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Abstract

Since penicillin was discovered about 90 years ago, we have become used to using drugs to 

eradicate unwanted pathogenic cells. However, using drugs to kill bacteria, viruses or cancer cells 

has the serious side effect of selecting for mutant types that survive the drug attack. A key question 

therefore is how one could eradicate as many cells as possible for a given acceptable risk of drug 

resistance evolution. We address this general question in a model of drug resistance evolution in 

spatial drug gradients, which recent experiments and theories have suggested as key drivers of 

drug resistance. Importantly, our model takes into account the influence of convection, resulting 

for instance from blood flow. Using stochastic simulations, we study the fates of individual 

resistance mutations and quantify the trade-off between the killing of wild-type cells and the rise 

of resistance mutations: shallow gradients and convection into the antibiotic region promote wild-

type death, at the cost of increasing the establishment probability of resistance mutations. We can 

explain these observed trends by modeling the adaptation process as a branching random walk. 

Our analysis reveals that the trade-off between death and adaptation depends on the relative length 

scales of the spatial drug gradient and random dispersal, and the strength of convection. Our 

results show that convection can have a momentous effect on the rate of establishment of new 

mutations, and may heavily impact the efficiency of antibiotic treatment.

1. Introduction

The emergence of drug resistance represents one of the major clinical challenges of the 

current century [1–3]. Microbial pathogens quickly acquire resistance to new antibiotics [4], 

while solid tumors often regrow after treatment because of resistance mutations that arise 

during tumor growth [5]. In addition to genomic studies examining the molecular causes of 

resistance [6, 7], the dynamics of drug resistance evolution has recently attracted wide 

interest [8, 9], with the dual goal of understanding the emergence of resistance and 

developing novel strategies to prevent or control its spread [10, 11]. Next-generation 

sequencing and high-throughput experimental techniques enable the quantitative study of 

resistance evolution but require the development of new theories to appropriately interpret 

experimental results [12].
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In many realistic systems, an evolving population interacts with its surroundings and 

exhibits a well-defined spatial structure (for instance, in tumors and biofilms [5]). It has 

recently been shown that this spatial structure can strongly influence the subclonal structure 

and the adaptation of spatially expanding populations, both from de novo and pre-existing 

mutations [13–15]. In addition, the presence of spatial drug gradients is well documented 

both in the outside environment [16, 17] as well as within biofilms [18] and the human body 

[19–22]. The presence of spatial [12, 23–27] and temporal [10, 28–30] heterogeneities has 

been shown to facilitate the emergence of drug-resistant phenotypes and enable populations 

to reach a higher degree of resistance than in homogeneous drug concentrations. For 

instance, in a microfluidic experiment, a spatial gradient gave rise to a higher rate of 

adaptation of bacterial populations [26]. Similarly, microbes growing on soft agar plates 

with gradually increasing antibiotic concentrations were able to rapidly evolve resistance to 

high levels of antibiotics, while sudden jumps to unsustainably high concentrations 

dramatically slowed down adaptation [12]. Moreover, many realistic growth scenarios of 

bacterial populations may be subject to convection driving them up or down the gradient. 

Examples include the gut, arteries, and urethra in the human body [31–34], but also flows in 

aquatic environments, like ocean and river currents [35], or flow in pipes and catheters [36].

A number of recent theoretical studies have investigated how gradients speed up the 

evolution of drug resistance [37–39]. Greulich et al. [38] considered a population adapting to 

a smooth gradient, which gradually lowers the growth rate of susceptible individuals. 

Hermsen et al. [37] studied resistance evolution in a series of sharp step-like increases in 

concentration, where a novel resistance mutations was necessary for survival in the next step 

(the ”staircase” model); Hermsen [39] later proposed a generalization of the staircase model 

to continuous gradients. These previous studies focused on the speed of adaptation, i.e., how 

quickly the population evolves to tolerate high concentrations of antibiotics. In the context of 

the emergence of drug resistance, however, this observable alone ignores a crucial reality of 

antibiotic treatment: efficient drug treatment first and foremost aims to kill as many bacteria 

as possible, while limiting the rise of resistance mutation [40, 41]. How this apparent trade-

off can be optimized for populations in spatial gradients to prevent the evolution of drug 

resistance has so far been unexplored.

Here, we present simulations, rationalized by a comprehensive analytical framework, of 

populations evolving resistance in a variety of spatial antibiotic concentration gradients and 

under the influence of convection. We measure the establishment probability of individual 

resistant mutants arising in a region occupied by susceptible wild type and find that 

successful, ”surfing”, mutations arise in a localized population patch close to the population 

front, the size of which depends on the relative strength of bacterial diffusion, antibiotic 

gradient steepness, and convection. We find that shallow gradients and flow towards higher 

antibiotic concentrations promote wild-type death, at the cost of increasing the establishment 

probability of resistance mutations. Conversely, populations in steep gradients and subject to 

flow towards lower antibiotic concentrations give rise to fewer drug-induced wild-type 

deaths but also produce fewer resistance mutants. We introduce the notion of a treatment 

efficiency, which quantifies this inherent trade-off between adaptation and death, and find it 

to be strongly modulated by gradient steepness and convection.
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2. Definition of the model

Consider a population in a fixed antibiotic concentration gradient. Where the antibiotic 

concentration is too high, the population cannot survive unless it evolves resistance to the 

antibiotic, and thus at steady-state, a population density profile c(x) will develop. For an 

individual mutation conferring antibiotic resistance that occurs at position x in the 

population we define the probability u(x) that this mutation will be successful, i.e., establish 

first locally and eventually colonize areas where the antibiotic concentration is too high to 

allow for growth of the wild type. In doing so, we implicitly assume a very low mutation 

rate and neglect clonal interference to focus on the fate of individual mutations (SI section 

6). We come back to this question in the Discussion.

A drug gradient arises upon administering an antibiotic that is introduced at one location in 

the system (the source) and flows out of the system at another (the sink). The antibiotic may 

be influenced by convection, e.g., through blood flow or peristaltics in the gut, and be 

subject to degradation. At steady-state, a concentration gradient between source and sink is 

established, which may take a range of shapes, from a sharp, step-like gradient for strong 

convection, to a shallow gradient over the whole system size. Using a simple reaction-

diffusion model, we show in the Supplementary Information (SI section 1) how the gradient 

depends on the distance between source and sink, the diffusivity of the antibiotic, and the 

speed of convection. To keep the discussion general, here we approximate the features of a 

typical antibiotic gradient by modeling it as a sigmoidal function that changes over a 

characteristic length scale λ, which sets the gradient steepness, without trying to associate a 

particular value of λ with a specific combination of real-life parameters.

The wild-type population growing in this gradient will in general also be subject to 

convection with flow speed υ. However, it is important to note this flow speed may be very 

different from the convection that affects the antibiotic gradient. As an example, the flow 

speed inside a blood vessel depends on the distance from the wall, and thus, surface-bound 

populations such as biofilms may experience much lower flow speeds than antibiotic in the 

bulk fluid. More generally, it is to be expected that fluid flow differentially affects bacterial 

cells and antibiotic molecules due to their different sizes, potential porosity of the 

surroundings, adhesion effects, etc, such that convective flows are arguably the rule rather 

than the exception. Finally, there may other forms of directed motion not directly linked 
to fluid flow, such as bacterial chemotaxis or mechanical transport of the bacteria. 
Therefore, without loss of generality, we may ignore the details of how a particular steady-

state antibiotic gradient is generated, and focus on how the combination of antibiotic 

gradient and convection shapes the emergence of resistance.

We model the effect of the antibiotic by a drug-induced death rate b(x) of susceptible wild-

type individuals giving rise to a net growth rate s(x) of the wild type that ranges from the 

maximal growth rate a0 (in antibiotic-free regions) to some negative net growth rate (where 

the antibiotic concentration is high). For simplicity, we model the death rate such that at the 

highest concentration wild-type individuals typically die within one generation. Given a net 

growth rate profile, we can compute the steady-state wild-type population density c(x), 

whence we obtain the number B of drug-induced wild-type deaths per generation,
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(1)

The total death rate B quantifies the efficacy of the antibiotic; it corresponds to the rate at 

which the population is hindered in its growth by the antibiotic. Note that since we only 

consider steady-state population densities and thus do not explicitly simulation the 

eradication of the wild-type population, our analysis relies on the immune system or slowly 

progressing antibiotic concentration gradients to completely eradicate the wild-type 

population [41].

To quantify the emergence of resistance, we measure the local mutant establishment 

probability u(x). Since the probability that a mutation occurs in the first place is proportional 

to the wild-type population density c(x), it follows that successful mutants can only arise 

where both the wild-type population density and the establishment probability are high (see 

Fig. 2). A measure for how readily new resistant mutants establish is thus given by the 

product of wild-type population density and the establishment probability [42], summed 

over the whole population [43]. We call this measure the rate of adaptation, R,

(2)

The rate of adaptation, R, is proportional to the rate at which new resistance mutations arise 

(at a low mutation rate μ, see SI section 6) and establish in the population. Alternatively, the 

rate of adaptation, R, can be understood as a measure proportional to the mean establishment 

probability Σc(x)u(x)/Σc(x), i.e., the probability that a mutation arising anywhere in the 

population establishes.

Finally, we define the treatment efficiency Q as the ratio of the effective reduction in growth 

and the rate of adaptation to the antibiotic: a treatment is deemed particularly efficient if it 

can reduce the growth of the wild-type population while at the same time hindering the 

emergence of resistant phenotypes as much as possible. In our model, this corresponds to 

defining

(3)

As we shall see below, the rate of adaptation, R, and the total death rate B typically follow 

the same trends, e.g., they are both larger in shallow gradients than in steep ones, as may 

perhaps be suspected intuitively. By contrast, the treatment efficiency Q will turn out to be 

less accessible to intuition and require a detailed understanding of the population density and 

establishment probability profiles. In the following, we first present simulation results and 

then turn to analytical theory to rationalize our findings.
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3. Simulation results

We simulate a population of wild-type individuals on a lattice of L demes, where each 

individual can migrate into a neighboring deme, replicate, and die, using a Gillespie 

algorithm [44, 45] (see Methods). Wild-type population growth is limited to a carrying 

capacity K by a logistic death term [46]. The population is subject to convective flow with 

speed υ and set in a one-dimensional antibiotic gradient (see the sketch in Fig. 1), which 

interpolates between maximal and zero antibiotic concentration over a characteristic length 

scale λ. The antibiotic gradient induces a wild-type death rate b(x), giving rise to an 

effective growth rate s(x) for the wild-type. For simplicity, we choose the functional form

(4)

such that wild-type growth is strongly inhibited for x ≫ 0 and proceeds unhindered with 

growth rate a0 for x ≪ 0.

Following the equilibration to the steady-state profile c(x) of the wild type, a single resistant 

mutant is inserted into the population at position x. The resistant mutant has the same birth 

rate as the wild type and is subject to the same carrying capacity as the wild-type, but it does 

not suffer from an increased death rate due to the antibiotics. We follow the mutant clone 

until it either goes extinct or reaches the far end of the simulation box, in which case we 

consider the mutant established. The establishment probability u(x) is then equal to the 

fraction of simulations in which a mutant introduced at x managed to establish.

Fig. 2 shows the resulting population density c(x) (top row) and establishment probability 

u(x) profiles, for three different gradients (columns). Within each panel, different colors 

represent the profiles resulting under different flow speeds. Here, we adopt the usual 

convention of positive flow speed pointing to the right, which in our case corresponds to 

flow towards high antibiotic concentrations. We will refer to such flow as co-flow, and 

represent it graphically in hues of cyan. Conversely, negative flow speeds point to the right, 

towards lower antibiotic concentration; we term this counter-flow and use red tones.

In the absence of convection, shown in black, the wild-type population density c(x) roughly 

follows the net growth rate sWT(x) (gray dotted line), and the establishment probability u(x) 

is generally high where c(x) is low, and vice-versa, since the mutants compete for resources 

with the wild-type.

Convection affects the wild-type population density profile as intuitively expected, by 

stretching or compressing the population spatial range for co-flow and counter-flow, 

respectively. Interestingly, while counter-flow significantly alters the profile, the effects of 

co-flow are hindered by the drug profile, which prevents the wild-type from growing too far 

into the antibiotic region.

The effect of convection on the establishment probability is more complex, due to the 

generation of two competing processes that either help or hinder the mutant success. On the 

one hand, the changes in the wild-type profile described above alter the competition with the 
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mutants, reducing the establishment probability in co-flow conditions, and increasing it in 

counter-flow conditions. On the other hand, mutants are also transported towards the 

direction of flow: their success rate is thus increased by co-flow and reduced by counter-

flow. The presence of these two opposing forces generates interesting cut-offs along the 

profile, which we characterize in the Theory section.

The relative strength of the two competing effects can be quantified by the product u(x)c(x), 

which represents the probability density of successful mutants (bottom row in Fig. 2). Here 

we see that co-flow widens the probability peak, while counter-flow shrinks it and moves it 

away from the antibiotic region. This suggests that transportation of the mutants in the 

direction of flow rather than competition with the wild-type is the dominant effect in the 

mutant success rate. Since the area under these curves is the rate of adaptation, R, defined in 

eq. 2, we find that both the rate of adaptation and the total death rate B are higher in co-flow 

conditions and shallow gradients and lower in steep gradient with counter-flow, as shown in 

Fig. 3a. Although R and B follow the same rough trends with flow speed υ, the rate of 

adaptation, R, is generally more strongly affected by flow than the total death rate B. This is 

because flow alters both c(x) and u(x), but leaves the local death rates b(x) unchanged.

This has dramatic effects on the treatment efficiency Q = B/R, shown in Fig. 3b. Shallow 

gradients are generally conducive to a larger treatment efficiency Q than steep gradients. In 

particular, strong counter-flow conditions (υ < 0) in shallow gradients give rise to very small 

R compared to B, such that the treatment efficiency can be more than an order of magnitude 

larger than in the no-flow case. In steep gradients, although both R and B change over two 

orders of magnitude for different flow speeds, the treatment efficiency Q remains roughly 

constant because both R and B are equally affected by flow (Fig. 3a, purple lines).

In summary, our simulations show that the population density profile c(x) as well as the 

local establishment probability u(x) of resistance mutants are both strongly influenced by 

environmental parameters, in particular, by the steepness of the antibiotic gradient and the 

strength of convection. In the following, we lay out a mathematical model based on the 

theory of branching random walks that reproduces our key findings and elucidates the 

relative roles of gradient steepness and flow speed; detailed calculation are mostly relegated 

to the Supplementary Information.

4. Theory

4.1. General framework

We assume that the wild-type population density c(x, t) (rescaled by the carrying capacity K) 

is described by the reaction-diffusion equation [47]

(5)

where aWT(x) is the local wild type birth rate, bWT is the local antibiotic-induced death rate, 

sWT(x) = aWT(x) − bWT(x) is the local net growth rate of the wild type, and υ is the external 

flow speed, representing, e.g., blood flow. This model is a straight-forward generalization 
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for the standard Fisher model [48] to spatially inhomogeneous growth rates. Our model 

ensures that the steady-state local population density cSS depends explicitly on the local 

death rate bWT(x) when the death and birth rate profiles change sufficiently slowly in space,

(6)

Our model, like the original Fisher equation, ignores the discrete nature of individuals, 

which has been shown to significantly alter the tip of the population front [49, 50], 

especially when the carrying capacity is small [51] (see SI section 5 for a detailed 

discussion). Nevertheless, we expect good agreement between our model and simulations in 

terms of the total death rate B and the rate of adaptation, R,, whose values do not 

significantly depend on the population profile at the tip of the front.

Given a single resistance mutation arises in the population at position x, its probability u(x, 
t) to survive for a time t can be derived by modeling the mutant lineage as a branching 

random walk; it obeys a nonlinear reaction-diffusion equation (see Ref. [43] and SI section 

2),

(7)

where aMT(x) is the local birth rate of the mutants and sMT(x) = aMT(x) − bMT(x) is their net 

growth rate. The establishment probability u(x), i.e., the ultimate survival probability for a 

mutation born at position x, as measured in simulations, is given by the steady-state solution 

of eq. 7.

To mimic the situation in our simulations, we assume that the birth rate of wild-type and 

mutant is identical and constant, aWT(x) = aMT(x) = a0, while the wild-type drug-induced 

death rate bWT(x) ranges from −a0 to a0. This implies that effect of the antibiotic is to 

increase the death rate of the wild type, while the drug-induced death rate of the resistant 

mutant is zero. The effective growth rate of the mutants is thus determined purely through 

competition with the wild type, i.e., sMT(x) = a0[1 − c(x)]. To model random dispersal and 

external flow, we have included diffusion and convection terms in eqs. 5 and 7 (note the 

difference in sign between the convection terms). To get a feel for solution to the set of 

equations 5 and 7, we first study the case υ = 0 before turning on convection (υ ≠ 0).

4.2. No flow

We begin by considering the simplest functional form for the antibiotic gradient – a step-like 

increase in concentration at x = 0 that gives rise a net growth rate of a0 for x < 0 and −a0 for 

x > 0, i.e.,

(8)
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Such a sharp gradient could emerge, for instance, at the boundary of different tissues or 

organs with different affinities to store antibiotics [19, 25]. Upon rescaling the spatial 

coordinate by the characteristic length scale , which can be intuitively understood 

as the typical distance that a mutant individual travels through random dispersal before 

replicating, eq. 5 for the wild-type population density in this case becomes

(9)

where ξ = x/ℓ. Its solution, given analytically in SI section 3, transitions quickly from 1 to 0 

over a distance ~ 2ℓ (Fig. 4a).

To find the establishment probability u(ξ) far from the transition, we solve

(10)

which, given the exact solution c(ξ), can simply be integrated numerically (see Methods). To 

make analytical progress, we approximate the wild-type population density with a step, i.e., 

c(ξ) ≈ Θ(−ξ) and ask for solutions to eq. 10 far from the transition region. For ξ > 0, u(ξ) 

also approaches 1 exponentially quickly over a distance ℓ, since the lack of competition with 

the wild-type in this region facilitates the establishment of resistance mutations. Instead, far 

inside the bulk of the population (ξ < 0), we find that the establishment probability exhibits a 

long tail, u(ξ) ~ ξ−2 (Fig. 4a). The long tail implies that mutations arising deep inside the 

bulk of the population still have a relatively high chance of establishing, which explain the 

asymmetry of the simulation curves in Fig. 2c.

For gradients varying over length scales longer than ℓ, we model gradients decaying over a 

characteristic length scale λ with a net growth rate s(ξ) of the form eq. 4. Introducing the 

steepness parameter m = ℓ/λ, which quantifies the relative length scales associated with 

diffusion and drug gradient, we can write the steady-state equation for the wild-type 

population density as

(11)

While eq. 11 does not have an analytical solution, we can change variables to ξ′ = ξm to 

see that the diffusion term in eq. 11 can be neglected when m ≪ 1 and thus c(ξ) ≈ sWT(ξ). 

More generally, for mutants in shallow gradients with a mutant net growth rate sMT(ξ) (see 

eq. 7), we get the eventual establishment probability of the familiar form

(12)
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This so-called quasi-static approximation is a straight-forward extrapolation of the well-

mixed result and has been used to model the establishment probability by Greulich et al. 

[38].

Once solutions for c(ξ) and u(ξ) are found, they can be used to compute the rate of 

adaptation, R, and total death rate B. We find asymptotically

(13)

and

(14)

which agrees well with the numerical result in the two limiting cases λ ≪ ℓ and λ ≫ ℓ (Fig. 

6). Thus, the treatment efficiency Q is constrained to a relatively small range in the absence 

of convection.

Co-flow and counter-flow—We now investigate the influence of convection on the 

population density c(x), the establishment probability u(x), and finally, the treatment 

efficiency Q, which, in the absence of convection, is naturally constrained to a relatively 

small range, see eqs. 13 and 14. We observed in simulations (Fig. 2) that convection will 

incur either a depletion or enrichment of both mutant and wild types in the antibiotic region, 

depending on whether the convection points towards higher or lower antibiotic 

concentrations (co- or counter-flow, respectively). To study the effects of convection 

analytically, we set υ ≠ 0 in eqs. 5 and 7, and introduce the dimensionless flow speed 

. The characteristic flow speed υc is closely related to the Fisher wave speed υF, 

which corresponds to the expansion speed of a freely growing population. If convection is 

too strong, i.e., the flow speed is great than the Fisher wave speed, (|ν| > 2), no steady-state 

population density exists because the population is washed away (see SI section 5), and we 

are therefore constrained to |ν| < 2.

In step-like gradients (m ≫ 1), even in the presence of convection, the population density 

c(ξ) approaches its asymptotic values exponentially fast, as can be seen by expanding eq. 5 

to first order around its fixed points and solving the resulting linear differential equations 

(see SI section 4). As in the no-flow case, we can therefore approximate c(ξ) with a step 

function to find approximate solutions for u(ξ) far from the step gradient. With co-flow (ν > 

0), the diffusion term in eq. 7 can be neglected to first order and hence the establishment 

probability has a very broad tail, u(ξ) ~ (1 + ξ/ν)−1 (Fig. 4b, SI eq. S15). With counter-flow 

(ν < 0), the diffusive term is essential because the convection term cannot balance the non-

linearity since both are negative. This gives rise to a rapid exponential decay u(ξ) ~ e−νξ 

(Fig. 4b).
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In shallow gradients (m ≪ 1), co-flow has little effect on the population density (and 

correspondingly establishment probability) profiles because the convection term νc′(ξ) in 

eq. 5 is roughly proportional to m ≪ 1. In counter-flow condition, our model reproduces the 

cut-off in the population density c(ξ) seen in our simulations, which traces the net growth 

rate sWT(ξ) until it drops sharply. The position of this cut-off can be estimated from the 

definition of the Fisher wave speed νF, which depends on the wild-type net growth rate 

sWT(ξ) (see also SI section 5). In shallow gradients, sWT(ξ) changes little around the cut-off, 

such that the (rescaled) Fisher wave speed becomes position-dependent 

. Hence, no wild-type population density can be maintained in regions 

where the flow speed ν becomes larger than the local Fisher wave speed νF(ξ), and solving 

for ξ gives the position of the cut-off

(15)

Similarly, we find two cut-offs in the establishment probability profile u(ξ): since in shallow 

gradients, u(ξ) ≈ 1 − c(ξ), u(ξ) approaches 1 sharply when c(ξ) drops to zero at . In 

addition, since the mutants have a local net growth rate that depends on the wild-type 

density, their speed limit is by , which gives another cut-off at the 

position

(16)

When , the two cut-offs reduce to one, and both c(ξ) and u(ξ) exhibit a sharp 

transition at  (see Figs. 2a).

Fig. 5 compares the cut-off positions in the establishment probability profiles from the 

numerical model and simulations. While there is excellent agreement between this 

theoretical predictions, eqs. 15 and 16, and the numerical evaluation of the model, as well as 

with the cut-off  of the simulated establishment probability u(ξ), the cut-off  of the 

simulated population density c(ξ) appears shifted towards higher ν. This effect can be traced 

back to number fluctuation at the front of the population where the population size is small, 

which leads to a significant shift in the cut-off depending on the carrying capacity K (SI 

section 5, Fig. 5, black dotted line).

By integrating the numerical solutions to eqs. 5 and 7, we can compute the total death rate B 
and the rate of adaptation, R, and compare with the simulation results. As shown in Fig. 7, 

our model reproduces the phenomenology of the simulation very well, except in strong 

counter-flow conditions, where the number fluctuations at the front give rise to mostly 

quantitative differences.
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5. Discussion

We presented stochastic simulations and an analytical model to study the fates of individual 

resistance mutations in spatial antibiotic gradients, for the first time also including the 

effects of convection. Our analytical model allows us to identify two characteristic length 

scales, λ and ℓ, which, together with the growth rate a0, determine the fate of resistance 

mutations (see Fig. 8). The gradient length λ describes the characteristic length scale over 

which the antibiotic concentration varies. Individuals travel a characteristic distance 

 through random dispersal with migration rate D before replicating. The ratio m = 

ℓ/λ determines whether a gradient is shallow or steep. If the gradient is shallow (λ ≫ ℓ), the 

antibiotic concentration does not appreciably change over distances accessible to a single 

individual in one generation, such that the population is locally adapted to the antibiotic 

concentration and changes only on length scales of order λ. If the gradient is steep (λ ≪ ℓ), 
an individual close to the gradient can travel between regions of high and low antibiotic 

concentration in its lifetime such that the population density is constant far from the gradient 

and changes relatively abruptly over a distance ℓ around the gradient.

From the migration length ℓ, we also identify the characteristic speed , which 

is closely related to the expansion speed vF = 2υc of a freely expanding population [48]. 

Hence, if convection is too strong, i.e., if the convection speed |υ| > υF, the population will 

not be able to grow against the flow and be simply washed away (Fig. 8; this akin to the 

extinction transition of populations due to convection [52, 53]. For the emergence of 

resistance, we are thus naturally restricted to the region |υ| < υF.

It is illuminating to estimate the typical range of ℓ and υc for microbial communities. A 

typical (non-motile) bacterial cell may have a diameter of 1µm, swimming in a medium of 

viscosity comparable to that of water (e.g., blood [54]), which gives a diffusivity of order 

0.1–1µm2/s. The motion of motile bacteria is characterized by much larger diffusivities, up 

to tens or even hundreds of µm2/s [55]. Together with a typical growth rate of 0.5–2hr−1, this 

gives a possible range for ℓ between 50µm and several millimeters. For comparison, in a 

microfluidic experiment by Zhang et al. [26] the length scale on which the drug gradient 

varied was ≈ 200µm such that λ/ℓ ~ 1. For another recent experimental study by Baym et al. 

[12] with a reported spreading velocity of 40mm/hr, we find ℓ ≈ 1 – 20mm. Thus, depending 

on the properties of the bacteria and the antibiotic gradient, both shallow (λ ≫ ℓ) and steep 

(λ ≪ ℓ) gradients can plausibly arise. Similarly, with our range of parameters for D and a0, 

we find typical values for υc ≈ 0.1 – 10µm/s, which is on the same order of magnitude as 

estimated flow speeds in the gut, and achieved in an artificial gut microfluidic system [34].

We have quantified the emergence of resistance by computing the rate of adaptation for a 

wide range of gradient steepnesses and convection speeds. As a general rule, our model 

predicts that the rate of adaptation in shallow gradients is roughly proportional to the 

gradient length λ, as long as λ is smaller than the system size. This is in agreement with 

previous results from Greulich et al. [38], who employed the quasi-static approximation, eq. 

12. As we have shown, this approximation breaks down when λ ≈ ℓ. In the opposite limit, λ 
≪ ℓ, i.e., in steep gradients, we find a finite rate of adaptation, in agreement with the so-
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called staircase model of Hermsen et al. [37]. This is because mutants born in low antibiotic 

concentration regions can migrate into regions of high concentration, where they enjoy a big 

selective advantage. Our model serves as a generalization of these two previous model by 

capturing the full crossover from the ”mutate and migrate” mechanism governing adaptation 

in steep gradients to the ”local” adaptation in shallow gradients [56].

Convection can have a momentous influence on the rate of adaptation in our model. Co-flow 

(convection towards higher antibiotic concentration) increases the rate of adaptation by 

extending the range of the wild-type population further into high concentration regions, 

where resistance mutants have a strong advantage. At the same time, co-flow transports 

resistant mutants born in low-concentration regions (where the wild-type population density 

is high) to the front. In the same manner, counter-flow (convection towards lower antibiotic 

concentration) can restrict the range of the wild-type population and prohibit resistance 

mutation from establishing when they arise far away from the antibiotic gradient. This can 

lead to a decrease of the rate of adaptation by several orders of magnitude for strong 

counter-flow, until eventually the population goes extinct when counter-flow becomes too 

strong (see Fig. 8).

In the context of antibiotic treatment of an infection, the eradication of the infecting bacterial 

population is paramount [40] and therefore, we have argued that focusing on the rate of 

adaptation alone may be misleading. To quantify the trade-off between wild-type killing and 

the emergence of resistance, we measured the reduction in pathogenic growth relative to the 

rate of adaptation. This measure, which we call the treatment efficiency, has an intuitive 

meaning: a high treatment efficiency implies a strong reduction in the growth of the bacteria 

before a resistance mutation arises and establishes. In our model, the treatment efficiency is 

strongly affected by counter-flow, where it can be an order of magnitude higher than in a no-

flow scenario. This is ultimately a consequence of the rate of adaptation being doubly 

affected by convection, because convection alters both the wild-type population density (thus 

changing the local competition that resistant mutant clones face) and the dynamics of 

individual mutants, which are carried away from the high antibiotic concentrations they 

require in order to establish. Despite its intuitive meaning, however, the treatment efficiency 

as defined here makes no predictions about optimal treatment regimens; it merely serves as a 

quantification of the inherent trade-off between wild-type eradication and selection for 

resistance.

Our model is restricted to scenarios where interference between multiple mutant clones can 

be neglected, since we follow the establishment of individual mutations. Therefore, our 

model, operates exclusively in the ”mutation-limited” regime [39], where the rate of 

adaptation is dominated by the waiting time until the establishment of mutations. By 

contrast, both Hermsen [37, 39] and Greulich [38] consider the establishment of many, 

potentially contemporaneous mutations. In very shallow gradients, this can lead to 

a ”dispersion-limited” regime if the mutational supply is large; the rate of adaptation is then 

dominated by the speed with which established mutations invade previously uninhabitable 

territory. We derive upper limits for the mutation rate μ per generation for our model to be 

applicable (SI section 6) and find that in steep gradients, clonal interference is negligible as 

long as µK ≪ 1, where K is the typical population size in a population patch of size ℓ. This 
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result is similar to what is expected in well-mixed populations [57] (see SI section 6). In 

shallow gradient, the corresponding condition is µK ≪ (ℓ/λ)2. Thus, if the gradient is too 

shallow for a given mutation rate, mutations enter the population too fast and clonal 

interference effects are expected. For resistance mutations with small target sizes, mutation 

rates can be very small, typically less than 10−6 [58, 59], and thus our approximation may be 

accurate even for relatively large carrying capacities K. Even when the mutation rate is high, 

we expect convection and spatial gradients to have the same qualitative effects on the 

establishment of resistance mutations, and thus our results should remain qualitatively 

correct even beyond the single-mutation regime considered here.

Our analytical model extends previous models [37–39] by incorporating arbitrary gradients 

and convection, and it can serve as a general branching process framework to study 

adaptation in spatially heterogeneous environments. For instance, we can easily incorporate 

antibiotic sanctuaries which are predicted to facilitate the emergence of resistance [23, 25]. 

Other, more complex gradients may be necessary to describe cases in which the death rate 

depends on the antibiotic concentration on a non-linear manner [37]. Our model can also 

easily be re-interpreted to apply to a broad range of different ecological scenarios, like 

heterogeneous nutrient concentration. To make our model more realistic, it would be useful 

to model the bacteria as having a finite size, such that the population front can advance 

through mere growth, even against strong counter-flow [60]. For strong co-flow, individuals 

may also de-adhere and be carried away from the bulk population, thus founding extant 

colonies that enjoy large growth rates in the absence of competition for resources. Such 

processes can be studied by generalizing the diffusion term in our model to a long-range 

dispersal term as used frequently to model epidemics [61]. Since long-range dispersal can 

allow mutants far from the population front to escape the bulk population, we expect it to 

increase the total establishment probability and thus the rate of adaptation relative to short-

range dispersal as discussed here.

Another interesting generalization of the model would be to extend the model to two-

dimensional populations since real biofilms typically grow as two-dimensional communities, 

with complex spatial patterns. The establishment of beneficial mutations in microbial 

colonies has recently been discussed [15, 62]. Due to the particular strength of genetic drift 

at the front of such populations, beneficial mutations first have to reach a threshold size 

(depending on the strength of the selective advantage) neutrally before they become 

established. Once the mutant clone reaches the threshold size, the selective advantage of the 

mutants can deterministically drive them to fixation in the population. During the initial 

phase, the mutant clone is contained between boundaries with characteristic stochastic 

properties that are not captured in our one-dimensional model [14]. However, if the 

threshold size is small, the boundary fluctuations will not have a large impact on the growth 

of mutant clones. In such cases, we expect our results to apply also to two-dimensional 

populations.

The emergence of drug resistance remains a topic of significant interest, both from a 

scientific and a public health point of view. Considerable effort is brought forward to create 

novel antibiotics [63] and new therapy strategies are developed that attempt to limit the 

emergence of resistance [64, 65], but more research is needed to understand how resistance 
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evolves in complex spatio-temporal settings like the spatial gradients discussed in this paper. 

In particular, as we have shown here, convection constitutes an important factor in shaping 

the adaptation to antibiotics in spatial concentration gradients and should receive more 

attention from both theorists and experimentalists.

6. Methods

Individual-based simulation

We perform individual-based, stepping stone simulations where both wild-type and mutants 

are modeled explicitly. The population is divided into demes with carrying capacity K = 100 

on a one-dimensional lattice. Wild-type and mutants replicate at a rate a0 and migrate at rate 

D independently on their position. Wild type in deme x die at a rate b(x) = 1 + tanh(mx). 

Since we assume throughout that the antibiotic leaves the mutants unaffected, mutants do 

not die in our simulations. Analogously to a Gillespie algorithm, in each simulation step, a 

birth, death or migration event is performed according to its relative rate [44, 45], as follows.

• Birth. Birth events occur at a total rate equal to a0Σx c(x), where c(x) is the total 

number of individuals in deme x. For each birth event, a source individual is 

selected at random and replicated into a random target site between 1 and K 

within the same deme. Because the target site can either already be filled with an 

individual or be empty, this move effectively translates into logistic growth 

within the deme.

• Death. In our model, only the wild type can die, thus deaths have a total rate 

corresponding to Σi b(x)cWT(x), where cWT(x) represents the number of wild 

type individuals in deme i. To perform a death event, first, a deme x is picked 

proportionally to its relative death rate b(x)cWT(x), and then, a random wild type 

within the same deme selected to be removed.

• Migration. Migrations are performed at a rate D Σx c(x) by picking a random 

individual and swapping it with a randomly selected target site from one of the 

two neighboring demes. As in the case of birth events, the target site can either 

correspond to an individual, or to an empty site.

• Time step. Time is tracked by sampling a time interval δt from an exponential 

distribution with rate Σx [(a0 + D)c(x) + b(x)cWT(x)], as in a standard Gillespie 

algorithm. The total elapsed time is the sum of the sampled time intervals.

• Convection. Convection (with convection speed υ) is implemented by shifting 

the population by one deme away or towards the antibiotic gradient, for negative 

or positive convection respectively. The convection strength is controlled by 

performing the shift at a rate 1/|υ|, i.e., any time the time elapsed since the last 

shift is greater than 1/|υ|.

For each simulation, we first allow the wild type to reach the steady-state profile c(x). We 

then introduce one mutant element at position x and run the simulation until either all 

mutants go extinct, or mutants reach the last deme in the simulation box. No further 

mutations are allowed in the course of the simulations. The probability of fixation u(x) is 
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then computed as the proportion of the simulations in which a mutant introduced at x 
reached fixation.

Numerics

Numerical solutions to eqs. 5 and 7 were obtained by evaluating the differential equations 

using Mathematica’s built-in NDSolve routine with the backwards differentiation (BDF) 

method, with a maximum step size of 1 and a domain size of 1000. Initial conditions were 

chosen according to the analytical approximations to the steady-state profiles given in the 

text. This is done to speed up computation and increase numerical stability, but is otherwise 

inconsequential; starting with different initial conditions leads the same final solution. To 

obtain steady-state profiles, we solve the full time-dependent problems until the solution no 

longer changes for longer evaluation times.

To compute the establishment probability u(x) in realistic wild-type population profiles c(x), 

we first computed the steady-state population density and then used the final profile to 

compute the (constant in time) local death rate for the mutants b(x) = 1 − c(x). The resulting 

numerical solutions were integrated numerically using Mathematica’s built-in NIntegrate 
routine to obtain the total death rate B and the rate of adaptation, R,.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sketch of our modeling setup. We assume that, initially, a purely wild-type population has 

reached a steady-state density profile (blue) in the presence of a steady-state antibiotic 

concentration gradient (orange). Resistance mutations occur spontaneously in randomly 

drawn individuals and disperse, proliferate and die until extinction or ultimate fixation. 

Convection can either drive the population towards the antibiotic (co-flow, υ > 0) or away 

from it (counter-flow, υ < 0). Our goal is to analyze the establishment probability of 

resistance mutation for a given rate of wild-type killing.
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Figure 2. 
Population density c(x) (top row) and establishment probability u(x) (middle row) for three 

different concentration profiles (sWT, gray background; (a) shallow gradient, λ = 100; (b) 

intermediate gradient λ = 10; (c) step) and different values of υ = −0.4 to 0.6 (υ < 0, red 

tones; υ = 0, black; υ > 0, cyan tones), from stepping stone simulations. The bottom row 

shows the product u(x)c(x), which identifies the localized region where successful mutants 

arise.
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Figure 3. 
Quantifying the trade-off between killing of wild-type cells and establishment of resistant 

mutants. (a) the total death rate B and the rate of adaptation, R, for different antibiotic 

gradients (shallow gradient, λ = 100, green; intermediate gradient, λ = 10, blue; step, 

purple). Counter-flow (υ < 0) leads to drastic decrease of both B and R, while co-flow has a 

milder effect, in accordance with the individual population and establishment probability 

profiles in Fig. 2. (b) The treatment efficiency Q, defined as the number B of drug-induced 

deaths per generation divided by the rate of adaptation, R, (see eq. 3). Counter-flow can 

increase the treatment efficiency by an order of magnitude in shallow gradients because R is 
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reduced by the effect of convection on both u(x) and c(x), while B only captures changes in 

c(x).
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Figure 4. 
The analytical model is in good agreement with the simulation results. (a) Population 

density c(ξ) (blue) and establishment probability u(ξ) profiles for a step-like antibiotic 

profile without external flow. Symbols are simulations, solid lines are numerical solutions to 

eqs. 5 and 7, dashed lines are analytical solution, eqs. S7 and S9. (b) Co-flow (ν > 0, cyan) 

gives rise to broader algebraic establishment probability profiles, while counter-flow (ν < 0) 

gives rise to an exponential decrease. Both cases are asymptotically captured by the 

analytical approximations (solid lines, eqs. S9, S15 and S16.
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Figure 5. 

In shallow gradients, counter-flow gives rise to sharp cut-offs in the population density ( ) 

and establishment probability ( ) profiles (see Fig. 2a). The cut-off positions are well-

captured by the analytical approximations (solid lines, eqs. 15 and 16). Squares are cut-offs 

extracted from simulation, dots and dotted line from numerical solutions to eq. 5 and 7 

without and with a growth rate cut-off (SI section 5).
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Figure 6. 
Total death rate B and rate of adaptation, R (symbols, from numerical solutions to eq. 5 and 

7), vary as a function of the rescaled gradient length λ/ℓ = 1/m. In steep gradients (m ≫ 1), 

B and R approach constants. In the limit of shallow gradients (m ≪ 1), both R and B are 

proportional to 1/m. In the absence of external flow, both limits are captured by the 

analytical results, eqs. 13 and 14.
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Figure 7. 
Comparison between simulations and numerical solutions. (a) Total death rate B and rate of 

adaptation, R, computed from simulations (symbols) and numerical solutions to eqs. 5 and 7 

(lines), in three different gradients (as in Fig. 3). The agreement is very good, except for 

strong counter-flow, where number fluctuations at the front become important, as explained 

in the main text. (b) The treatment efficiency Q found in simulations is also well-captured by 

our model, except for strong counter-flow.
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Figure 8. 
Schematic summary of our main results. Identifying the characteristic length scale ℓ allows 

us to classify gradients as steep (bottom) or shallow (top), depending on how ℓ compares 

with the gradient length scale λ. Convection leads to extinction when it is too strong 

compared with the characteristic convection speed υF, no matter whether convection is 

directed towards higher (co-flow) or lower (counter-flow) antibiotic concentration. Shown in 

the background is the rate of adaptation of the population to the antibiotic (blue colors, low 

adaptation; orange colors, high adaptation).
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