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m Recent studies have revealed that clonal hematopoiesis of indeterminate potential (CHIP) is
an important risk factor for therapy-related myeloid neoplasms (t-MNs). CHIP is currently
* CNAs can be detected defined as a clonal hematopoietic population carrying somatic point mutations in 1 of the
as part of CHIP. leukemia-associated genes. Patients with t-MNs often present with chromosomal abnormal-
ities in addition to somatic point mutations. It remains unclear whether chromosomal
abnormalities can cooccur with point mutations as part of CHIP. Here we report that 3 of 14
patients with t-MNs had low amplitude but detectable chromosome arm-level copy number
alterations (CNAs) in the peripheral blood samples that were taken at the time of their
primary cancer diagnosis and before exposure to therapy. These CNAs were the same CNAs
seen in t-MN bone marrow samples and affected the same allele, suggesting the same clonal
origin. These data suggest that not only somatic point mutations but also chromosome arm-
level CNAs are detectable as CHIP and preexist before patients’ exposure to chemotherapy
and/or radiation therapy. These data suggest that screening of both somatic point mutations
and CNAs might allow more complete ascertainment of CHIP.

Introduction

Chromosomal abnormalities are 1 of the hallmarks of therapy-related myeloid neoplasms (t-MNs).
More than 70% of patients with t-MNs present with abnormal cytogenetics."? However, clonal
origin and the timing of these chromosomal abnormalities relative to other point mutations are not
well understood.

We and other investigators recently reported that the clonal origin of t-MN driver mutations can be
detected in peripheral blood (PB) as clonal hematopoiesis of indeterminate potential (CHIP)® at the
time of the primary cancer diagnosis and before exposure to chemotherapy/radiation therapy.*®
We showed that CHIP can be detected in 70% of patients with cancer who subsequently
developed t-MNs and that CHIP is an independent risk factor for t-MNs.*

Chromosome-arm level structural variations (SVs) or copy number alterations (CNAs) have also been
reported as clonal mosaicism in the blood of healthy adults, and detection of these abnormalities has
been linked to an increased risk of hematologic malignancy.”® Because none of the studies have
analyzed both point mutations and SVs/CNAs at the same time, it is unclear whether arm-level SVs/CNAs
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cooccur with the point mutations as CHIP and whether they precede
or are acquired after the point mutations.

To address this question, we performed targeted capture
sequencing of 295 genes (295-gene panel) with 967 cyto—single
nucleotide polymorphism (SNP) coverage or whole-exome
sequencing (WES) on paired samples obtained at 2 different
time points from 14 patients with cancer who developed t-MNs.
These 2 samples were derived from PB obtained at the time of
primary cancer diagnosis and before exposure to chemotherapy/
radiation therapy and from bone marrow (BM) samples obtained
at the time of t-MN diagnosis. These patients are those patients
whom we previously studied for the association between driver
gene mutations, CHIP, and t-MN risk.% In the prior study, we used
molecular barcode sequencing of 32 genes to detect low variant
allele frequency (VAF) mutations, and because of the limited
coverage of the genome, we were unable to detect arm-level CNAs.
In the current study, by sequencing a wider portion of genomes, we
aimed to detect arm-level CNAs in the prior PB samples and
compared these with CNAs detected in +-MN BM samples.

Methods
Studied patients

We previously described the patient selection and the clinical
characteristics of 14 patients with cancers who developed t-MNs.*
Written informed consent for sample collection and analysis was
obtained from all patients. The study protocol adhered to the
Declaration of Helsinki and was approved by the Institutional Review
Board at MD Anderson (PA15-0400).

DNA sequencing

All PB samples obtained at the time of cancer diagnosis were
subject to 295-gene panel sequencing as previously described
(supplemental Table 1).* For t-MN BM samples, 13 of them
were sequenced by 295-gene panel, and 1 was sequenced by
WES as previously described.® The 295-gene panel included
967 cytoSNPs that were evenly distributed throughout the
genome, allowing us to infer genome-wide CNAs (supplemen-
tal Table 2).

Detection of CNAs

We estimated CNAs from the data of WES or 295-gene panel as
previously described.'® Because CNAs in the prior PB samples
were expected to be low amplitude, we identified statistically
significant CNAs by calculating a z score for each arm as previously
described."" Briefly, after removing duplication, reads with mapping
quality scores of =30 were extracted. The genomic representa-
tion score (GR) of each arm was calculated by dividing the
number of reads mapped to a given arm by the total number of
reads in the sample. The z scores were then calculated as follows:
Z = (observed GR|case] — mean GR[control])/SD GR]control].

A threshold of z score >1.96 or < —1.96 (P < .05) was used to
identify statistically significant CNAs in the prior PB samples, where
minus and plus indicate loss and gain, respectively.

The model of clonal evolution was inferred by using R package
fishplot.'? Briefly, for each CNA, clonal fraction was inferred
based on the following formula and was fit into the model.
To simplify the calculation, only 1 copy gain or loss was
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considered: 2(1 —x) + Nx=2%2y (N=3if y>0;N=1if y<O,
x: clonal fraction,y: log?2 ratio).

Results

Table 1 summarizes the cytogenetic profiles of 14 t-MN BM as
well as point mutations that were detected in t-MN BM and in
prior matched PB as CHIP. Consistent with t-MN character-
istics, 11 of 14 patients (79%) had abnormal karyotypes. Arm-
level CNAs of t-MN BM reflected most of the findings from
cytogenetic studies (UID49278 was noninformative because of
poor sequencing quality; supplemental Figure 1). We then
analyzed CNAs in prior PB. Most of the prior PB had no
statistically significant CNAs, but in samples from 3 patients
(UID984, UID36491, and UID19684), we detected CNAs that
were likely the origin of CNAs detected in the matched t-MN BM
(Figure 1A). Patient UID984 had loss of chromosome 7 and 9q
in the t-MN BM. Low-amplitude loss of chromosome 7 (z score:
—4.09) was detected in the prior PB from this patient. This
patient did not have detectable known cancer gene point
mutations in either the t-MN BM or the prior PB. Patient
UID36491 had a monosomal karyotype involving del(7q), — 186,
and — 18, among others. In the patient’s matching prior PB, we
detected low-amplitude loss of 7q (z score: —2.53), 16 (z score:
—2.38), and 18 (z score: —2.58). Patient UID19684 had
monosomy 7 and trisomy 22 in the t-MN BM. In the prior PB,
we also detected loss of chromosome 7 (z score: —6.36) and
low-amplitude gain of chromosome 22 (z score: +2.27). By
analyzing SNP haplotype in the affected arm, these CNAs
detected in the prior PB and t-MN BM occurred in the same
allele, further supporting the same clonal origin. For these 3
informative cases, we then inferred the model of clonal evolution
from CHIP to t-MNs (Figure 1B).

Discussion

t-MNs were historically considered to arise as a result of cumulative
genotoxic insult from chemotherapy/radiation therapy.'® However,
recent evidence from our studies and others has revealed that t-MN
driver mutations preexist as CHIP before patients are exposed to
chemotherapy/radiation therapy.*® The current data provide addi-
tional evidence that t-MN-associated CNAs can also preexist as
CHIP. In 1 patient (UID984) who did not have a detectable point
mutations in known leukemia driver genes in the t-MN sample, CNAs
were the only abnormalities detected as CHIP. These data would
suggest that, in addition to screening for point mutations, CNA
analysis may be useful in detecting CHIP. In the other 2 cases, point
mutations (7TP53 and DNMT3A) had a larger estimated clonal
fraction than CNAs. Furthermore, that point mutations were more
prevalent as CHIP (10 of 14 [71%)]) than CNAs (3 of 14 [219%)])
suggests that, in most cases, point mutations could be the earlier
events in the development of t-MNs. Analysis of both point mutations
and CNA in larger cohort is needed to fully understand the prevalence
and significance of CHIP with CNA and its interaction with point
mutations.

In summary, our data suggest that CHIP is not solely defined by the
presence of somatic point mutations, but CNAs can also be part of
CHIP, and screening for both point mutations and CNAs might
allow for more complete ascertainment of CHIP. Our data also
provide preliminary evidence that point mutations may precede
chromosomal aberrations during the development of t-MNs.
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Figure 1. Analysis of CNAs in 3 patients with t-MNs. (A) CNAs detected in t-MN BM samples and matching prior PB samples from each patient. Vertical axis represents log2 ratio of copy
number, and horizontal axis represents each chromosome. Y chromosome is not shown because 295-gene panel sequencing does not have enough coverage to analyze CNA in the chromosome.
Each chromosome area that showed statistically significant CNA is magnified below, and z score is indicated. (B) Inferred model of clonal architecture and evolution from CHIP to +-MNs. Model was

generated based on the estimated clonal fraction of CNAs and point mutations. Chr 7, chromosome 7.
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Figure 1. (Continued).
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