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Abstract

Metal artifacts can cause substantial image quality issues in computed tomography. This is 

particularly true in interventional imaging where surgical tools or metal implants are in the field-

of-view. Moreover, the region-of-interest is often near such devices which is exactly where image 

quality degradations are largest. Previous work on known-component reconstruction (KCR) has 

shown the incorporation of a physical model (e.g. shape, material composition, etc.) of the metal 

component into the reconstruction algorithm can significantly reduce artifacts even near the edge 

of a metal component. However, for such approaches to be effective, they must have an accurate 

model of the component that include energy-dependent properties of both the metal device and the 

CT scanner, placing a burden on system characterization and component material knowledge. In 

this work, we propose a modified KCR approach that adopts a mixed forward model with a 

polyenergetic model for the component and a monoenergetic model for the background anatomy. 

This new approach called Poly-KCR jointly estimates a spectral transfer function associated with 

known components in addition to the background attenuation values. Thus, this approach 

eliminates both the need to know component material composition a prior as well as the 

requirement for an energy-dependent characterization of the CT scanner. We demonstrate the 

efficacy of this novel approach and illustrate its improved performance over traditional and model-

based iterative reconstruction methods in both simulation studies and in physical data including an 

implanted cadaver sample.

1. Introduction

Many imaging scenarios involve known devices in the field-of-view. Examples in 

orthopedics include pedicle screw and rods for spine surgery, knee and hip implants for joint 

replacement, and plates and screw for fixation in trauma cases. In image-guided procedures, 

surgical tools are often within an intraoperative imaging field. When these components are 

metallic and one utilizes a 3D cone-beam imaging system, one can find substantial artifacts 

that appear as bright or dark streaks, “blooming” of the metal components, and other 

nonuniform shadings in the reconstructed volume. The causes of metal artifacts include 

beam hardening, partial volume effects, photon starvation, and scattered radiation behind 

metal implants in the data acquisition.

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2018 April 21.

Published in final edited form as:
Phys Med Biol. 2017 April 21; 62(8): 3352–3374. doi:10.1088/1361-6560/aa6285.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Such artifacts tend to be particularly troublesome in interventional imaging since image 

quality degradations are most pronounced in regions immediately surrounding the metal 

components which tends to be the region which is of greatest interest. For example, in spine 

fixation surgery, pedicle screws are inserted into vertebrae. These screws need to be placed 

within the pedicle and body of the vertebra avoiding any breaches that might the damage the 

spinal cord, damage tissues anterior to the vertebra, or lead to instability in the fixation 

hardware. The identification and localization of such problems is greatly complicated by 

metal artifacts that can obscure the surrounding anatomy.

There has been a great deal of work on methods for metal artifact reduction. Such methods 

can generally be categorized into two groups: 1) Techniques that identify and attempt to 

correct data that correspond to measurements through metal; and 2) Methods that attempt to 

model the reduced data fidelity associated with metal devices within the reconstruction 

algorithm. Correction methods generally attempt to replace projection data containing metal 

with synthesized projections based on surrounding projection samples via interpolation 

(Kalender et al 1987, Watzke and Kalender 2004, Li et al 2010, Meyer et al 2009). Such 

approaches can use sophisticated techniques including wavelet decompositions (Zhao et al 
2000), Laplacian diffusion (Zhang et al 2007), or inpainting techniques (Arias et al 2009, 

Xinhui Duan et al 2008, Meyer et al 2012). Other approaches attempt to use prior imaging 

studies to replace the missing data (Bal and Spies 2006, Paudel et al 2013, Heußer et al 
2014, Koehler et al 2012, Lell et al 2012). Some techniques apply additional corrections in a 

second pass (Prell et al 2009, 2010) or in a iterative fashion with refined interpolations based 

on the initial reconstruction. All of these approaches generally necessitate an algorithm to 

identify which projections contain metal and replacement of those projections with 

synthesized projections which can be subject to error and miss details that were obscured by 

the metal. Thus, while these methods typically mitigate the most severe artifacts, regions 

immediately adjacent to metal components often have residual image quality issues and/or 

missing features.

Model-based reconstruction methods have also shown utility in the reduction of metal 

artifacts. A relatively simple statistical reconstruction that weighs measurements based on 

their variance will show some advantage since projections with metal tend to be 

substantially down-weighted (Buzug and Oehler 2007, Ge Wang et al 1996). Other iterative 

approaches combine model-based reconstruction and data interpolation (Lemmens et al 
2009). One can also treat the projections with metal as missing data effectively weighting 

those data to zero and rely on regularization to “fill in” what is missing (De Man et al 1999). 

These techniques are effectively performing a kind of interpolation in the image domain 

based on their regularization that can also result in missing features. More sophisticated 

approaches avoid interpolation and use all of the projection data by including not only a 

noise model but also model that accommodates spectral effects and beam hardening. That is, 

a polyenergetic beam and energy-dependence in patient attenuation is integrated into the 

reconstruction algorithm, which can be very successful in reducing metal artifacts (De Man 

et al 2001, Idris A and Fessler 2003, Elbakri and Fessler 2002). Unfortunately, these 

approaches tend to be complex, necessitating specific spectral models and system 

characterization as well as an algorithm with increased computational requirements. Related 

work (Verburg and Seco 2012) uses material specific beam-hardening corrections and 
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monoenergetic iterative reconstruction, but still requires knowledge of material 

compositions.

One of the principal difficulties with all metal correction methods is that there is 

fundamental lack of information in regions near metal. One possible way to improve 

performance within a model-based approach is to inject more information into the 

reconstruction problem by integrating knowledge of the shape and composition of metal 

components directly into the reconstruction algorithm. In interventional imaging, in 

particular, the exact implants, surgical tools, or other devices are often known prior to 

imaging and shape models (e.g., CAD models) and material compositions may be available 

as auxiliary information. Both the constrained optimization methods of Snyder et al. (Snyder 

et al 2001) and the Known Component Reconstruction (KCR) technique (Stayman et al 
2012a) leverage such additional information. These approaches solve a joint estimation 

problem consisting of a registration of the known metal components to placing the metal 

device model in the correct position within the anatomy as well as a “standard” 

reconstruction of the surrounding attenuation material. Such model-based methods with 

known component knowledge have demonstrated an ability to dramatically reduce metal 

artifacts. However, residual artifacts remain when a simple monoenergetic model is used.

Extensions of known component methods have attempted to further reduce artifacts by 

integrating a polyenergetic forward model (Zbijewski et al 2012, Williamson et al 2002). 

Other extensions have included generalized registration methods to integrate component 

knowledge for devices whose shape is not known exactly (Stayman et al 2012b) and a 

generalization where metal components are modeled at much higher spatial resolution than 

the surrounding anatomy to minimize nonlinear partial volume errors (Stayman et al 2013). 

While such extensions can yield improved results (particularly in close proximity to a metal 

device), this advantage comes with additional complexity – both in terms computational 

burden and the increased information required by the reconstruction algorithm. 

Polyenergetic system models typically require both a parameterization of the energy-

dependence for the materials present in a scan as well as a calibrated model of the x-ray 

spectrum and detector energy sensitivity. In practice, there are additional complexities since 

x-ray tube voltage often varies for different studies.

In this work, we leverage the same kind of decomposition as used in (Stayman et al 2013) 

which decouples physical effects in the patient anatomy with those effects due to the metal 

components. This permits a mixed-fidelity system model where metal components can be 

modeled with high-fidelity using a simple parameterized energy dependence (i.e., a spectral 

transfer function), while the surrounding patient anatomy can be modeled with a “standard-

fidelity” monoenergetic model. We integrate this model within a polyenergetic KCR 

technique and, additionally, eliminate the need for specific material component composition 

knowledge as well as the need for x-ray beam spectral characterization through joint 

estimation of the spectral parameters as part of the reconstruction.

In the following sections we introduce the mixed-fidelity system model, the spectral transfer 

function, which characterizes energy dependence, and derive a reconstruction algorithm that 

jointly estimates the spectral parameters associated with metal components and reconstructs 
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the patient anatomy from a single tomographic scan. Simulations were conducted to 

investigate the convergence and the performance of calibration-free polyenergetic KCR 

framework. Performance of the proposed methodology was also evaluated in physical 

phantom and cadaver torso test bench data. Comparisons to traditional filtered-

backprojection (FBP), FBP with metal artifact reduction, penalized weighted least-squares 

(Bouman and Sauer 1993), monoenergetic KCR (Stayman et al 2012a), and pre-calibrated 

polyenergetic KCR were performed.

2. Methods

2.1. Mixed Object and Forward Models for Polyenergetic X-ray CT

Consider the following monoenergetic measurement model for a transmission tomography 

system

(1)

where ȳ denotes the mean measurement vector, the operator D{·} forms a diagonal matrix 

from its vector argument, g represents a vector of system-dependent gain terms including 

photon fluence, A is a discretized linear projection operator, and μ is a vector of object 

attenuation values. While (1) represents a traditional forward model, we choose to integrate 

additional specific knowledge of components through a modification of the object model. 

Specifically, along the lines of previous work (Stayman et al 2012a), we parameterize the 

object as the combination of an unknown anatomical background μ* and an arbitrary number 

of components, each of which is composed of a homogeneous material and is represented by 

the vector . This modified object model is

(2)

where n known components, , are registered in the field of view through the 

transformation T. The registration for each component is parameterized by the vector λn and 

Λ denotes the collection of registration parameters for all components. Due to the additive 

form in (2) the background anatomy, μ*, must be appropriately chosen to not contribute in 

regions where the components lie. In previous work (Stayman et al 2012a) this was enforced 

via a masking operation

(3)

where s{n} is the mask for the nth component that is zero for voxels inside the component 

and one outside, and μ̃ denotes an unmasked parameterization of the background anatomy. 
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The masks must be registered in accordance with the component transforms making the 

background parameterization dependent on Λ. For mathematical simplicity in the following 

algorithm derivation, we express the object in terms of μ*(Λ), which contains the voxel 

values where there are no components (as opposed to the full object parameterization μ̃ 

which has attenuation values that are essentially nuisance parameters since they are always 

masked out). However, the masking operation remains important to avoid “double-counting” 

background and component attenuation within the same voxel. This operation is shown 

explicitly in the final pseudocode.

The object model in (2) permits the following factorization of the forward model in (1):

(4)

Note that the common monoenergetic Beer’s law model for projections appears separately 

for the background anatomy and for each of the components. This yields the opportunity to 

refine the physical model for x-ray propagation through the components only which is 

arguably where higher-fidelity modeling is needed most (e.g. due to artifacts associated with 

metal components). Moreover, since individual components often have compact support in 

both image and projection domains, high-fidelity component models can be applied 

efficiently in terms of storage and computation using small image volumes and small 

projection areas (as opposed to approaches that attempt a high-fidelity model for the entire 

image volume).

Equation (4) permits a mixed fidelity model where the model for the background anatomy is 

monoenergetic and the model for the components includes polyenergetic beam and 

attenuation effects. This is potentially a very useful model for metal devices since spectral 

effects are most pronounced for the measurements involving metal components. We write 

the modified model as

(5)

where  denotes the binary component mask representing the shape of each homogeneous 

component. The exponential in (4) has been replaced with fn(·) which we refer to as the 

spectral transfer function (STF) relating path length through the nth registered component to 

the transmissivity. This spectral transfer function can accommodate both beam quality and 

energy-dependent detector effects, and may change component-to-component due to 

differing compositions. Inspired by beam-hardening correction strategies (Hsieh et al 2000), 

in this work, we propose a STF that uses a polynomial expansion inside an exponential 

which is written as
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(6)

where f{n} is a function of path length through the component, p{n}, and is further 

parameterized by the vector κ{n}. Thus, for incorporation in the modified forward model in 

(5) we have

(7)

The κ{n} vector parameterizes the shape of the STF for each component. For a 

monoenergetic X-ray imaging system,  is the negative attenuation value for the 

component for k = 1, and zero for all other k. For polyenergetic systems, the κ values allow 

approximation of energy-dependent effects on the survival probability of X-ray photons 

passing through the known components.

2.2. Polyenergetic Known Component Reconstruction Objective Functions

With the modified forward model in (5) and the definition of the STF in (6), we derive a 

reconstruction objective function. Applying a log transformation on (5) and presuming a 

Gaussian model, we write the following penalized weighted least squares (PWLS) estimator:

(8)

where L denotes the negative log-likelihood for the transformed measurements, the weighted 

2-norm includes a weight vector equal to the inverse of the variance of the transformed 

measurements (Sauer and Bouman 1993), and a general regularization term, R, is 

incorporated that penalizes pairwise differences in voxel values and is controlled by the 

regularization parameter β.

The estimator in (8) is general and forms the basis for a new polyenergetic KCR. Rather than 

performing simultaneous estimation of μ̂*, κ̂, and Λ̂, we adopt a staged estimation strategy 

of component registration followed by reconstruction. This permits us to take advantage of 

previously developed registration tools perform the 3D-2D component registration, fix Λ, 

and then solve (8) for μ̂* and κ̂. The staged estimation strategy is discussed in detail in the 

following section.

Before introducing the staged estimation strategy, we would like to introduce a competing 

approach for dealing with unknown material composition and beam quality based on a 
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simplification of (8). Specifically, one might opt to (pre)estimate κ̂ values using a 

specialized prescan of components in air. This approach may be a clinically practical 

solution to characterize unknown energy dependencies since implants and surgical devices 

could be scanned prior to an image-guided procedure that involves scanning of the 

implanted patient. By scanning in air, there is no longer any anatomical background, μ̂*, and 

(8) becomes

(9)

permitting a precalibration wherein the spectral coefficients for each component can be 

estimated. (We note that registration parameters must also be estimated as nuisance 

parameters that are not relevant to subsequent acquisitions.) Following this precalibration 

step, reconstructions of subsequent acquisitions (with background patient anatomy) may be 

performed using (8) with fixed κ̂ values – simplifying the reconstruction process. Both the 

precalibration approach as well as the (staged) calibration-free approach are implemented 

and evaluated in following sections.

2.3. Preregistration of Known Components using Gradient Correlation

A staged registration-then-reconstruction estimation framework permits the use previously 

developed, fast and robust registration methods, and simplifies the subsequent reconstruction 

step. Focusing on rigid registration, each component pose is parameterized as follows: The 

coordinate frame of each component is defined at the center of the component volume and 

its position and orientation with respect the world coordinate frame is represented as a 6-

element vector of translation and rotations λ{n} = (x{n} y{n} z{n} η{n} θ{n} ϕ{n}) using the 

ZYX Euler angle.

We choose a 3D-2D registration method that computes the gradient correlation (GC) 

between the acquired image data and simulated projections of known components with no 

anatomical background. This approach is described in detail in (Uneri et al 2015). The 

method was evaluated in (Uneri et al 2015) and found to be robust for the pedicle screw 

registration problem providing target registration errors of 0.2 mm and 0.2 degrees in 

cadaver studies using only three projection views. In this application where many projection 

views are available, we expect equal or better performance. The general approach is briefly 

described below.

The gradient correlation between two images, y0 and y1, is defined as

(10)
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where u and v denote image coordinates and NCC denotes normalized cross correlation. 

This metric forms the basis of the registration objective function which is denoted:

(11)

where yα denotes the αth projection image, and ȳα is the simulated αth projection image of 

the nth component with no anatomical background. We estimate a solution to (11) using the 

CMA-ES approach (Hansen and Kern 2004). This algorithm was implemented in MATLAB 

with function calls to an externally compiled CUDA/C++ library for fast computation of 

projections and objective function values on a GPU.

2.4. High fidelity forward projector

After the 3D-2D registrations for each component are applied, one has an estimate of the 

collection of registration vectors, Λ. Thus, the path length of the nth positioned component 

p{n} (λ{n}) in (7) may be precomputed prior to reconstruction. It is possible to further 

improve accuracy of the mixed fidelity forward model by adopting finer discretization when 

computing p{n} (λ{n}). Since the components are compact and relatively small (as compared 

with the whole object volume), and since a high-resolution p{n} (λ{n}) need only be 

calculated once, there is little computational cost.

In principle, to compute path length, geometric transformations are applied to each known 

component (represented by the 3D binary component mask) and then the transformed 

component is forward projected according to the fixed system geometry. Unfortunately, this 

procedure can result in additional blur due to the inherent interpolation in the transformation 

operation. This small amount of error can lead to potential data mismatches in the forward 

model and objective function and result in residual artifacts in the final reconstructed results. 

Thus, instead of transformation and interpolation on each component, we propose a 

transformation of the projection geometry itself to avoid the interpolation. The original 

(system) projection geometry is specified by a series of projection matrices (PM) that 

parameterize the source position with respect to the world coordinate system. We modify 

these projection matrices with translations and rotations of the associated with the estimated 

component pose. This results in the following modified projection matrix relating a 3D point 

and its projection in the 2D detector plane:

(13)

where (x, y, z)T are component volume coordinates, (u, v)T is the projected location in the 

detector coordinate frame, R3x3 is the rotation matrix for the component with respect to the 

detector frame parameterized by ((ηn, θn, ϕn), PM3x4 is the original projection matrix and 

the ~ symbol denotes that the left and right sides are equal to within scalar multiplication. A 
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trapezoidal separable footprints forward and back projector (Long et al 2010) were 

employed for all investigations.

While the blur with transformations of the shape model is undesirable, there is physical blur 

associated with an extended focal spot and the detection process. We apply a Gaussian blur 

function with width parameter, δ on the path length calculation inside the exponential to 

approximate the system blur effects for the component forward model. We note that blur 

effects on the background anatomy are not modeled; however, this is arguably less important 

for the reduction of noise and artifact issues associated with high-density components. 

Hence, we replace the path length model of (7) with

(14)

where we denote the high-fidelity (without transformation interpolation) forward projector 

by AH. The width parameter, δ, is tuned to minimize edge artifacts near the component in 

reconstructions.

2.5. Optimization Approach and implementation

Pseudocode for our reconstruction approach is illustrated in Table 1. This table shows the 

iterative reconstruction process post-estimation of component registration. The algorithm 

begins with initialization of parameters and precomputation of a number of important 

variables including 1) The transformed component masks, ω; 2) the component path lengths, 

p{n}, using the previously described high-fidelity approach and Gaussian blur operation; and 

3) the total ray length minus the length through all components, L*, that is used for 

normalization. The main body of the algorithm computes the modeled line integrals through 

the components, l, and the background, l*, as well as alternating updates to 1) the 

background anatomy using a separable quadratic surrogates (SQS) approach (Erdoğan and 

Fessler 1999a, 1999b) and to 2) the spectral transfer function coefficients using iterative 

coordinate descent. Details of both updates can be found in the appendix.

2.6. Experimental methods

To investigate the performance of the proposed approach, we conducted a number of studies 

using both a simulated CBCT system and real test bench system. In this initial investigation 

of the polyenergetic approach, we concentrate on the single metal component scenario. 

Various reconstruction methods were used for comparison. Details of these experiments 

follow.

(a) Reconstruction approaches used in the comparison studies—This paper has 

introduced two new approaches for evaluation. First, a polyenergetic known component 

reconstruction method that jointly estimates the STF based on the objective in (8) and the 

algorithm in Table 1. This method uses a staged pre-estimation of component registration 

coefficients and we will refer to this approach as Poly-KCR. A second approach based on 
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pre-calibration of the STF using (9) and in-air component scans is referred to as PreCal-
KCR.

For comparison, we considered the original monoenergetic formulation of KCR (Mono 
KCR) from (Stayman et al 2012a). This KCR formulation presumes complete knowledge of 

both the morphology of the component as well as its composition and spectral 

characterization of the imaging system – meaning known components have a single energy-

independent attenuation value (μ0) and a monoenergetic forward model is appropriate. For 

physical data experiments where Mono-KCR was applied and the spectral characterization 

of the system is presumed to be known, we selected μ0 = −κ1 from the Poly-KCR STF 

coefficient estimates. For the δ parameter in equation (14) which permits accommodation of 

additional system blur (e.g. due to focal spot and/or detector blur) we empirically chose a 

value of 0.85 pixels full-width, half-maximum for the Gaussian blur for all of the physical 

data experiments.

We also applied a traditional filtered-backprojection (FBP) approach and a standard model-

based reconstruction approach. Specifically, we adopt FBP with a Hamming filter with α = 

0.5 and a cutoff frequency of 0.8. Additionally, we implemented a metal artifact reduction 

approach for use with FBP (FBP-MAR). We followed the approach described in (Hsieh 

2009) where projection values behind metal objects are replaced by a synthesized projection 

based on the neighboring projection samples that do not contain metal implants. Metal 

containing projections were segmented using simple thresholding. New projection values 

were synthesized using the MATLAB (MathWorks, Natick, MA) command roifill which 

performs smooth 2D interpolation by solving Laplace’s equation using pixel values at the 

boundary of the inpainted region. Subsequent reconstruction was performed with the same 

FBP method as discussed above. A standard (linearized) monoenergetic penalized-weighted 

least squares (PWLS) (Sauer and Bouman 1993) was also applied.

For all model-based approaches, including PWLS and KCR methods, we chose a Huber 

penalty (Huber 1981) with a linear-quadratic transition at 10−3 mm−1 that penalizes first-

order neighborhood voxel differences in the volume. A location-dependent weighting (Xu et 
al 2015) of the penalty function was applied to encourage more uniform resolution, and the 

regularization parameter β =5e − 2 was chosen to qualitatively achieve a comparable 

resolution to FBP. The initial guess for the background anatomy for KCR was the FBP 

volume truncated at an upper value of 0.03 mm−1 (in a coarse attempt to remove the pedicle 

screw from the anatomy). Both PWLS and KCR used 50 SQS iterations with 10 ordered-

subsets. Additional acceleration was achieved by applying momentum-based image updates, 

first developed in (Nesterov 1983) and applied to CT reconstruction in (Kim et al 2015).

(b) Simulation experiments—A number of simulation studies were conducted to 

investigate the performance and convergence properties of the Poly-KCR approach under 

idealized conditions (e.g., a simplified forward model with known STF). For these studies, 

we employed the component and anatomical models illustrated in Figure 1. Specifically, we 

used a CAD model of pedicle screw used in vertebral fusion interventions and combined this 

model with a digital anthropomorphic phantom based on a high-quality conventional CT 

scan of a custom phantom. The physical phantom was composed of soft tissue equivalent 
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plastics, a human skeleton, and empty/air recesses to emulate the lung region. The digital 

version of this phantom was modified to include simulated fractures in vertebra. While the 

pedicle screw model has two elements a pivoting head and a threaded screw base we 

presumed a fixed monolithic component for these studies.

For simulation experiments, a pedicle screw was transformed (rotated and translated) and 

voxelized into binary volume with the same voxel size as the anthropomorphic background 

(1 mm). The screws were placed into vertebra region to simulate a spine fixation 

intervention (See Figure 4A). Simulated data were generated by combining a monoenergetic 

forward model for the anatomical background and the polyenergetic forward model with the 

STF as in equation (5). No additive scatter was modeled in this simulation data. The pedicle 

screw used a STF emulating a titanium material composition with spectral coefficients of κ 
= [−0.3, 0.02198, −0.000971, 2.144e-05, −1.797e-07]. The STF corresponding to these 

coefficients is plotted in Figure 4C.

The system geometry was chosen to emulate a flat-panel detector C-arm system with a 

source-to-detector distance of 1200 mm and source-to-axis distance of 700 mm. Projections 

used 1920 × 160, 0.388 × 0.388 mm square pixels and were simulated over 360° using 360 

angles. Poisson noise was added and incident exposure levels were set at a uniform level of g 
=106 photons per detector element.

Using this data we compare reconstructed volumes from poly-KCR and standard FBP 

reconstruction. To investigate the limits of imaging performance, we presumed that the 

position and pose of the known components was known exactly and used the true 

registration parameters for each component. We investigated the convergence properties of 

poly-KCR in terms of objective function value, Φ in equation (5), as well as root mean 

square error (RMSE) between the anatomical background reconstruction (no components) 

and the known truth. STF estimate was also compared with the true value. For this study, we 

presumed that the true monoenergetic attenuation value (−κ1) was known and initialized 

Poly-KCR with κ = [−0.3, 0.0, 0.0, 0.0, 0.0] (e.g. a monoenergetic STF with μ = 0.3 mm−1).

Recognizing that the monoenergetic attenuation will not be known exactly, we conducted a 

robustness study where initial conditions were varied – sweeping κ1 (from −0.2 to −0.4) 

with other entries of κ; equal to zero (i.e., a monoenergetic initialization from μ = 0.2 mm−1 

to μ = 0.4 mm−1). Errors in the reconstructed volumes and STF estimates were investigated 

over this range.

(c) CBCT Test-bench experiments—Physical data experiments were also conducted on 

a CBCT test-bench to evaluate the poly-KCR approach in a realistic setting with unknown 

beam spectrum and unknown material compositions (e.g. unknown STF). The CBCT test-

bench is illustrated in Figure 2A and consisted of an X-ray source (DU694 insert in a DA10 

housing; Dunlee, Aurora, IL), a flat-panel detector (PaxScan 4030CB flat-panel detector 

with 2048 × 1536 pixels at 0.388 mm pixel pitch after 2×2 binning; Varian Medical System, 

Palo Alto, CA), and a motion control system (Parker Hannifin, OH). Two different physical 

experiments were conducted: 1) investigations on a simple image quality phantom with a 

pedicle screw placed within the interior, and 2) a study using a cadaveric torso sample with a 
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pedicle screw placed within a thoracic vertebra. Both experiments used the same shape 

model of titanium pedicle screw. To reduce partial volume effects, a CAD model for the 

pedicle screw was voxelized into a compact volume with a small voxel size of 0.05 mm and 

served as an input for all mixed-fidelity model KCR processing. Projections of the CAD 

model were performed on a projection grid with the same sampling as the measured data.

The simple image quality phantom (Figure 2B) was approximately 85 mm in diameter and 

composed of water and a mixture of acrylic spheres ranging from 3.2 to 9.5 mm in diameter. 

Two medium-contrast line pair blocks (9 lp/cm constructed from alternating polycarbonate 

and acetal sheets) were placed adjacent to the pedicle screw to investigate image quality in 

the vicinity of the screw. (e.g., detection of a fracture near the implant).

For the phantom studies, a 1184 mm source-to-detector distance and 595 mm source-to-axis 

distance were used. Projection data was acquired at 1° intervals over 360° and the 

acquisition technique used 90 kVp and 63 mAs total. Reconstructions were performed on a 

1000×1000×200 volume with 0.1 mm (cubic) voxels and included FBP, FBP-MAR, PWLS, 

Mono-KCR, PreCal-KCR, and Poly-KCR approaches. All KCR approaches used the 

previously described staged registration. No scatter correction was applied.

A second physical test-bench experiment was also performed with a cadaver torso. This 

study emulated a clinical scenario in which a screw has been inserted into the spine by a 

surgeon for the purposes of spine fusion. For our study, we intentionally misplaced the 

pedicle at the wrong angle and so that there is a lateral breach through the cortical bone of 

the vertebra. The test-bench configuration was different than the image quality phantom 

studies, in part, to accommodate the larger sample and used a PaxScan 4343CB flat-panel 

detector with 1536 × 1536 pixels at 0.278 mm pixel pitch after 2 × 2 binning. The system 

geometry used a 1500 mm source-to-detector distance and a 1200 mm source-to-axis 

distance. The volumes were reconstructed using 1160 × 1160 × 120, cubic 0.25 mm voxels. 

The scan was acquired with 360 projections over 360° and a technique of 100 kVp and 450 

mAs total. This protocol represents a clinically relevant acquisition protocol. The exposure 

range falls within those specified in (Douglas-Akinwande et al 2006) of 250–500 mAs for 

implant imaging in the thoracic and lumbar spine (though we note that the relatively long 

1200 mm source-to-axis distance translates to a lower equivalent dose than one would find 

for an equivalent exposure in a modern CT scanner). The selected tube potential falls in the 

middle of the diagnostic range for many intraoperative cone-beam CT systems including 

mobile C-arms. From bare-beam measurements of the variance and presuming a Poisson 

noise model, we estimate that the above protocol yields 3 × 104 photons per detector 

element. The minimum attenuation coefficient for the titanium pedicle screw in the cadaver 

for the 100 kVp technique is at 100 keV, which is 0.1226 mm−1. For the 45 mm screw, this 

places an upper bound on the survival probability of photons through the long axis of the 

implant at 0.4%. Presuming an additional 20 cm of water in the x-ray beam (cadaver soft 

tissues) with an attenuation of 0.01707 mm−1 (at 100 keV) yields a survival probability of 

3.29%. Thus, combining probabilities, one would expect a maximum of about 4 primary 

(non-scattered) photons to travel the entire path through the long axis of the implant to the 

detector – representing significant photon starvation.
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Reconstructions using FBP, FBP-MAR, PWLS, and Poly-KCR were conducted using the 

same methodology as discussed previously. Again, no scatter correction was applied for any 

of the reconstruction methods.

3. Results

3.1. Simulation results

Reconstruction results from the simulation investigation are illustrated in Figure 3. Figure 

3A shows the ground truth image volume around the vertebra. Note simulated fractures in 

the transverse process and anterior portion of the vertebral body. The pedicle screw is shown 

using a red image overlay. The FBP reconstruction (Figure 3B) exhibits strong metal 

artifacts associated with unmodeled energy-dependent effects and noise. These artifacts 

obscure anatomy near the boundary of the implant and background anatomy making it 

difficult to visualize the simulated fractures. Moreover, the exact position of the screw is 

unclear (without the addition of the color overlay with true screw positions). In contrast, 

Poly-KCR is able to leverage shape information provided by the component model of the 

screw, and integrates that component knowledge into the reconstruction to provide better 

images. Specifically, we see a substantial reduction in metal artifacts and better noise control 

through the statistical model. The resulting improvements in image quality are sufficient to 

visualize features near the pedicle screw.

We present convergence plots for the Poly-KCR approach in Figure 4. Specifically, Figure 

4A shows the value of the objective function at the solution, Φ* (estimated using 150 

iterations of our momentum-accelerated SQS approach), minus the current value of the 

objective at the end of each iteration. Note that each iteration consists of both image updates 

and STF coefficient updates. We see that the objective function increases monotonically over 

the first 75 iterations. Because we have a truth image in the simulated data, we may also 

compute RMSE (computed only for the background anatomy) as a function of iteration. We 

see that the error reaches a plateau relatively quickly at around 50 iterations suggesting 

relatively fast convergence.

Estimated versus true STF values are illustrated in Figure 4C. We note that a monoenergetic 

system without spectral dependencies would form a line on this plot of path length versus 

the logarithm of the survival probability. In contrast, the simulated STF profile is nonlinear 

and decreases less for increasing path lengths. This is represents classical beam-hardening, 

where low-energy x-rays are preferentially attenuated and for longer path lengths x-rays 

have higher average energy leading to an effective lower degree of attenuation. There is very 

good agreement between the STF curves used in the simulation and those estimated by the 

Poly-KCR approach with the simulated and estimated curves being virtually 

indistinguishable.

Figure 5 details the Poly-KCR robustness investigation over varying monoenergetic 

initializations from 0.2 mm−1 to 0.4 mm−1 representing a very broad range of ~10,000 HU. 

The STF estimates are less accurate for initializations at the lower end of the range 

(particularly at the longest path lengths) suggesting increased sensitivity to initialization 

and/or the need for more iterations. However, despite these errors, reconstructions across the 
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entire range are remarkably similar with only very mild under-attenuation near the head of 

the pedicle screw for the lowest initialization value. This suggests lower sensitivity to getting 

an accurate STF for longest path lengths – likely due to the inherent statistical down-

weighting of these measurements.

3.2. Physical image quality phantom studies

The results of “in-air” precalibration are shown in Figure 6B. Using staged component 

registration and equation (9), we estimate a STF using the component-only scan. Using a 

fifth-order polynomial for the STF, K = 5 in equation (5), we obtain the fitted STF curve. 

The corresponding STF coefficients were estimated to be κ = [−0.432, 0.0347, −1.40e-3, 

2.74e-5, −2.07e-7]. We see relatively good agreement between the STF model and a sparse 

sampling of the entire projection data set. A slight “hysteresis-like” can be seen in the data 

fit particularly at the longer path lengths through the pedicle screw. We believe that this is 

the result of small residual registration errors (either due to the registration itself or 

uncertainties in the system geometry) that contribute to a small positive or negative bias in 

matching the survival probability to the path length. We believe these errors to be minor and 

the STF model from Figure 6B is used in subsequent reconstruction of the image quality 

phantom data using PreCal-KCR.

Figure 7 illustrates reconstructions of the image quality phantom using six different 

reconstruction approaches. The FBP reconstruction in Figure 7A shows similar metal 

artifacts as were found in the simulation study resulting from noise and beam hardening 

effects. The artifact reduction of FBP-MAR (Figure 7B) substantially reduces the so-called 

“blooming” artifact associated with the high attenuation values of the metal screw. 

Unfortunately, because this approach replaces regional (“with-metal”) data with relatively 

smooth synthetic projection values, there is significant loss of internal features including 

both medium contrast line pair blocks. Thus, this type of metal artifact reduction does not 

help with visualization near the screw boundary. The statistical method, PWLS (Figure 7C), 

offers some advantages in terms of better noise control at the periphery and slightly less 

blooming than FBP. However, visualization near the implant remains difficult and both sets 

of line pair block are obscured.

The three KCR methods are shown in Figure 7D–F. Mono-KCR has the statistical 

advantages of noise reduction, like PWLS, with additional artifact reduction. Notably, the 

bright blooming has been replaced by a systematic under-attenuation surrounding the screw. 

This offers a little improvement for visualization around the screw, but significant artifacts 

remain. PreCal-KCR shows greater image quality improvement and much better 

visualization near the boundary between the pedicle screw and background, yet some 

shading artifacts remain (particularly in the center of the phantom). We conjecture that this 

is due to additional spectral differences between the precalibration component-only scan and 

the additional energy-dependence induced by the background object. One might perform a 

more sophisticated pre-calibration scan in a water phantom to provide a better spectral 

characterization including beam hardening and scatter due to soft tissues. However, such a 

calibration places an additional burden on the clinical workflow beyond the “simple” air-
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scan of the components. Not only would a water phantom be required, but accurate 

characterization would rely on a phantom matched in size and density to the patient.

In contrast, Poly-KCR demonstrates the best improvement of the investigated approaches 

with good visualization of most of the background object without the need for pre-

calibration. The joint estimation of background and spectral coefficients appears to 

accommodate the additional spectral differences induced by the background (where PreCal-

KCR cannot model those differences). We note excellent visualization of the line pair block 

in the view that is nearly orthogonal to the screw axis. Line pairs are clear and an air bubble 

defect between adjacent layers of the block is evident. These same features are less visible or 

completely obscured in other methods. Relatively mild residual artifacts remain – primarily 

associated with the longest path length through the screw, where one would expect small 

model biases to be most detrimental. Such artifacts could arise from a number of potential 

sources including a less accurate STF estimates due to view-dependent scatter, slight 

misregistration errors, and photon starvation; lack of scatter correction in the reconstruction; 

and nonlinear partial volume effects. The authors have previously explored additional 

modifications to KCR methods using a mixed forward model where the component and its 

projections are modeled using much smaller voxels and sub-pixel integration at the detector 

to help reduce nonlinear partial volume effects. (Stayman et al 2013) Such model 

enhancements for Poly-KCR are the subject of future work as are modified statistical 

weightings that account for the additional uncertainties in long path lengths through metal.

3.3. Cadaver data study

Reconstructions of the cadaveric torso are shown in Figure 8. The results shown in the 

cadaver experiment parallel the findings in the image quality phantom experiment. FBP 

exhibited significant metal artifacts associated with the pedicle screw. Noise and streaking in 

the image obscure the anatomy immediately surrounding the screw making it hard to assess 

screw placement. While FBP-MAR can mitigate the “blooming” effect surrounding the 

screw, interpolation associated with the metal artifact reduction also eliminates many 

anatomical features in the vicinity of the implant. PWLS performs somewhat better than 

FBP, but significant blooming and streak artifacts remain. In contrast, the Poly-KCR 

approach effectively removes blooming artifacts and nearly all of the streaks. The improved 

image quality in the Poly-KCR image is sufficient to visualize the screw placement and 

identify a lateral breach in the vertebral body. Moreover, there is good visualization of 

anatomy near the boundary of the bone and screw. These findings suggest a significant 

improvement in diagnostic performance if Poly-KCR is applied.

4. Discussion

In this paper, a calibration-free poly-energetic KCR framework is derived based on our 

previous work. In the framework, we apply a staged preregistration of component models 

leveraging a widely used registration strategy that is both computationally efficient and 

accurate. Previous work coupled registration and reconstruction leading to a more complex 

implementation – whereas decoupling the two estimation phases permits easier 

implementation and the opportunity to explore other registration approaches. Using 

Xu et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2018 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



preregistered component models (e.g. CAD models of the shape of the component), we 

reformed the reconstruction problem to be a joint estimation of the anatomical background 

and one or more spectral transfer functions, or STFs, which characterizes the energy-

dependence in the imaging system (including both x-ray beam quality and the material 

composition of the known component implants). This estimation conducted based on a 

single patient scan and greatly reduces the inconvenience associated with other version of 

KCR that require either 1) explicit knowledge of the energy-dependence through 

polyenergetic system models and complete knowledge of the material composition of 

component or 2) precalibration steps where components are characterized with specialized 

component-only scans – which must be performed for each component and acquisition 

technique (e.g. kVp) of interest. Moreover, we have found that the joint STF and background 

estimation approach of Poly-KCR can outperform methods based on precalibration 

approaches. We believe this is because of the ability of the Poly-KCR approach to 

accommodate additional physical effects (e.g. beam-hardening due to the background 

anatomy) that are disregarded in the precalibration approaches.

Among all the methods investigated, which included traditional FBP and model-based 

iterative reconstruction approaches as well as an approach with explicit metal artifact 

correction, we found Poly-KCR to have the best imaging performance. Not only are large 

scale metal artifacts like the bright “blooming” artifacts around the implant and major 

streaks eliminated with our proposed approach, but we also see greatly improved 

visualization near the boundary of the anatomy and the known component. This suggests 

great potential for clinical application due to the better localization of the implant and ability 

to assess anatomy near the implant boundary.

It is important to note that the advantages of Poly-KCR are shown in a realistic clinical 

scenario that exhibits significant photon starvation. While it is generally true that fewer 

photons means lower data fidelity, many metal artifact reduction methods indiscriminately 

interpolate over all projections containing metal discarding potentially valuable information 

as seen in the loss of bone details in Figure 8B. Moreover, while model-based reconstruction 

weighs measurements by statistical fidelity, the ability to extract useful information degrades 

with an incomplete forward model that does not account for the significant beam hardening 

due to metal. In contrast, the Poly-KCR approach both models the spectral effects (without 

having to know material composition and beam quality a priori) and is able to extract useful 

information from the projections. However, even Poly-KCR is limited in the extreme when 

data is truly missing. This is evident in the phantom experiment where the line pairs placed 

at the tip of the screw lose some frequency content along the major axis of the pedicle screw. 

Specifically, some centrally located line pairs along the axis of the screw cannot be seen 

(Figure 7F) due to extreme photon starvation/missing data and regularization takes over to 

smooth out this region. However, Poly-KCR is able to recover image features in all but these 

most extreme situations.

Two main pieces of information are used by the Poly-KCR approach: 1) the shape of the 

component model; and 2) knowledge that the component is homogeneous in material 

composition. The latter requirement can be relaxed by breaking an inhomogeneous 

component into a number of homogeneous sub-components, though this may complicate the 
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registration task. In other work (Stayman et al 2012b), we have attempted to relax the first 

knowledge requirement by allowing the shape of components to be inexactly known (e.g. 

using a deformable model). Ongoing work has sought to extend the KCR methodology 

where shape models are not known a priori through an initial segmentation of reconstructed 

data to build a shape model (Zhang et al 2017). Additional generalizations of component 

knowledge to accommodate surgical tools, implants, and other components for which prior 

knowledge of structure is not well-established could permit more widespread application of 

these approaches. These modifications would allow more general application of the 

methodology to other imaging scenarios like onboard imaging for radiotherapy (e.g., 

prostate imaging in the presence of unknown hip prostheses). Such general application of the 

methodology introduces additional performance analysis beyond simple artifact correction 

including local Hounsfield accuracy near metal implants. Moreover, modifications of the 

Poly-KCR approach to include scatter correction methods will likely help to further reduced 

artifacts associated with the investigations will also necessitate a careful investigation of the 

relationship between component characterization, accurate scatter correction, and 

Hounsfield accuracy in the reconstruction which have not been conducted in this initial 

investigation.

Future work will also include investigations exercising multiple component derivation 

provided in this initial work. Such studies will include more challenging clinical scenarios 

with large spine complexes with many components as well as larger metal implants (e.g., hip 

and knee prostheses). While these future investigations are important, the preliminary results 

presented here suggest the great potential for the Poly-KCR approach and demonstrate that 

specific knowledge of the X-ray beam spectrum and material composition of components is 

not required for effective handling of the energy-dependence and photon-starvation to obtain 

high-quality CT reconstructions.

Acknowledgments

This work was supported, in part, by NIH R21EB014964 and NIH R01EB017226. The authors would like to thank 
Depuy Synthes (Raynham, MA) for providing pedicle screws and pedicle screw CAD models for this work.

References

Arias, P., Caselles, V., Sapiro, G. Lecture Notes in Computer Science. Vol. 5681. LNCS; 2009. A 
variational framework for non-local image inpainting; p. 345-58.

Bal M, Spies L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. 
Med Phys. 2006; 33:2852–9. [PubMed: 16964861] 

Bouman C, Sauer KD. A generalized Gaussian image model for edge-preserving MAP estimation. 
IEEE Trans Image Process. 1993; 2:296–310. [PubMed: 18296219] 

Buzug T, Oehler M. Statistical image reconstruction for inconsistent CT projection data. Methods Inf 
Med. 2007; 46:261–9. [PubMed: 17492110] 

Douglas-Akinwande AC, Buckwalter KA, Rydberg J, Rankin JL, Choplin RH. Multichannel CT: 
Evaluating the Spine in Postoperative Patients with Orthopedic Hardware. RadioGraphics. 2006; 
26:S97–110. [PubMed: 17050522] 

Elbakri IA, Fessler JA. Statistical image reconstruction for polyenergetic X-ray computed tomography. 
IEEE Trans Med Imaging. 2002; 21:89–99. [PubMed: 11929108] 

Erdoğan H, Fessler JA. Monotonic algorithms for transmission tomography. IEEE Trans Med Imaging. 
1999a; 18:801–14. [PubMed: 10571385] 

Xu et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2018 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Erdoğan H, Fessler JA. Ordered subsets algorithms for transmission tomography. Phys Med Biol. 
1999b; 44:2835–51. [PubMed: 10588288] 

Wang, Ge, Snyder, DL., O’Sullivan, JA., Vannier, MW. Iterative deblurring for CT metal artifact 
reduction. IEEE Trans Med Imaging. 1996; 15:657–64. [PubMed: 18215947] 

Hansen, N., Kern, S. Parallel Problem Solving from Nature - PPSN VIII. Yao, X.Burke, EK.Lozano, 
JA.Smith, J.Merelo-Guervós, JJ.Bullinaria, JA.Rowe, JE.Tiňo, P.Kabán, A., Schwefel, H-P., 
editors. Vol. 3242. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. 

Heußer T, Brehm M, Ritschl L, Sawall S, Kachelrieß M. Prior-based artifact correction (PBAC) in 
computed tomography. Med Phys. 2014; 41:21906.

Hsieh, J. Computed tomography: principles, design, artifacts, and recent advances. Bellingham, WA: 
SPIE; 2009. 

Hsieh J, Molthen RC, Dawson CA, Johnson RH. An iterative approach to the beam hardening 
correction in cone beam CT. Med Phys. 2000; 27:23–9. [PubMed: 10659734] 

Huber PJ. Robust Statistics. 1981; 1

Idris AE, Fessler JA. Segmentation-free statistical image reconstruction for polyenergetic x-ray 
computed tomography with experimental validation. Phys Med Biol. 2003; 48:2453–77. [PubMed: 
12953909] 

Kalender WA, Hebel R, Ebersberger J. Reduction of CT artifacts caused by metallic implants. 
Radiology. 1987; 164:576–7. [PubMed: 3602406] 

Kim D, Ramani S, Fessler JA. Combining ordered subsets and momentum for accelerated X-ray CT 
image reconstruction. IEEE Trans Med Imaging. 2015; 34:167–78. [PubMed: 25163058] 

Koehler T, Brendel B, Brown KM. A New Method for Metal Artifact Reduction in CT. Second Int 
Conf image Form X-ray Comput Tomogr. 2012:29–32.

Lell MM, Meyer E, Kuefner MA, May MS, Raupach R, Uder M, Kachelriess M. Normalized Metal 
Artifact Reduction in Head and Neck Computed Tomography. Invest Radiol. 2012; 47:415–21. 
[PubMed: 22659592] 

Lemmens C, Faul D, Nuyts J. Suppression of Metal Artifacts in CT Using a Reconstruction Procedure 
That Combines MAP and Projection Completion. IEEE Trans Med Imaging. 2009; 28:250–60. 
[PubMed: 19188112] 

Li H, Yu L, Liu X, Fletcher J, McCollough C. Metal artifact suppression from reformatted projections 
in multislice helical CT using dual-front active contours. Med Phys. 2010; 37:5155–64. [PubMed: 
21089749] 

Long Y, Fessler JA, Balter JM. 3D forward and back-projection for X-ray CT using separable 
footprints. IEEE Trans Med Imaging. 2010; 29:1839–50. [PubMed: 20529732] 

De Man B, Nuyts J, Dupont P, Marchal G, Suetens P. An iterative maximum-likelihood polychromatic 
algorithm for CT. IEEE Trans Med Imaging. 2001; 20:999–1008. [PubMed: 11686446] 

De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P. Reduction of metal streak artifacts in X-ray 
computed tomography using a transmission maximum a posteriori algorithm. 1999 IEEE Nuclear 
Science Symposium; IEEE; 1999. p. 850-4.

Meyer E, Bergner F, Raupach R, Flohr T, Kachelrieß M. Normalized metal artifact reduction (NMAR) 
in computed tomography. IEEE Nuclear Science Symposium. 2009:3251–5.

Meyer E, Raupach R, Lell M, Schmidt B, Kachelrieß M. Frequency split metal artifact reduction 
(FSMAR) in computed tomography. Med Phys. 2012; 39:1904. [PubMed: 22482612] 

Nesterov Y. A method of solving a convex programming problem with convergence rate O (1/k2). Sov 
Math Dokl. 1983; 27:372–6.

Paudel MR, Mackenzie M, Fallone BG, Rathee S. Evaluation of normalized metal artifact reduction 
(NMAR) in kVCT using MVCT prior images for radiotherapy treatment planning. Med Phys. 
2013; 40:81701.

De Pierro AR. On the relation between the isra and the em algorithm for positron emission 
tomography. IEEE Trans Med Imaging. 1993; 12:328–33. [PubMed: 18218422] 

Prell D, Kyriakou Y, Beister M, Kalender WA. A novel forward projection-based metal artifact 
reduction method for flat-detector computed tomography. Phys Med Biol. 2009; 54:6575–91. 
[PubMed: 19826202] 

Xu et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2018 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prell D, Kyriakou Y, Kachelriess M, Kalender W. Reducing metal artifacts in computed tomography 
caused by hip endoprostheses using a physics-based approach. Invest Radiol. 2010; 45:747–54. 
[PubMed: 20661145] 

Sauer KD, Bouman C. A local update strategy for iterative reconstruction from projections. IEEE 
Trans Signal Process. 1993; 41:534–48.

Snyder DL, O’Sullivan JA, Whiting BR, Murphy RJ, Benac J, Cataldo JA, Politte DG, Williamson JF. 
Deblurring subject to nonnegativity constraints when known functions are present with application 
to object-constrained computerized tomography. IEEE Trans Med Imaging. 2001; 20:1009–17. 
[PubMed: 11686436] 

Stayman JW, Dang H, Otake Y, Zbijewski W, Noble J, Dawant B, Labadie R, Carey JP, Siewerdsen JH. 
Overcoming Nonlinear Partial Volume Effects in Known-Component Reconstruction of Cochlear 
Implants. Proc SPIE--the Int Soc Opt Eng. 2013; 8668:86681L.

Stayman JW, Otake Y, Prince JL, Khanna AJ, Siewerdsen JH. Model-based tomographic 
reconstruction of objects containing known components. IEEE Trans Med Imaging. 2012a; 
31:1837–48. [PubMed: 22614574] 

Stayman JW, Otake Y, Schafer S, Khanna AJ, Prince JL, Siewerdsen JH. Model-based Reconstruction 
of Objects with Inexactly Known Components. Proc SPIE--the Int Soc Opt Eng. 2012b:8313.

Uneri A, De Silva T, Stayman JW, Kleinszig G, Vogt S, Khanna AJ, Gokaslan ZL, Wolinsky J-P, 
Siewerdsen JH. Known-component 3D-2D registration for quality assurance of spine surgery 
pedicle screw placement. Phys Med Biol. 2015; 60:8007–24. [PubMed: 26421941] 

Verburg JM, Seco J. CT metal artifact reduction method correcting for beam hardening and missing 
projections. Phys Med Biol. 2012; 57:2803–18. [PubMed: 22510753] 

Watzke O, Kalender WA. A pragmatic approach to metal artifact reduction in CT: merging of metal 
artifact reduced images. Eur Radiol. 2004; 14:849–56. [PubMed: 15014974] 

Williamson JF, Whiting BR, Benac J, Murphy RJ, Blaine GJ, O’Sullivan JA, Politte DG, Snyder DL. 
Prospects for quantitative computed tomography imaging in the presence of foreign metal bodies 
using statistical image reconstruction. Med Phys. 2002; 29:2404–18. [PubMed: 12408315] 

Duan, Xinhui, Zhang, Li, Xiao, Yongshun, Cheng, Jianping, Chen, Zhiqiang, Xing, Yuxiang. Metal 
artifact reduction in CT images by sinogram TV inpainting. 2008 IEEE Nuclear Science 
Symposium Conference Record; IEEE; 2008. p. 4175-7.

Xu S, Lu J, Zhou O, Chen Y. Statistical iterative reconstruction to improve image quality for digital 
breast tomosynthesis. Med Phys. 2015; 42:5377–90. [PubMed: 26328987] 

Zbijewski W, Stayman JW, Al Muhit A, Yorkston J, Carrino JA, Siewerdsen JH. CT Reconstruction 
Using Spectral and Morphological Prior Knowledge: Application to Imaging the Prosthetic Knee. 
Second Int Conf Image Form X-ray Computed Tomography. 2012:434–8.

Zhang C, Zbijewski W, Zhang X, Xu S, Stayman JW. Polyenergetic Known-Component 
Reconstruction without Prior Shape Models. Proc SPIE. 2017 accepted. 

Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L. Reducing metal artifacts in cone-beam 
CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys. 2007; 67:924–32. 
[PubMed: 17161556] 

Zhao S, Robeltson D, Wang G, Whiting B, Bae K. X-ray CT metal artifact reduction using wavelets: 
an application for imaging total hip prostheses. IEEE Trans Med Imaging. 2000; 19:1238–47. 
[PubMed: 11212372] 

6. Appendix

6.1. Derivation of STF update

We employ iterative coordinate descent approach to estimate STF coefficients. Given the 

objective function as shown in equation (8), the derivative of L(κ) with respect to , the jth 

element of the coefficient vector associated with the qth component, can be written:
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To find , the solution at the tth iteration, we substitute κ{q} = κ{q,t − 1}, the coefficient 

vector updated at (t−1)th iteration. Then  was derived by the following substitution

Solving for , we obtain the following update function:

To update all coefficients for all components, this update is applied for all q and j.

6.2. Derivation of volume update

Poly-KCR volume updates use a separable quadratic surrogate approach.(Erdoğan and 

Fessler 1999b) Following previous work, the linear projection of the anatomical background, 

Aμ*(Λ), from equation (8) can be written as

where

The L*,i term represents the total path length in the anatomical background at the ith detector 

and a*,ij denotes the path length intersected between the ith detector and jth voxel in 

anatomical background region (e.g., excluding integration over the known component 

regions).
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Given the pre-calculated Λ and a fixed κ, we may find a separable quadratic surrogate for L 
in equation (8) using the convexity trick of De Pierro (De Pierro 1993) using the following 

mathematical steps:

The iterative update for the regularized objective function Φ in Eq. (8) is found by applying 

Newton’s method to the above surrogate function to obtain:

Where R′ and R″ denote the gradient and Hessian of the regularization term, respectively, 

with respect to the background anatomy.
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Figure 1. 
Illustration of A) the CAD model of a pedicle screw used in simulation experiments and B) a 

digital thorax and abdominal phantom used for the anatomical background.
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Figure 2. 
Illustration of A) the CBCT test-bench and B) the image quality phantom with water-and-

spheres background, titanium pedicle screw, and two medium-contrast, 9 lp/cm, line pair 

blocks outlined in yellow.
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Figure 3. 
Reconstructions of digital phantom data that includes one pedicle screw with a priori 
unknown material properties. A) The ground truth image volume with the screw shown as a 

red color overlay. Simulated fractures are indicated by the yellow arrows. B) FBP 

reconstruction of the digital phantom shows prominent metal artifacts arising from energy-

dependent effects and photon starvation. These artifacts obscure anatomy near the screw 

including the simulated fractures. C) The Poly-KCR approach effectively uses the shape of 

the known component to greatly improve image quality. Artifacts and noise are largely 

mitigated permitting good visualization near the boundary of the screw implant and the 

background anatomy.
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Figure 4. 
Illustration of Poly-KCR convergence properties and STF estimate quality. A) Objective 

function value differences from the solution Φ* as a function of iteration. B) RMSE as a 

function of iteration. C) The STF associated with the pedicle screw in the simulation. Note 

the close agreement between the true simulated and estimated STFs.
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Figure 5. 
Illustration of Poly-KCR robustness to different monoenergetic initializations from 0.02 to 

0.04 mm−1. A) Sample reconstructions and STF estimations for 0.2, 0.3 (truth), and 0.4 

mm−1 cases are shown. B) RMSE for both the reconstruction and log10(STF) are plotted as 

a function of the initialization.
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Figure 6. 
Illustration of the STF precalibration process. A) Component-only scanning using a very 

low attenuation foam platform. B) Comparison of a subsampling of measured data survival 

probabilities (red) and the estimated STF (cyan) for a range of path lengths through the 

registered known component (pedicle screw).
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Figure 7. 
Reconstructions of the image quality phantom with a titanium pedicle screw using A) FBP; 

B) FBP-MAR; C) PWLS; D) Mono-KCR; E) PreCal-KCR; and F) Poly-KCR. A common 

grayscale is adopted for all images of 0.018 mm−1 to 0.028 mm−1 and line pair blocks are 

outline in yellow. FBP exhibits significant metal artifacts due to beam hardening and noise. 

Metal artifact reduction based on replacing measurements through metal with synthetic 

projection values greatly reduces “blooming” effects but also eliminates features near the 

screw boundary. PWLS reduces artifacts somewhat through better noise control but 

substantial artifacts due to energy-dependence remain. Mono-KCR provides some 

improvements over PWLS but spectrally induced artifacts remain. PreCal-KCR offers more 

improvements, greatly reducing artifacts; however, there are additional spectral differences 

(e.g. beam hardening due to the background object) that limit complete mitigation of 

artifacts. Poly-KCR offers the greatest image quality improvement – providing the best 

visualization of the boundary between the pedicle screw and the background. Relatively 

small artifacts persist associated with the longest path lengths through the metal component.
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Figure 8. 
Reconstructions from the cadaver torso investigations. For each method a zoomed region-of-

interest is shown in the axial slice. The grayscale is linear for all images from 0.018 mm−1 to 

0.028 mm−1. A) FBP reconstruction exhibited substantial metal artifacts around the pedicle 

screw. Streaks and increased noise prevent good visualization of the pedicle screw placement 

within the vertebral body. B) FBP-MAR shows a significant reduction in “blooming” 

artifacts; however, data interpolation has obscured many features in the vicinity of the 

pedicle screw. C) PWLS reconstruction shows a slight improvement over FBP but significant 

artifacts remain. D) The Poly-KCR approach yielded substantial reductions in artifacts 

largely eliminating blooming and streaking effects. Relatively small residual artifacts can be 

seen at the head of the screw. However, image quality in the vicinity of the implant is good 

showing bone details, an air bubble near the tip of the implant, and the lateral breach in the 

body of the vertebra is easily seen suggesting a potentially significant improvement in 

diagnostic quality.
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Table 1

Pseudocode for iterative solution of the poly-KCR objective

Λ = {λn} registration vector all components

μ(0)= Initial reconstruction (e.g. FBP)

κ(0) = Initial guess for STF coefficients

% Generate transformed masks

,

% Apply mask to background estimate

for all components n ∈ [1 N]

  

% Component path length with blur

end

% Calculate path length for background volume

L* = A1→ % 1→ denotes the all 1s vector

for all components n ∈ [1 N]

 L* = L* − p{n}

end

for t = 1 to max_iterations % [t−1] denotes (t−1)th iteration value

  

% Spectral correction to path length

  

% Forward projection of background

  % Background volume update (Appendix 6.2)

  for all voxels, j

μ ∗ , j
[t] = μ ∗ , j

[t − 1] +
∑i

Mwia ∗ , i j log
gi
yi

− (l∗ + l) − R′

∑i
MwiL ∗ , ia ∗ , i j + R″

  end

  % Spectral coefficient update (Appendix 6.1)

  for all components q ∈ [1 N]

   for all coefficients l ∈ [1 K]

κl
{q}[t] = κl

{q}[t − 1] +
∑i

Mwi pi
{q} l

l ∗ , i − ∑{n = 1}
N ∑{k = 1}

K κk
{n}[t − 1] pi

{n} k − log (
gi
yi

)

∑i
Mwi pi

{q} 2l

Phys Med Biol. Author manuscript; available in PMC 2018 April 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 31

   end

  end

end
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