target genes that promote inflorescence
formation is induced (Taoka et al., 2011; Tamaki et al., 2015).
FT-like proteins have noDNAbindingproperty. Therefore, upon

reaching the cytoplasm of cells at the SAM, they bind to tran-
scription factors of the bZIP family, including FD in Arabidopsis
and OsFD1 in rice (Wigge et al., 2005; Taoka et al., 2011). The
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complex, originally found to be dimeric based on studies in
Arabidopsis, was later demonstrated to contain also a 14-3-3
protein of the Gf14 family (G-box factor 14-3-3) that bridges the
interaction between OsFD1 and Hd3a. The resulting ternary
complex, named florigen activation complex (FAC), is targeted to
the nucleuswhere it further dimerizes, forming a heterohexameric
complex tetheredbyOsFD1on targetDNAsequences (Zhaoetal.,
2015; Taoka et al., 2011). Similar interactions take place in many
plant species, including tomato (Solanum lycopersicum; Park
et al., 2014), potato (Solanum tuberosum; Teo et al., 2017), wheat
(Triticum aestivum) and barley (Hordeum vulgare; Li et al., 2015),
maize (Zea mays; Danilevskaya et al., 2008), and hybrid aspen
(Populus tremula3 tremuloides; Tylewicz et al., 2015), suggesting
that this molecular module is widely conserved among angio-
sperms. This conservation is further corroborated by interspecific
interactions demonstrated to occur between Hd3a/RFT1 and FD
(Jang et al., 2017). In many such examples, FD-like genes can
provide DNA binding specificity by recognizing ACGT-containing
consensus sequences on the DNA of target promoters (Izawa
et al., 1993; Li and Dubcovsky, 2008; Taoka et al., 2011; Wigge
et al., 2005). Competition between FT-like and TFL1-like proteins
for interaction with FD and 14-3-3 proteins partly explains their
opposite function on flowering and shoot architecture. Again,
such competitive behavior is widespread among angiosperms
(Pnueli et al., 2001; Randoux et al., 2014; Hanano andGoto, 2011;
Park et al., 2014).

The rice genome encodes seven Gf14 proteins, four of which
(theb, c, d, ande) canassemble intoaFAC (Taokaet al., 2011). The
Gf14c protein was the first to be functionally characterized as an
Hd3a interactor (Purwestri et al., 2009; Taoka et al., 2011). Be-
cause of their redundancy and pleiotropic effects, it has not been
possible to study gf14 mutants, but transgenic rice over-
expressing Gf14c had delayed flowering (Purwestri et al., 2009).
Despite the apparent contrast with the nature of a FAC, this result
might indicate that a tightly regulated balance between FAC
components needs to be achieved at the SAM to promote
flowering. Alternatively, floral repressor complexes containing
Gf14cmight exist andbecomepredominant uponoverexpression
of this specific 14-3-3 protein.

Besides FD-like transcription factors and 14-3-3 proteins,
FT-like genes can interact with members of the TEOSINTE
BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor
family. The ability to bind distinct members of this group of reg-
ulators partly discriminates between FT- and TFL1-like proteins
and indicates that TCPs are preferential interactors of FT-like
proteins (Mimida et al., 2011; Niwa et al., 2013; Ho and Weigel,
2014). Finally, apple (Malus domestica) Vascular Plant One Zinc
finger (MdVOZ1a) was isolated as an interactor of apple FT and
shown to alter inflorescence architecture when expressed in
Arabidopsis (Mimida et al., 2011). Whether interactions between
FT-like and VOZ-like proteins are conserved among flowering
plants is yet to be assessed.

Downstream targets of the FAC at the SAM include members
of the MADS box transcription factor family that are necessary
to switch the meristem to reproductive growth. In Arabidopsis,
induction of SUPPRESSOR OF OVEREXPRESSION OF CON-
STANS1, FRUITFULL (FUL), and APETALA1 takes place shortly
after arrival of FT at the SAM (Andrés and Coupland, 2012).

Similarly, OsMADS14, OsMADS15, and OsMADS18, genes be-
longing the FUL clade, and OSMADS34/PAP2, a SEPALLATA
(SEP)-like gene, are progressively activated upon floral transition
in rice (Kobayashi et al., 2012; Litt and Irish, 2003). Mutants in
which all four genes are silenced develop inflorescence stems
where flowers are replacedby vegetative shoots (Kobayashi et al.,
2012). This general mode of action of the florigens at the SAM
has been observed in several plant species (Jang et al., 2015;
Jaudal et al., 2015; Li and Dubcovsky, 2008). However, FACs can
be deployed also in tissues different from the SAM to control
a broad spectrum of developmental processes different from
inflorescence formation. For example, components of FACs gov-
erning leaf development have been reported in both Arabidopsis
and rice (Teper-Bamnolker and Samach, 2005; Tsuji et al., 2013).
Potato tuber formation depends on FACs forming at the stolon
meristem in response to FT export from the leaves (Navarro et al.,
2011; Teo et al., 2017). Seasonal growth cessation in trees is
induced by FACs assembled in vegetative apical meristems that
stop elongation and leaf production before the onset of winter
(Tylewicz et al., 2015). These findings illustrate the plasticity and
robustness of FACs as integrators of photoperiodic signals into
distinct developmental networks.
Given the high number of OsbZIP-coding genes in rice, the

combinatorial interactions possibly leading to different florigen-
containing complexes are very high (Tylewicz et al., 2015; Park
et al., 2014; Tsuji et al., 2013; Li et al., 2015). Additionally, the floral
transition in rice is associated with both induction and repression
of gene expression at the SAM, and different complexes could
operate by promoting or repressing expression of specific targets
(Tamaki et al., 2015). Here, we demonstrate that canonical FACs
can also form in leaves where Hd3a and RFT1 interact through
Gf14c with OsFD1. These complexes are required to activate
a positive feedback loop on Ehd1, Hd3a, and RFT1 expression.
This function is counterbalanced by two OsbZIP transcription
factors closely related to OsFD1 that directly bind Hd3a and
function as negative regulators of the Ehd1 florigens module in
leaves. Finally, we provide evidence for ameristematic function of
one such OsbZIP to repress the floral transition by reducing the
expression of inflorescence identity genes. We propose that
dynamic formation of distinct complexes fine tunes flowering in
leaves and at the SAM of rice.

RESULTS

An Active Florigen Activation Complex Can Form in Leaves

The rice FAC is a transcriptional activation complex assembled in
cells of the SAMbyHd3a or RFT1, aGf14 protein andOsFD1, and
its primary targets includemembers of theOsMADS transcription
factor family (Kojima et al., 2002; Taoka et al., 2011; Tsuji et al.,
2013; Tamaki et al., 2015; Kobayashi et al., 2012). It has been
proposed that FAC complexes control a wide range of de-
velopmental processes in distinct tissuesof several plant species,
but towhichextent aFACmight functionoutsideof theSAMand in
rice leaf tissues is unclear. The diurnal mRNA expression of
components of the FAC was quantified under inductive and
noninductive photoperiods, including SD (10 h light) and LD (16 h
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light) in the leaves (Supplemental Figures 1A to 1D). The ex-
pression of Gf14c did not depend upon the photoperiod and
showed a peak at Zeitgeber (ZT) 15 (Supplemental Figure 1B).
Expression of OsFD1 was detected under both photoperiods;
however, its expression under LD was constant during the time
course, whereas it oscillated under SDwith a peak in themiddle of
the night (Supplemental Figure 1C). Similarly, expression ofHd3a
and RFT1 was induced during the night and peaked toward the
end of it (Supplemental Figure 1A).

Since all FAC components were coexpressed in leaves under
SD, the expression of OsMADS14 was used as readout for the
activity of the FAC. OsMADS14 mRNA showed a peak during
the night only in leaves of plants grown under SDs, similarly to
OsFD1 (Supplemental Figure 1D). Additionally, expression of both
OsMADS14 andOsMADS15was induced in leaves upon shifting
plants fromLD(16h light) toSD (10h light), asmoreHd3aandRFT1
became available for FAC formation (Supplemental Figures 1E
and 1F). Expression of OsMADS TFs is therefore sensitive to
expression of FAC components in both leaves and meristem
(Taoka et al., 2011; Kobayashi et al., 2012).

Based on relative transcript quantifications, OsFD1 maximum
expression was 5 times lower relative to Hd3a or RFT1 and ;50
times lower thanGf14c (comparedwith y axis scales in Supplemental
Figures 1A to 1C). Although relative mRNA amounts cannot
be accurately compared between genes, these data sug-
gested that OsFD1 might be a limiting factor to FAC formation
in leaves. To test this hypothesis, the coding sequence of
OsFD1 was expressed under the constitutive rice ACTIN2
promoter (proACT:OsFD1), and expression of OsMADS14
andOsMADS15was quantified at 6 and 13 d after shifting plants
from LD to SD (Figures 1A to 1C). In proACT:OsFD1 plants,
OsMADS14 and OsMADS15 expression was strongly upregu-
lated in leaves at the indicated time points, compared with wild-
type plants grown under the same conditions, indicating that
increasing OsFD1 abundance results in higher induction of FAC
target genes (Figures 1B and 1C).

Following the same rationale, we conditionally overexpressed
Hd3a or RFT1 in leaves under LD, when Gf14c and OsFD1, but
not Hd3a or RFT1, are expressed. To control overexpression,
dexamethasone-inducible (DEX) Hd3a- or RFT1-overexpressing
plants were produced (proGOS2:GVG 4xUAS:Hd3a and
proGOS2:GVG 4xUAS:RFT1; hereafter referred to as GVG:Hd3a
andGVG:RFT1; Figure2A).Weusedapreviouslyvalidatedsystem
for inducible gene expression, composed of a DEX-inducible
component that drives expression of the genes of interest
(Ouwerkerk et al., 2001). Using this system, we avoided the need
for a chimeric florigen-glucocorticoid receptor protein,whosesize
might impinge on Hd3a or RFT1 protein movement or activity.

Transgenic plants containing GVG:Hd3a or GVG:RFT1
could overexpress transgenic Hd3a or RFT1 only upon DEX
treatments (Figures 2B and 2C). While a negligible basal
expression of OsMADS14 and OsMADS15 was observed
in leaves of untreated plants under LD, expression of
OsMADS14 andOsMADS15was strongly activated 16 h after
DEX treatment, concomitantly to Hd3a or RFT1 induction
(Figures 2D and 2E).

Taken together, these experiments indicate that OsMADS14
and OsMADS15 transcription in leaves is activated upon

coexpression of all FAC components that are likely to form an
active complex, as in the SAM.

A Negative Feedback Loop Independent of OsFD1 Limits
Florigen Expression in Leaves

TheexpressionofHd3a andRFT1 is transiently activated in leaves
of plants grown under natural field or artificial conditions. This
observation suggests the existence of a mechanism that down-
regulates their expression upon commitment to flowering and that
could possibly depend on Ehd1, encoding a common upstream
promoter of Hd3a and RFT1 expression (Goretti et al., 2017;
Ogiso-Tanaka et al., 2013; Gómez-Ariza et al., 2015). Under
our growing conditions, expression of the florigens reached
a peak ;12 to 15 d after shifting plants from LD to SD (Galbiati
et al., 2016).We testedwhetherHd3a andRFT1 are causal to their

Figure 1. Overexpression of OsFD1 in Leaves Induces Transcription of
Targets of the FAC.

Expression ofOsFD1 (A),OsMADS14 (B), andOsMADS15 (C) in leaves of
transgenicproACT:OsFD1plants.PlantsweregrownunderLD (14.5h light)
for 6weeks and then shifted toSD (10 h light). Leaveswere collected at ZT0
at 6 and 13 d after shift to SD (DAS). UBIQUITIN (UBQ) was used as
standard for quantification of gene expression. Data are represented as
mean6 SD. E-n=3 102n. ANOVA tests for graphs in (A) to (C) are shown in
Supplemental File 1.
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own downregulation in leaves after the floral transition. The
GVG:Hd3a or GVG:RFT1 transgenic plants were grown under LD
(16 h light) and then shifted to SD (10 h light) to induce expression
of the endogenous Hd3a and RFT1 transcripts in leaves. After
13SD,halfof theplantswereDEXtreatedtooverexpress transgenic
Hd3a or RFT1 (Figures 3A and 3C). Leaf samples were harvested
16 h after DEX treatment at ZT0, when endogenous Ehd1, Hd3a,
and RFT1 were highly expressed. Quantification of transcripts in-
dicated that the endogenous Ehd1, Hd3a, and RFT1 transcripts
were strongly downregulated in DEX-treated plants compared
withmock-treated controls (Figures 3B and 3D). A similar reduction
of transcripts abundance was observed when either of the
two florigens was induced (Figures 3A to 3D). We tested several
independent lines of both GVG:Hd3a and GVG:RFT1 for DEX-
dependent control ofEhd1,Hd3a, andRFT1 transcripts. Despite
a varying degree of inducibility among independent transgenic
lines, as quantified by the increase inHd3a andRFT1 expression
in response to DEX, we consistently observed reduction of
endogenous Ehd1, Hd3a, and RFT1 transcripts (Supplemental
Figures 2A and 2B). Therefore, bothHd3a andRFT1 canmediate
a negative feedback loop on Ehd1 and, indirectly, on their own
expression. The negative loop is activated also at low levels of
expression of transgenic Hd3a or RFT1, suggesting that it finely
adjusts expression of the florigens during floral induction.

A canonical OsFD-containing FAC could be required for neg-
ative regulation of Hd3a and RFT1 expression. Since OsFD1 is
limiting to FAC formation in leaves at 12 d after shift (DAS), ex-
pression of the florigenswas analyzed in proACT:OsFD1 plants at
this time point. Compared with wild-type plants, constitutive
expressionofOsFD1 induced theupregulationofHd3a,RFT1, and
Ehd1 expression (Figures 3E and 3F). These data suggest that
OsFD1 can promote expression of Ehd1, Hd3a, and RFT1 in
leaves and is not part of themechanism that self-limits expression
of the florigens.

Identification of FAC Components Expressed in Leaves

In rice and other plant species, many bZIP TFs have been already
described that formalternativeFACswith theflorigensandcontrol
different developmental processes (Tylewicz et al., 2015; Tsuji
et al., 2013; Li et al., 2015). We evaluated whether other TFs
abundant in leaves might form alternative FACs with a flowering
repressive function.We performed untargeted and targeted yeast
two-hybrid screensusingHd3aandRFT1asbaits.Only the results
of targeted screens will be presented in this study. We selected
members of the bZIP family of transcription factors based on
sequence similarity with OsFD1, wheat TaFDL2 (Li et al., 2015; Li
and Dubcovsky, 2008) and maize DLF1 (Muszynski et al., 2006)

Figure 2. Expression of OsMADS14 and OsMADS15 in Leaves Is Dependent on Expression of Hd3a and RFT1.

(A)Schematics of the inducible systemused in this study. TheGVGchimeric protein is expressed under theGOS2promoter to produce the inducible part of
the vector. TheHd3aorRFT1 coding sequences are clonedunder the control of the4xUPSTREAMACTIVATIONSEQUENCE (UAS) to produce the effector
component of the vector. T indicates the terminator.
(B) to (E)Expression ofHd3a (B),RFT1 (C),OsMADS14 (D), andOsMADS15 (E) in leaves of DEX-inducible transgenic plants grown under LD. Leaveswere
harvested atZT0.GVG:Hd3aandGVG:RFT1 indicateDEX-inducibleHd3a-andRFT1-overexpressing lines, respectively. Two independent transgenic lines
are shown for each construct. Plants were either DEX- or mock-treated, and transcripts were quantified using primers designed on the coding sequences.
UBQwasusedas standard for quantificationof geneexpression.Data are represented asmean6 SD. xE-n=3102n. ANOVA tests for graphs in (B) to (E) are
shown in Supplemental File 1.
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(Supplemental Figure 3A and Supplemental Data Set 1), and we
tested their interaction with Hd3a and RFT1. Since it has been
shown that bZIP TFs bind DNA by forming homo- and hetero-
dimers, we also tested their ability to homo- and heterodimerize.
OsFD1 interactionwithGf14cwas used as positive control (Taoka
et al., 2011). A summary of all interactions is reported in Table 1.
We excluded from this analysisOsbZIP29 aswe could not amplify
it from cDNA of LD- or SD-grown plants, bZIP54/OsFD6 as it is
inferred to be a pseudogene (Tsuji et al., 2013), and finally genes
whose interaction patterns have already been determined (Tsuji
et al., 2013). The OsbZIP24/OsFD3 and OsbZIP69/OsFD4

proteins could not interact in our yeast assay with Hd3a or RFT1,
although a recent report indicates weak interaction with RFT1
(Jang et al., 2017). OsbZIP24/OsFD3 could interact with Gf14c,
while OsbZIP69/OsFD4 could not. Conversely, OsbZIP62,
OsbZIP42, and OsbZIP9 could interact with Hd3a but not with
RFT1, indicating some binding preference for one of the florigens.
However, they also interacted with Gf14c, which could possibly
bridge the interaction with both florigens.
Among thebZIPTFs tested,we identifiedOsbZIP62,OsbZIP42,

and OsbZIP9 as interactors of Hd3a and Gf14c (Table 1, Figure
4A). Based on their functional characterization, we renamed

Figure 3. A Negative Feedback Loop Independent of OsFD1 Reduces Ehd1, Hd3a, and RFT1 Expression during Floral Induction in Leaves.

(A) to (D)DEX-induced overexpression ofHd3a ([A] and [B]) or RFT1 ([C] and [D]) causes strong increase ofHd3a (A) or RFT1 (C) transcript accumulation
from transgenic sequences, but downregulation of Ehd1, Hd3a, and RFT1 endogenous transcripts, compared with mock-treated controls ([B] and [D]).
(E)and (F)Two independent transgenicproACT:OsFD1 linesshow increasedexpressionofOsFD1 (E)andofEhd1,Hd3a, andRFT1 in leavescomparedwith
the wild type (F). DEX was applied at 13 DAS, and leaf samples were collected at ZT0, 16 h later. proACT:OsFD1 plants were collected at ZT0 and 12 DAS.
Leaves from 10 plants per treatment were sampled.UBQwas used as standard for quantification of gene expression. Data are represented as mean6 SD.
Primers on Hd3a or RFT1 coding sequences or on the 39 untranslated regions were used to distinguish transgenic+endogenous ([A] and [C]) from en-
dogenous transcripts, respectively ([B] and [D]). ANOVA tests for graphs in (A) to (F) are shown in Supplemental File 1.
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OsbZIP42 and OsbZIP9 as Hd3a BINDING REPRESSOR
FACTOR1 (HBF1) and HBF2, respectively. The HBF1 and HBF2
proteins share 19.13% and 20.75% amino acid identity with
OsFD1 and cluster in the same branch of the bZIP phylogenetic
tree (Supplemental Figure 3A). They share 68% identity with each
other when the full-length proteins are considered.

To further validate the direct interactions of HBF1, HBF2, and
OsbZIP62 with Hd3a, bimolecular fluorescent complementation
(BiFC) experiments were performed. The YFP N terminus was
fused to each bZIP transcription factor creating HBF1-YFP N,
HBF2-YFP N, and bZIP62-YFP N chimeric proteins, whereas the
YFP C terminus was fused to Hd3a (Hd3a-YFP C) (Figure 4B).
Leaves of Nicotiana benthamiana were infiltrated with Hd3a-YFP
C and each of the bZIP chimeric fusions, and nuclei of the
epidermis showed strong YFP fluorescence, indicating physical
interactions betweenHd3a andHBF1, HBF2, or bZIP62 aswell as
nuclear localization of the heterodimers. No fluorescence was
observed in nuclei coexpressing OsFD1-YFPN andHd3a-YFPC,
confirming the indirect interaction between OsFD1 and Hd3a
(Taoka et al., 2011).

Interactions were also assessed by Förster resonance energy
transfer (FRET) fluorescence lifetime imaging microscopy (FLIM)
(Berezin and Achilefu, 2010). In FRET-FLIM measurements, the
readout for FRET is a reduced lifetime of the donor molecule in the
FRET sample, comparedwith the donor-only sample. FREToccurs
when twomolecules interact directly. A decrease in the Hd3a-GFP
donor lifetime was observed in the presence of HBF1-mCherry,
HBF2-mCherry, and OsbZIP62-mCherry, confirming direct inter-
actions inN.benthamianaepidermal nuclei (Figures 4Cand4D).No
significant reduction of donor lifetime was observed when coex-
pressing Hd3a-GFP and OsFD1-mCherry (Figures 4C and 4D).

Direct interactions between HBF1, HBF2, and Hd3a were
conclusivelyassessed invitrobyGSTpull-downassays.We fused
HBF1 and HBF2 to the maltose binding protein (MBP) and

incubated themwith either Gf14c-GST or Hd3a-GST immobilized
on a glutathione resin. Both bZIPs bound Gf14c-GST and Hd3a-
GST, but notGSTalone (Figure 4E;Supplemental Figure3E). These
data confirm that interactions between HBF1, HBF2, and Hd3a
occur in nuclei and do not require an intermediate 14-3-3 protein.
Finally, since bZIP TFs bind the DNA as dimers (Schütze et al.,

2008; Reinke et al., 2013), we also tested the possibility that HBF1
and HBF2 could heterodimerize with each other or with OsFD1.
We did not observe heterodimerization between these proteins in
yeast (Table 1) or using the FRET-FLIM system (data not shown),
indicating that HBF1, HBF2, and OsFD1 are likely part of distinct
transcriptional complexes.
Diurnal timecourseswereused todetermine thespatiotemporal

expression ofOsbZIP62,HBF1, andHBF2 (Supplemental Figures
3B to3D). ThemRNAexpressionofOsbZIP62wasmost abundant
in the SAM under SD and showed no strong oscillation during the
24-h cycle, despite a slight decline during the night. Transcript
abundance was negligible in leaves, indicating that OsbZIP62 is
likelynotpartofacomplex limitingHd3aexpression in leavesbut is
possibly part of an Hd3a-containing complex in cells of the SAM
(Supplemental Figure 3D). Transcripts of HBF1 and HBF2 were
highly expressed in theSAMandshowedexpression also in leaves.
HBF1 transcription in leaves reached a peak during the night, when
Hd3a transcripts are also abundant (Supplemental Figures 3B and
3C). Taken together, these data indicate that HBFs can potentially
form distinct complexes both in the SAM and leaves.

HBF1 and HBF2 Encode Floral Repressors That Reduce
Ehd1, Hd3a, and RFT1 Expression in Leaves

WhetherHBF1 andHBF2 could influence flowering or expression
of the florigens in leaves was assessed by overexpressing them
under the constitutive ACT promoter (Supplemental Figures 3F
and 3G). Expression of Ehd1, Hd3a, and RFT1 was monitored

Table 1. Targeted Yeast Two-Hybrid Analysis between Hd3a, RFT1, Gf14c, and Selected OsbZIPs

AD Clones

Hd3a RFT1 Gf14c OsFD1
OsbZIP69/
OsFD4

OsbZIP24/
OsFD3 OsbZIP62

OsbZIP9/
HBF2

OsbZIP42/
HBF1

Empty
AD

BD Clones Hd3a – – 20 - – – 15 20 20 –

RFT1 – – 20 - – – – – – –

Gf14c – – 20 20 – 15 10 20 20 –

OsFD1 – – 10 – – – – – n.t. –

OsbZIP69/
OsFD4

– – – – 20 20 – – – –

OsbZIP24/
OsFD3

– – 15 – – 20 – – – –

OsbZIP62 – – 20 – – – – n.t. – –

OsbZIP9/
HBF2

– – 10 – – – – n.t. – –

OsbZIP42/
HBF1

10 – 15 – – – – – n.t. –

Empty BD – – – – – – – – – –

Interaction strength is shown as the highest 3-aminotriazole concentration on which diploid colonies could grow when plated on selective medium. A
dash indicates no interaction. n.t., not tested. BD fusions were expressed in yeast strain Y187 (mata), and AD fusions were expressed in yeast AH109
(matA). Diploid yeast was produced by mating. Growth was observed after 6 d at 30°C.
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Figure 4. HBF1 and HBF2 Interact with GF14c and Directly with Hd3a.

(A) Yeast two-hybrid assays between Hd3a, RFT1, and Gf14c fused to the binding domain (BD) and HBF1 or HBF2 fused to the activation domain (AD) of
Gal4. Colonies were grown on selective -L-W-H medium supplemented with 10 mM 3-aminotriazole.
(B)BiFCassaysshowingrestoredYFPfluorescenceinnucleiuponcoexpressionofHd3a-YFPCwithHBF1-YFPN,HBF2-YFPN,orOsbZIP62-YFPN.Bar=10mm.
(C) FRET-FLIM measurements of the Hd3a-GFP donor lifetime in the presence of the acceptors OsFD1-mCherry (no FRET), HBF1-mCherry, HBF2-
mCherry,orOsbZIP62-mCherry.Theaverage lifetimeof10 transformednuclei permeasurement isshown6 SD.Anasterisk indicatessignificance forP<0.0003
(Student’s t test). ANOVA test for the graph is shown in Supplemental File 1.
(D)Color code indicating the lifetime of GFP at each pixel in one representative nucleus for the interactions shown in (C). For the interaction between Hd3a
andOsbZIP62 twoadjacent cells are shown,whereonly the left nucleus (arrow) coexpressesbothconstructs,while the right oneexpressesonlyHd3a-GFP.
Accordingly, shortened lifetime is observed only in the left nucleus.
(E) GST pull-down assay showing interactions between MBP-HBF1 and MBP-HBF2 with GST-Gf14c and GST-Hd3a, but not with GST alone. An im-
munoblot using an anti-MBP antibody is shown. Protein sizes are MBP-HBF1, 79.5 kD, and MBP-HBF2, 79.5 kD. Resin loading control is shown in
Supplemental Figure 3E.
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duringphotoperiodic inductionofplantsshifted fromLD(16h light)
to SD (10 h light). Leaves of the proACT:HBF1 and proACT:HBF2
plantsshowedamarkeddownregulationofEhd1,Hd3a, andRFT1
expression compared with the wild type, unlike what observed in
proACT:OsFD1 transgenic plants (Figures 5A and 5B). In agree-
mentwith theoverall downregulationof theEhd1-florigenmodule,
proACT:HBF1 and proACT:HBF2 plants flowered late when
grown for 2 months under LD and then shifted to SD (Figure 5C).

We obtained the hbf1-1mutant from the PFG T-DNA collection
in the cultivar Dongjin (Jeon et al., 2000). Quantification of tran-
scripts in the mutant showed that expression of HBF1 was
strongly reduced because of insertion of the T-DNA in the pro-
moter (Supplemental Figures 4A and 4B). We analyzed the
flowering behavior of the hbf1-1 mutant and observed that it
headed earlier by ;5 d compared with segregating wild-type
siblings under continuous LD (14.5 h light) and by;9 d under SD
(10 h light) (Figure 5D). To link the mutant phenotype with pho-
toperiodic regulation of the Ehd1-florigen module, transcript
abundance of Ehd1,Hd3a, andRFT1was determined at two time
points after shifting plants from LD to SD (10 and 17 DAS). The
mRNA accumulation of all genes was higher in the hbf1-1mutant
compared with the wild type at both time points, indicating de-
repression of themodule (Figures 5E to5G). Toexcludean indirect
effect of HBF1 on Ehd1 expression, the expression of six genes
upstream of Ehd1 was also measured (Supplemental Figures 4C
and 4D). None of them showed a difference in gene expression
between the wild type and the hbf1-1mutant. The only exception
was Ghd7, which was slightly downregulated in the mutant
compared with the wild type (Supplemental Figure 4D).

To confirm that loss of HBF1 function promotes flowering and
also to assess a possible functional redundancy between HBF1
andHBF2,wegeneratedaseriesofdoublehbf1hbf2mutants in the
cultivar Nipponbare, using the CRISPR/Cas9 technology (Miao
et al., 2013). We designed a single-guide RNA (sgRNA) on a region
highly conserved between HBF1 and HBF2 on their first exon, to
simultaneously target both loci (Supplemental Figure 5A). Upon
regenerationof transgenicplants,weobtainedsix independent lines
harboring different combinations of biallelic or homozygous indels
(SupplementalFigure5B).WeselectedfiveT2 lines (#1.2,#2.1,#4.1,
#4.2, and #6.1) from four independent T1s (#1, #2, #4, and #6), all of
which were homozygous for hbf1 mutations and homozygous or
biallelic forhbf2 (SupplementalFigure5C).All linesweredoublehbf1
hbf2 loss-of-function mutants, except line #4.1, which contained
a homozygous 227 bp in-frame deletion at the HBF1 locus, likely
not causing loss of gene function (Supplemental Figure 5C). We
measured their flowering time under LD (14.5 h light) and after
growth for 8weeks under LD followedbySD (10h light). Under both
conditions, all hbf1 hbf2 double loss-of-function mutants flowered
earlier comparedwith thewild type (Figures 5H to5K), but flowering
wasnotaccelerated in line#4.1. Thesedata indicate that lossofnine
amino acids (EDFLVKAGV before the bZIP domain) in the HBF1
protein likely does not affect its function. They further indicate that
the hbf2mutation does not additively contribute to the phenotype
caused by single hbf1 mutations. As opposed to the effect of the
hbf1-1 allele inDongjin, theNipponbarehbf1 hbf2CRISPRmutants
showed predominantly accelerated flowering under LD (;13 dwas
the largest differenceobservedbetween line#1.2and thewild type),
rather than under SD (the same line #1.2 flowered;5 d earlier than

the wild type). We attribute these differences to the different sen-
sitivity of Dongjin and Nipponbare to loss of HBF1 function.

HBF1 Can Bind the Ehd1 Promoter

Expression of Ehd1 is dependent upon HBF1 activity. The Ehd1
promoter region was scanned in search of conserved motifs
recognizedbybZIPTFs,andwe found threeCACGTCmotifs that are
characteristic of abscisic acid response elements (ABREs) and
G-boxes (Li and Dubcovsky, 2008) (Supplemental Figure 5D). As
expected by the central position of Ehd1 in flowering regulatory
networks, many other motifs were identified in its promoter region
spanning 1.5 kb upstreamof the ATG (Supplemental Figure 5D). The
possibility of a direct interaction between HBF1 and the Ehd1 pro-
moter was assessed using electrophoretic mobility shift assay.
The HBF1 protein was purified and incubated with a Cy5-labeled
oligonucleotide identical to the region of the Ehd1 promoter con-
tainingtheABRE, locatedat2482bp(SupplementalFigure5D).HBF1
binding to this oligonucleotide resulted in a band shift (Figure 6D).
Addition of an excess of unlabeled oligonucleotide reversed the shift
of the fluorescent probe. However, no band shift could be detected
when HBF1 was incubated with a promoter fragment containing
a CArG-box, demonstrating that HBF1 binding to the ABRE-
containing regionwasspecific (Figure6D).NoABREsorG-boxeswere
identified by scanning the Hd3a or RFT1 promoters, although indirect
binding of HBF1 to these genes cannot be completely excluded.

HBF1 Represses Transcription of OsMADS14 and
OsMADS15 in the Shoot Apical Meristem

The HBF1 and HBF2 transcripts could be identified in both
leaves and SAMs, suggesting that they are expressed in both
florigen-producing and -receiving tissues. Their overexpression
delayed flowering, and in leaves it reduced mRNA expression of
Hd3a and RFT1. Whether these proteins also had a role in the
SAM to control flowering or gene expression was tested by
misexpression studies. To this end, the promoter of ORYZA
SATIVA HOMEOBOX1 (proOSH1) was cloned and used to drive
expressionofHBF1.OSH1 is expressed inundifferentiatedcellsof
the SAMbut not in organ primordia arising from it (Itoh et al., 2000;
Sentoku et al., 1999). Transgenic proOSH1:HBF1 rice plants that
overexpressed HBF1 were produced. Transcriptional analysis of
leaves and SAMs of T2 lines indicated that expression driven by
the OSH1 promoter was effective at increasing expression of
HBF1 at the SAM but not in leaves (Figure 6A). The same plants
had delayed flowering by a few days compared with non-
transgenic segregating controls (Figure 6B). Our dissection of
SAMs included also some of the youngest leaf primordia arising
from the meristem; however, the OSH1 promoter is not active in
this tissue (Tsuda et al., 2011). Thus, we conclude that the
flowering delay is caused by increased expression of HBF1 in
meristematic cells. Transcripts of Hd3a and RFT1 were not ex-
pressed at the meristem; therefore, although we cannot fully
exclude the expression of other FT-like genes, feedback regu-
lation of these florigens is likely not occurring at the apex.
Finally, the expression of OsMADS14 and OsMADS15 was

found to be significantly reduced in SAMs (Figure 6C). These data
indicate that HBF1 can repress flowering and expression of
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Figure 5. HBF1 and HBF2 Encode Floral Repressors Reducing Ehd1 Expression.

(A) and (B)Quantification of mRNA levels of Ehd1, Hd3a, and RFT1 in leaves of proACT:HBF1 (A) and proACT:HBF2 (B) overexpression plants grown for
8 weeks under LD (16 h light) and then shifted to SD (10 h light). UBQwas used as standard for quantification of gene expression. Data are represented by
mean 6 SD.



inflorescence identity genes at the SAM and therefore has a dual
transcriptional repressive function indistinct plant compartments.

DISCUSSION

Dexamethasone treatment of plants expressing inducible
versions of Hd3a and RFT1 indicated the existence of

transcriptional repression of the florigens mediated by a feed-
back negative loop.
Thus, we propose a modification of the rice floral induction

model to include an autoregulatory loop centered on Hd3a and
RFT1. The florigens regulate their own expression in leaves by
forming distinct FACs with several OsbZIP proteins (Figure 7).
These complexes can either promote or repress Ehd1,Hd3a, and

Figure 5. (continued).

(C)Days toheadingofwild type,proACT:HBF1,proACT:HBF2, andproACT:OsFD1overexpressors grown for 8weeksunder LD (16h light) and thenshifted
to SD (10 h light).
(D) Heading dates of wild type (Dongjin) and hbf1-1 mutants grown under continuous LD (14.5 h light) or continuous SD (10 h light).
(E) to (G) Expression of Ehd1 (E), Hd3a (F), and RFT1 (G) in hbf1-1 mutant plants compared with the wild type.
(H) to (K) mRNA levels are shown at 10 and 17 d after shifting plants from LD to SD.
(H)and (I)Nipponbarewild typeandT2hbf1hbf2CRISPRmutantsgrownunder continuousLD (14.5h light) (H)or shifted fromLD (16h light) toSD (10h light)
8 weeks after sowing (I). Arrowheads indicate the emerging panicles.
(J)and (K)Quantificationofheadingdates in thesameplantsas in (H)and (I), respectively (n indicates thenumberofplantsscored).Asterisks indicateP<0.05 in
an unpaired two tailed Student’s t test. E-n = 3 102n. The detailed genotypes of the mutants are reported in Supplemental Figure 5C.
ANOVA tests for graphs in (A) to (G), (J), and (K) are shown in Supplemental File 1.

Figure 6. HBF1 Represses Flowering at the SAM.

(A)Quantification of HBF1 expression in SAMs and leaves of plants misexpressing HBF1 from theOSH1 promoter. Two independent transgenic lines are
shown.
(B)Heading dates of proOSH1:HBF1 transgenic plants grown for 8 weeks under LD (16 h light) and then shifted to SD (10 h light) (n indicates the number of
plants scored). Asterisks indicate P < 0.05 in an unpaired two-tailed Student’s t test.
(C) Quantification of OsMADS14 and OsMADS15 expression in SAMs of transgenic proOSH1:HBF1 plants. Samples in (A) and (C) were collected from
apical meristems grown under LD and then exposed to 12 inductive SD. UBQ was used as standard for quantification of gene expression. All data are
represented by mean 6 SD. E-n = 3 102n.
(D)Electrophoreticmobility shift assay betweenMBP-HBF1 andABRE-Cy5 (lanes 1–4) andHBF1andCArG-box-Cy5 (lane 6). The specificity of interaction
between HBF1 and ABRE-Cy5 was tested by incubation with increasing amounts of unlabeled oligonucleotides (labeled/unlabeled oligonucleotide ratios
1:2, 1:5, and 1:25). HBF1 was incubated with an oligonucleotide containing a CArG-box-Cy5 (lanes 5 and 6) as a negative control. FP, free probe.
ANOVA tests for graphs in (A) to (C) are shown in Supplemental File 1.
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RFT1dependingon the interacting bZIP. In particular, OsFD1 acts
as transcriptional activator in leaves, whereas the closely related
HBFs repress expression of the florigens in the same tissue. Thus,
Hd3a and RFT1 proteins can engage in both florigen activation
and repression complexes. Binding of HBF1 to the promoter of
Ehd1 further providesmolecular evidence for feedback regulation
of the florigens. The preference of RFT1 and Hd3a to interact with
OsFD1 or the HBFs can be driven by relative expression patterns
or modifications of OsFD1 and the HBFs under different growing
conditions. Both the HBF1 and HBF2 transcripts are expressed in
the SAM as well, and tissue-specific overexpression of HBF1 at
least, could reduce theexpression of targetsof the FACat the apex.

These data identify a previously unknown function for the rice
florigens in leaves and suggest the existence of a regulatory layer
limiting Hd3a and RFT1 signaling to fine-tune production of the
florigens in leaves and their effect on gene regulatory networks at
the apical meristem.

The Rice Florigens Act in Leaves to Regulate Their
Own Expression

Agrowingnumberof studiesdemonstrate that FT-likeproteinsare
involved in a wide range of developmental processes, including
tuberization (Navarro et al., 2011), bulbing (Lee et al., 2013),
stomatal opening (Kinoshita et al., 2011), leaf curling (Teper-
Bamnolker and Samach, 2005), vegetative growth in trees (Hsu
et al., 2011), plant architecture in tomato (Park et al., 2014), and
tillering in rice (Tsuji et al., 2015). In many such instances, they
function in tissues different from the SAM. However, FT-like

proteins have been most prominently described in the context of
flowering time control in response to environmental cues. During
this process, they act as long distance flowering promoters
produced in leaves and translocated to the SAM, inducing de-
velopmental switches upon the formation of a FAC (Lifschitz et al.,
2006; Corbesier et al., 2007; Mathieu et al., 2007; Tamaki et al.,
2007). The data presented in this study suggest that a FAC can
form also in rice leaves to activate expression of the same targets
normally transcribed in theSAM.That aFAC isactivealso in leaves
was initially suggested by experiments in Arabidopsis (Teper-
Bamnolker and Samach, 2005). Expression of FT or Tomato FT
(TFT ) in transgenic Arabidopsis plants from the viral 35S promoter
caused leaf curling that could be suppressed by mutating FD,
SEP3, or FUL. These data indicated that a FAC formed in leaves
under specific conditions could perturb leaf development by
promoting transcription of targets usually expressed at the SAM
(Teper-Bamnolker and Samach, 2005).
Whether aFAChasanybiologically relevant function in leavesof

Arabidopsis remains to be clarified. However, the identification of
Ehd1, Hd3a, and RFT1 as targets of florigen-containing com-
plexes in leaves of rice suggests that one function of these
complexes is feedback tuningof the expressionof someof its own
components. In particular, by reducing transcription of Ehd1,
florigen repressor complexes can indirectly limit expression of
Hd3a and RFT1, downstream targets of Ehd1 (Doi et al., 2004;
Zhaoetal., 2015).Sinceseasonal expressionof the riceflorigens is
transient and is strongly reduced upon completion of the floral
transition, a plausible biological role for this autoregulatory loop
could be to switch off transcription of the florigens upon floral
commitment. Alternatively (or in parallel), it could fine-tune the
production of Hd3a and RFT1 during photoperiodic induction
(Gómez-Ariza et al., 2015;Ogiso-Tanakaetal., 2013).Moredatawill
be required to distinguish between these possibilities and validate
them, but it is clear that reproductive commitment requires a tight
balance between flowering promoting and repressive complexes,
whose equilibrium could be controlled by modulating the expres-
sion levels of distinct bZIPs by developmental or environmental
factors (Tang et al., 2016; Wu et al., 2014; Zhang et al., 2016) or by
controlling their activity through phosphorylation (Kagaya et al.,
2002; Choi et al., 2005; Furihata et al., 2006). Indeed, phosphory-
lation of OsFD transcription factors is required for binding to 14-3-3
proteins and is limiting to FAC function (Taoka et al., 2011).
Autoregulatorymotifs are likely very common ingene regulatory

networks but can be identified and studied only by quantifying
endogenous transcripts in plants expressing transgenic copies of
thesamegeneor its closely relatedhomologs.Suchapproachhas
led to the identification of a loop regulating StSP6A expression,
encoding a tuberigen, the mobile protein causing tuber formation
at the apical meristem of potato stolons, and sharing high
sequence similarity with Hd3a (Navarro et al., 2011). A similar
autoregulatory loop in the expression of an endogenous florigen
has been recently reported in chrysanthemum (Chrysanthemum
seticuspe), where transcriptional induction of CsFTL3 required
a complex formedbyCsFTL3andCsFDL1proteins (Higuchi et al.,
2013). It is noteworthy that regulatory loops involving two FT-like
proteins are also very common among Angiosperms. The FT-like
SP5G proteins of potato and tomato inhibit expression of the
SINGLE FLOWER TRUSS (SFT ) florigen and of StSP6A,

Figure 7. Combinatorial CircuitryControllingProductionof andResponse
to Florigenic Proteins in Rice.

In leaves, Hd3a and RFT1 can promote expression of Ehd1 by forming
a canonical FAC with OsFD1 and Gf14c, and they can repress it by in-
teracting with HBFs. Hd3a can interact directly with HBFs, whereas RFT1
might interact indirectly with HBFs through GF14c. Binding of HBF1 to the
Ehd1 promoter is direct. Upon translocation to the meristem, Hd3a and
RFT1 proteins can promote transcription of OsMADS target genes by
forming a canonical FAC. HBF1 at least can repress transcription of the
same targetsby forminga repressiveFAC.Grayarrowsandflat-endarrows
indicate transcriptional activation and repression, respectively. Con-
nectors indicate protein-protein interactions. Thick, black flat-end arrows
indicate direct repression byprotein-DNAbinding. Dashed arrows indicate
protein movement.

Antagonistic Flowering Complexes in Rice 2811



respectively (Abelenda et al., 2016; Soyk et al., 2017). Similar
modules in which an FT-like protein inhibits developmental
transitions by repressing a second FT-like gene have been re-
ported also for flowering in sugar beet (Beta vulgaris; Pin et al.,
2010; Higuchi et al., 2013) and bulbing in onion (Allium cepa; Lee
et al., 2013). In rice, both autoregulatory and relay mechanisms
between Hd3a and RFT1 are possible under inductive conditions,
when both proteins are expressed. Their differential ability to di-
rectly bind to HBFs might underlie differences in their capacity to
take part in positive or negative relaymechanisms, but this type of
cross-regulation is difficult to dissect genetically because of the
redundancy between these factors. However, in general, autor-
egulatory and relay mechanisms among florigen-like proteins are
emerging as very common modules controlling developmental
switches.

Florigen-Containing Complexes Exhibit
Combinatorial Properties

Florigen activation complexes from several species have a mod-
ular structure where distinct bZIP proteins can interact with dif-
ferent FT-like proteins in a combinatorial fashion (Sussmilch et al.,
2015; Tsuji et al., 2013). Temporal and spatial dynamics of
complex formation highly expand the regulatory possibilities of
suchcomplexes tocontrolplantdevelopment. In rice leaves,Hd3a
andRFT1can formcomplexesdisplaying transcriptional promoting
or repressive activity depending on the interacting bZIP. Since
HBF1,HBF2,andOsFD1donotheterodimerize, theycannotbepart
of the same complex, in agreement with their opposite functions.
Additionally, sinceHBF1 and HBF2 do not interact with each other,
they are possibly part of independent complexes.

Different examples in plants suggest that the functional spec-
ificity of these regulatory complexes can be provided by the bZIP
as well as the FT-like protein. In rice, branching of shoots and
altered panicle architecture are induced upon overexpression of
OsFD2 (Tsuji et al., 2013). ThisbZIPcan interactwithHd3a,andthe
interaction is bridged by the Gf14b protein. Given that OsFD2
controls patterns of vegetative growth, it could be speculated that
FACs are active during distinct phases of the plant life cycle and
not only during reproduction. Additionally, it raises the interesting
possibility that complexes dynamically changing the Gf14 protein
component might take on different roles. However, functional
studieswithGf14mutants are complicated by their pleiotropy and
essential nature (Purwestri et al., 2009).

In hybrid aspen, overexpression of FDL1 but not FDL2 delays
budsetandgrowthcessation, indicatingFDL1specificity for these
developmental processes. However, both FDLs could interact
with FT1 and FT2 to activate downstream targets in transient
heterologous systems (Tylewicz et al., 2015). In these examples,
specificity is likely contributed by the FD-like transcription factor.

Conversely, distinct PEBP components binding to the same
bZIP protein can switch its function. Arabidopsis FD can interact
with FTbut alsowith TFL1, to forma flowering repressive complex
(HananoandGoto, 2011;HoandWeigel, 2014). Similar interaction
patterns are also possible in tomato between SP3G/SPP, an FD
homolog, and the TFL1-like protein SELF PRUNING or the SFT
florigen, where the balance between complexes regulates shoot
architecture and, ultimately, yield (Pnueli et al., 2001; Park et al.,

2014). Finally, thefloral transition inArabidopsisaxillarymeristems
iscontrolledby theTCPtranscription factorBRANCHED1,directly
interacting with the PEBPs FT and TWIN SISTER OF FT but not
with TFL1 (Niwa et al., 2013). Overall, these patterns indicate that
a basal conserved module can be repurposed in distantly related
species to control several developmental programs and that
plasticity in complex assembly determines the balance between
developmental programs.

METHODS

Plant Materials

The hbf1-1 mutant corresponds to the Salk line PFG_2D-00885 in the
cultivar Donjing. Homozygous T-DNA insertional mutants were selected
using primers listed in Supplemental Table 1. The cultivar Nipponbare was
used in all other experiments.

Growth Conditions, Sampling, and Quantification of
Gene Expression

Plants (rice [Oryza sativa]) were grown under LD (14.5 h light/9.5 h dark or
16h light/8hdark) orSDconditions (10h light/14hdark) inConvironPGR15
growth chambers. Light was provided by T8 fluorescent and halogen in-
candescent lamps. Light intensity was adjusted to level 3 for both sets of
lamps, resulting in;450 mmol/m2/s. Plant material was collected from the
distal part of mature leaves, from at least three plants/time point, at ZT0.
Only for theexperimentsdescribed inFigures5E to5Gand inSupplemental
Figures 4C and 4D, plants were sampled at ZT20 under SD, as this time
point corresponds to peak expression ofEhd1. Only for the data described
in Figures 5A and 5B, all samples were quantified in the same experiments
and then split into separate graphs for clarity of presentation. For SAM
sampling, at least five apices/sample were manually dissected under
astereomicroscopeusingscalpels.Sample included themeristem, the two
younger leaf primordia arising from it, as well as part of the rib meristem.
RNA was extracted from leaves using the TRIzol reagent (Thermo Fisher
Scientific) and from SAMs using the NucleoSpin RNA Plant kit (Macherey-
Nagel). To prepare and quantify cDNAs, the RNA was retro-transcribed
using the ImProm-II reverse transcriptase (Promega), and the Maxima
SYBR qPCR master mix (Thermo Fisher Scientific) was used to measure
gene expression in aMastercycler Real Plex2 (Eppendorf). All primers used
in RT-qPCR experiments have an annealing temperature of 60°C. For
quantification of transcripts ofHd3a andRFT1 endogenousmRNAs,Ehd1,
OsMADS14,OsMADS15, andUBQ,weusedprimersdescribedbyGalbiati
et al. (2016) and Gómez-Ariza et al. (2015). All other primers used in this
study are listed in Supplemental Table 1.

Construction of Transgenic Plants and DEX Treatments

The OsbZIP coding sequences were amplified from leaf or SAM cDNAs
using primers listed in Supplemental Table 1 and subsequently cloned in
pDONR207 (Invitrogen). Plant expression vectors were obtained by
Gateway cloning, recombining the coding sequence after the ACTIN
promoter in the pH2GW7 plasmid. TheHd3a andRFT1 coding sequences
were amplified from leaves of Nipponbare with primers Os1-Os2 andOs3-
Os2, respectively. The pINDEX2 vector was used for DEX-inducible ex-
pression ofHd3a and RFT1 (Ouwerkerk et al., 2001), but it was first turned
into a Gateway-compatible (Invitrogen) destination vector by blunt cutting
with PmlI and insertion of an EcoRV-digested Gateway RFC cassette. A
proOSH1:Gateway destination construct was generated cloning a 1.5-kb
promoter fragment using primers Os_6 and Os_7 (Supplemental Table 1).
The pINDEX4 vector and proOSH1were then cut usingMunI andMluI and
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ligated to create pINDEX4 proOSH1. The RFA Gateway cassette was
inserted into the proOSH1 pINDEX4 vector after blunt cutting usingEcoRV
and StuI. Subsequently, the DEX-inducible cassette was removed by
blunt cutting using SwaI and BbrPI and self-ligation of the vector. The
proOSH1:HBF1 vector was generated by LR recombination (Invitrogen).

For rice transformation, embryogenic calli were produced from Nip-
ponbare seeds, prepared and transformed according to the protocol of
Sahoo et al. (2011) using the EHA105 strain ofAgrobacterium tumefaciens.
Transgenic plants were selected on 50 mg/L and 100 mg/L hygromycin
during selections I and II, respectively. Gene expression ofHd3a andRFT1
wasinducedbyleafspraywith10mmDEXsolution+0.2%Tween, intransgenic
homozygous T3 plants. DEX treatments were performed at ZT8 and sampling
wasdone 16h later at ZT0. Induction efficiencywasassessedbyRT-qPCRon
leaves using primers specific for the Hd3a or RFT1 coding sequences.

Protein-Protein Interaction Studies

For yeast two-hybrid studies, the coding sequences were cloned into the
vectors pGADT7 and pGBKT7 (Clontech) Gateway (Invitrogen) and
transformed into AH109 and Y187 yeast strains, respectively. Interactions
were tested by mating and growth of diploid yeast on selective -L-W-H
medium supplemented with 3-aminotriazole. BiFC experiments were
performed inNicotiana benthamiana epidermal cellswith the vectors pBAT
TL-B sYFP-N and pBAT TL-B sYFP-C. FRET-FLIM experiments
were performed inN. benthamiana epidermal cells transformed with
the b-estradiol-inducible vectors pABIND-GFP and pABIND-mCherry
(Bleckmann et al., 2010; Somssich et al., 2015).b-Estradiol inductionof the
transgeneswas performedwith 20 mMb-estradiol and 0.1%Tween 20 4 to
6 h before measurements. FRET-FLIM measurements were performed on
10 cotransformed nuclei at least, and mean, SD, and P value (Student’s
t test) of the donor lifetime for the various sets of experiments were cal-
culated, as described by Stahl et al. (2013).

GST Pull-Down

The GST-Hd3a and GTS-GF14c fusion proteins were obtained by
recombining the coding sequence into pDEST15 (Invitrogen), expressing
them using BL21 (DE3) cells (Invitrogen) and purifying them with Gluta-
thione Sepharose 4b (Sigma-Aldrich). The concentration of each fusion
protein was determined using Bradford assays. Equal amounts of
GST-fusion proteins and GST were incubated in TIF buffer (150 mMNaCl,
20 mM Tris, pH 8.0, 1 mM MgCl2, 0.1% Nonidet P-40, and 10% glycerol)
and added to 2 mL of clarified bacterial lysate of BL21 (DE3) cells ex-
pressing HBF1 and HBF2 proteins fused toMBP (pMAL vector adapted to
Gateway system). The bacterial lysate was obtained by sonication of
a bacterial pellet resuspended in TIF buffer supplemented with cOmplete
Protease InhibitorCocktail (Roche). The reactionmixturewas incubated for
2 h at 4°C under gentle rotation. After three washes with TIF buffer and two
washes with PBS buffer, the resins were resuspended with SDS-PAGE
loading buffer and eluted at 99°C for 5 min. The eluted proteins were re-
solved in 10%SDS-PAGE, and immunoblot analysis was performed using
a monoclonal anti-MBP HRP-conjugated antibody (BioLabs).

Phylogenetic Analysis

Sequences of bZIP proteins were retrieved from public databases and
aligned using the CLC Genomics Workbench program with the following
parameters: gap open cost = 20.0; gap extension cost = 10.0; end gap
cost = as any other; alignment mode = very accurate. An unrooted phy-
logenetic tree was created on the alignment using the neighbor-joining
algorithm. Distances were measured using the Jukes-Cantor model.
Bootstrap values are indicated at each node based on 1000 replicates.
Sequence alignments are reported in Supplemental Data Set 1.

CRISPR-Cas9 Editing

TheCRISPR-Cas9 vectorwaspreviously described (Miao et al., 2013). The
single-guide RNA oligo (Os_934) targeting both HBF1 and HBF2 was
designed based on the first exon of both genes, upstream of the region
encoding the bZIP domain and expressed in transgenic Nipponbare.
Transformation was performed as described above. The HBF1 and HBF2
loci in the regenerating plantswere amplifiedand sequencedusingprimers
Os_551-Os_338 and Os_976-Os_553, respectively, to identify the muta-
tions introduced by nonhomologous end joining. The same primers were
used to genotype the subsequent plant generations.

Electrophoretic Mobility Shift Assays

Consensus sequences in the Ehd1 promoter (1.5 kb upstream of the ATG)
were identified using the Nsite software (Shahmuradov and Solovyev,
2015). The sequences of the ABRE and CArG-box containing primers are
shown in Supplemental Table 1. The HBF1 protein fused to MBP was
expressed in the Escherichia coli Rosetta strain and purified to homoge-
neity by passing it through amaltose column followed by an ion exchange
step (MonoQ). Binding of HBF1 to the Ehd1 promoter was tested using
25 pmol of Cy5-labeled DNA duplexes (either ABRE or CArG-box
sequences; Supplemental Table 1) mixed with 150 pmol of the purified
protein in 20 mM Tris-HCl, pH 8.0, and 200 mM NaCl. In the competition
studies, the mixture was supplemented with increasing amounts (1:2 to
1:25molar ratio) of unlabeledDNA.PrecastNovexTBEgels (ThermoFisher
Scientific) were used for the electrophoretic run.

Accession Numbers

Sequence data from this article can be found in the Rice MSU Ge-
nome Annotation Release 7 under the following accession numbers:
LOC_Os06g06320.1 (Hd3a),LOC_Os06g06300 (RFT1), LOC_Os08g33370
(Gf14c),LOC_Os09g36910(OsFD1),LOC_05g41070(HBF1),LOC_Os01g59760
(HBF2), LOC_07g48660 (bZIP62), LOC_Os06g16370.1 (Hd1), LOC_Os10g3
2600.1 (Ehd1), LOC_Os07g15770.1 (Ghd7), LOC_Os07g49460.1 (PRR37),
LOC_Os03g54160.1 (OsMADS14), and LOC_Os07g01820.1 (OsMADS15).

Supplemental Data

Supplemental Figure 1. Expression of FAC components and FAC
targets in leaves.

Supplemental Figure 2. Independent Hd3a or RFT1 DEX-inducible
transgenic lines show a range of Hd3a or RFT1 DEX-dependent
induction and downregulation of Ehd1, Hd3a, and RFT1 endogenous
expression.

Supplemental Figure 3. Selection of bZIP transcription factors
putatively forming a transcriptional complex with the florigens.

Supplemental Figure 4. Analysis of the hbf1-1 mutant.

Supplemental Figure 5. Analysis of hbf1 hbf2 CRISPR mutants and of
the HBF1 promoter.

Supplemental Table 1. Primers used in this study.

Supplemental Data Set 1. Text file of the alignment used for the
phylogenetic analysis shown in Supplemental Figure 3A.

Supplemental File 1. ANOVA tables.
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