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Key Points

•We identify and char-
acterize novel SF3B1
in-frame deletions in
chronic lymphocytic
leukemia.

• These deletions are
functionally similar to
well-known SF3B1
hotspot mutations and
are sensitive to splicing
modulation.

Introduction

Hematologic neoplasms including myelodysplastic syndromes (MDSs), chronic lymphocytic leukemia
(CLL), chronic myelomonocytic leukemia, and acute myeloid leukemia have recently been reported
to contain heterozygous hotspot mutations in splicing factor genes involved with 39 splice site (ss)
recognition (SF3B1, U2AF1, SRSF2, and ZRSR2).1-4 In contrast to other disorders, CLL is unique in
that only SF3B1 is recurrently mutated.2 The spliceosome machinery directs the removal of introns from
transcripts followed by ligation of coding exons during RNA splicing.5 The recently solved eukaryotic
spliceosome structures indicate that SF3B1 HEAT domains interact with the branch site and
polypyrimidine (Py) tract.6-8 Although the majority of SF3B1 hotspot mutations are located in the Py tract
interacting region, the reason for inducing aberrant 39 ss selection through reduced branch site fidelity
remains unclear.9-13

The unique signature of aberrant 39 ss junction usage by SF3B1 mutations suggests that these events
can be used as biomarkers to discover additional genomic alterations that lead to similar splicing
defects. To this end, we analyzed RNA sequencing (RNA-seq) from 215 CLL patients. We
discovered 3 patients carrying 2 novel SF3B1 in-frame deletions, and we demonstrate that these
deletions induce aberrant 39 ss selection through use of an alternative branch site, similar to SF3B1
p.K700E. In addition, patient samples carrying these deletions showed sensitivity to the splicing
modulator E7107. Functionally, these novel deletions act similarly to other well-known SF3B1 hot-
spot mutations suggesting patients carrying these lesions are candidates for treatment with SF3B1
modulators.

Case description

Recurrent mutations in RNA splicing factors SF3B1, U2AF1, and SRSF2 have been reported in
hematologic cancers including MDSs and CLL. However, CLL is unique considering that only SF3B1 is
found to be recurrently mutated and associated with aberrant splicing. To investigate whether other
genomic aberrations cause similar splicing defects, we clustered RNA-seq data based on an alternative
39 ss pattern previously identified in SF3B1-mutant CLL patients. Among 215 samples, we identified 37
(17%) with alternative 39 ss usage, the majority of which harbored known SF3B1 hotspot mutations.
Intriguingly, 3 patient samples carried previously unreported in-frame deletions in SF3B1 around K700,
the most frequent mutation hot spot. To study the functional effects of these deletions, we used various
minigenes demonstrating that recognition of canonical 39 ss and alternative branch site are required
for aberrant splicing, as observed for SF3B1 p.K700E. The common mechanism of action of these
deletions and substitutions result in similar sensitivity of primary cells toward an SF3B1 splicing
modulator. These data demonstrate a novel genomic aberration in SF3B1 that induces aberrant splicing
and suggest SF3B1 in-frame deletions will confer sensitivity to splicing modulators.
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Figure 1. Novel SF3B1 in-frame deletions found in CLL patients result in aberrant splicing. (A) DNA sequencing reads from 3 CLL patients are aligned to show SF3B1

in-frame deletions: CLL1, p.K700_V701delinsN (p.K700del); CLL2 and CLL3, p.Q698_K700delinsQ (p.Q698del). The schematic below shows the 3 nt and 6 nt deletions resulting

in replacement of K700 and V701 with N and of Q698, Q699, and K700 with Q, respectively. The deletion is highlighted in a gray box. (B) Heat map representing z score normalized

percent spliced in (PSI) of aberrant junctions previously identified in SF3B1-mutant CLL patient samples (n 5 194). Sample columns are grouped into SF3B1 variants: SF3B1 wild

type (WT; n 5 5), SF3B1 p.K700E (n 5 5), and SF3B1 deletion mutants (n5 3). (C) Sashimi plot showing aberrant 39 ss usage (red) with respect to canonical splicing (light blue) of

ZDHHC16 exons 9 to 10 in different CLL patient samples: K700del (CLL1), Q698del (CLL2 and CLL3), SF3B1 p.K700E, and SF3B1 WT. The aberrant junction PSI is given as

a percentage in each condition. For SF3B1 p.K700E and SF3B1 WT, the average read density and PSI is plotted (n5 5, each). (D) Four SF3B1 hotspot-specific aberrant ss’s show
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Methods

RNA-seq from 215 CLL patients was analyzed to discover if any
novel genomic abnormality was able to induce SF3B1-mutant-like
aberrant splicing. Genomic abnormalities in 3 aberrant splicing cases
were identified as SF3B1 in-frame deletions and confirmed in
DNA by targeted resequencing. Analysis of RNA splicing was carried
out as described previously.9 Expression of hemagglutinin (HA)-
tagged mxSF3B1 deletion complementary DNAs transfected into
HEK293FT cells was confirmed by quantitative polymerase chain
reaction (qPCR) and immunoblotting. Aberrant splicing was validated
using ZDHHC16 minigenes and viability effect of E7107 in CLL
primary cells was assessed by 3-(4,5 dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay.
Methods in detail can be found in the supplemental Data.

Results and discussion

To investigate if genomic abnormalities in addition to known hot-
spot mutations in SF3B1 led to SF3B1-mutant-like splicing aberra-
tions in CLL patients, we clustered RNA-seq data from 215 samples
based on previously identified SF3B1-mutant specific alternative
39 ss in CLL (n 5 194).9 Of 215 samples, we identified 37 (17%)
with alternative 39 ss usage, 34 of which harbored knownSF3B1 hot-
spot mutations including p.K700E. Interestingly, 3 patient samples
carried previously unreported in-frame deletions in SF3B1: 1 patient
had a 3 nucleotide (nt) deletion resulting in replacement of K700 and
V701 with N (p.K700_V701delinsN, “p.K700del”) and 2 patients had
6 nt deletion resulting in replacement of Q698, Q699, and K700 with
Q (p.Q698_K700delinsQ; “p.Q698del”) (Figure 1A). The SF3B1
deletion variant allele fraction (VAF) ranged from 8.8% to 42.2%,
confirmed through RNA-seq and DNA sequencing. All 3 patients had
poor prognostic features including unmutated IGHV status and high-
risk cytogenetics (supplemental Table 1). Notably, a different SF3B1
in-frame deletion (p.Q699_K700del) has also been reported both
in MDS14,15 and 2 cases of CLL16,17; however, its function remains
uncharacterized.

In order to confirm that all the splicing aberrations found in mutant
SF3B1 were observed in the novel deletion mutants, we selected 5
CLL patient samples with high VAF SF3B1 p.K700E and compared
the expression of various aberrant splicing markers (Figure 1B),
including the aberrant 39 ss in intron 9 of ZDHHC16 (Figure 1C).
Interestingly, all 3 samples with SF3B1 in-frame deletions showed
all the aberrant 39 ss selections observed in the SF3B1-mutant
patient samples, and we observed a direct correlation between VAF
and 4 selected aberrant splicing biomarkers (Figure 1D).9,18,19

Collectively, this analysis strongly suggested that SF3B1 deletions
acquire a neomorphic function similar to p.K700E. Structural
modeling of the p.K700del and p.Q698del mutations in SF3B1
indicated they were located at the edge of a-helix of HEAT repeat
domain 6, a region critical for pre-mRNA interaction (Figure 1E, top
panel).6,7 Deletion of key residues in the loop region could eliminate
charged side-chain interaction of lysine with pre-mRNA or restrain

conformational change in SF3B1 superhelical HEAT repeats af-
fecting RNA/protein interactions (Figure 1E, bottom panel).

After confirming the expression of these SF3B1 in-frame deletions
by qPCR and their incorporation in the core SF3b complex by
coimmunoprecipitation (Figure 2A-B), we used ZDHHC16 mini-
genes to study the mechanism of induction of aberrant splicing.9

As expected, when Exon9-Intron9-Exon10 (E9-I9-E10) minigene
was cotransfected with WT, only canonical splicing was observed
(Figure 2C, lane 3), whereas in cells expressing p.K700del and
p.Q698del and the hotspot mutations (p.K700E and p.K700N),
both canonical and aberrant splicing were detected (lanes 4-7).
Previously, through modifications in canonical 39 ss, cryptic 39 ss,
branch sites, and Py tracts, we demonstrated that recognition of both
canonical 39 ss and alternate branch site are required for aberrant
splicing of ZDHHC16 by SF3B1 hotspot mutants.9 To address the
dependence of cryptic 39 ss selection by the in-frame deletions on
canonical 39 ss, we altered the nucleotide base upstream of the AG
dinucleotide (canonical, 23T.G; aberrant, 224C.G) that is critical
for U2AF1 interaction.20 When 23T.G minigene was cotransfected
with any of the constructs splicing was observed within exon 10
(Figure 2C, lanes 8-12). Whereas, when 224C.G minigene was
used, only canonical splicing was observed in all cases (lanes 13-17),
suggesting that the23 position relative to cryptic AG is also important
for its recognition during the second step of splicing. Further to test
branch site utilization, we used ZDHHC16 minigenes with mutated
branch sites (WT, 230A.G; mutant, 233 to 235 AAA.GGG).
When 230A.G minigene was cotransfected with WT, splicing was
observed within exon 10 (Figure 2D, lane 1), but when cotransfected
with p.K700E or in-frame deletions, only aberrant splicing was ob-
served (Figure 2D, lanes 2-5). When 233 to 235 AAA.GGG
minigene was cotransfected with p.K700E or in-frame deletions, only
canonical splicing was observed (Figure 2D, lanes 7-10). Taken
together, these data show that the novel SF3B1 in-frame deletions
p.K700del and p.Q698del use intronic features to induce aberrant
splicing identical to the most frequent hotspot mutant p.K700E.

To examine the sensitivity of these novel SF3B1 deletions to
pharmacologic splicing modulation in comparison with p.K700E, we
used the splicing modulator E7107 known to cross-link the SF3b
complex.21 An MTS assay on primary leukemia cells from CLL patients
after treatment with E7107 showed a dose response similar to
SF3B1K700E and SF3B1WT cells (IC50 of ;4-10 nM; Figure 2E). This
suggests that SF3B1 deletions discovered in this study may be
therapeutically sensitive targets for splicing modulators. Indeed, an
orally available SF3B1 modulator is currently being evaluated in phase
1 clinical trials (www.clinicaltrials.gov; #NCT02841540).

Here we report the identification, characterization, and sensitivity to
splicing modulation of 2 novel SF3B1 in-frame deletions found in CLL.
The colocalization of p.K700E hotspot mutation and these novel
deletions highlight the functional importance of this region in SF3B1.
These findings for SF3B1 are analogous to functionally similar
oncogenic in-frame deletions that have been described surrounding

Figure 1. (continued) linear correlation between mutation allele frequency (%) and ss usage (PSI). Colors for splicing markers: light green, MAP3K7; light blue, DYNLL1; gray,

TMEM14C; purple, ZDHHC16. Shapes for SF3B1 mutation status: circle, WT; triangle, p.K700E; square, p.K700del; star, p.Q698del. (E) Homology model based on cryo-electron

microscopy structure of Hsh155 (SF3B1 homolog in yeast) interacting with pre–messenger RNA (pre-mRNA) near the deletion site (K700 and Q698 represented as magenta spheres, PDB:

5GM6) and crystal structure of apo-SF3B1 (PDB: 5IFE) are shown in top panel. Homology modeling of SF3B1 in-frame deletions, K700del and Q698del, based on the crystal structure

(PDB: 5IFE) are shown in the bottom panel. The affected amino acid side chains are represented in stick (magenta), rest of the protein (yellow), and pre-mRNA (gray) in illustration.
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hotspot mutations in the splicing factor SRSF2,3 and several
oncogenes such as CTNNB1 and NFE2L2, encoding oncoproteins
b-catenin and NRF2, respectively.22-25 Although the novel SF3B1
deletions we report here could compromise the superhelical flexibility
and constitutively force an alternative conformation inducing changes
in the protein-RNA interactome, they still induce aberrant splicing and
maintain sensitivity toward splicing modulation, thus rendering them
as therapeutic targets for treating spliceosome-mutant cancers.
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