
Acceleration of Linear Finite-Difference Poisson-Boltzmann
Methods on Graphics Processing Units

Ruxi Qi, Wesley M. Botello-Smith, and Ray Luo*

Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
92697-3900

Abstract

Electrostatic interactions play crucial roles in biophysical processes such as protein folding and

molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely

used in modeling these important processes. Though great efforts have been put into developing

efficient PBE numerical models, challenges still remain due to the high dimensionality of typical

biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE

solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations,

including both standard and preconditioned conjugate gradient (CG) solvers with several

alternative preconditioners. Our implementation utilizes standard Nvidia® CUDA libraries

cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be

achieved given that the single precision is often used for numerical applications on GPU

platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver,

with a significant speedup over standard CG solver on CPU in our diversified test cases. Our

analysis further shows that different matrix storage formats also considerably affect the efficiency

of different linear PBE solvers on GPU, with the diagonal format best suited for our standard

finite-difference linear systems. Further efficiency may be possible with matrix-free operations

and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific

linear systems.

Graphical Abstract

*Please send correspondence to R. Luo. ray.luo@uci.edu; fax: (949) 824-9551.

HHS Public Access
Author manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

Published in final edited form as:
J Chem Theory Comput. 2017 July 11; 13(7): 3378–3387. doi:10.1021/acs.jctc.7b00336.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1. Introduction

In recent years Poisson-Boltzmann equation (PBE)-based electrostatics modeling has gained

wide acceptance in biomolecular applications, given the crucial roles played by the

electrostatic interactions in biophysical processes such as protein-protein and protein-ligand

interactions.1 Due to the high dimensionalities of typical biomolecular systems, it is

extremely important to increase the accuracy and efficiency of PBE models.2

For biomolecular applications, the PBE is impossible to be solved analytically, so that only

numerical solutions are possible. Traditional numerical schemes include the finite difference

method (FDM)3 where difference grids are used to discretize the space and build up a set of

linear/nonlinear equations from the PBE, and the finite-element method4 where arbitrarily

shaped biomolecules are discretized by using elements with a set of associated basis

functions. The boundary element method is another alternative approach, in which only the

surfaces of the molecules are discretized.5 Numerical PBE methods have been applied to the

prediction of pKa values for ionizable groups in biomolecules,6 solvation free energies,7

binding free energies,8 and protein folding and design.9

Among these approaches, the FDM is most widely adopted and has been incorporated in

programs such as DelPhi,3a, 3c, 3j UHBD,3b, 3d APBS,3e, 3g CHARMM/PBEQ,3c, 3i and

Amber/PBSA.2h, 3l−n, 10 The resulting algebraic systems are often solved by using conjugate

gradient methods with or without preconditioners.3b, 3k, 11 As computational studies shift to

larger and more complex biomolecular systems, both the data storage and convergence rate

become more challenging to address on traditional CPU platforms. These challenges are

more pronounced when incorporating the PBE in typical molecular simulations involving

thousands to millions of snapshots.

Recently, graphics processing units (GPU) have been used in a wide range of computational

chemistry problems, including MD simulations12 and ab initio quantum mechanical (QM)

calculations13 with impressive speedup. Different from CPUs that are designed for

sequential execution, GPUs have a parallel architecture that is suited for high-performance

computation with dense data parallelism, and have enjoyed rapid adoption over the last

decade. A number of publications have also shown the use of GPUs to accelerate PBE linear

systems for biomolecular systems and reported impressive speedup.14 However, different

from MD or QM simulations, various PBE solvers perform with markedly different

efficiency.3l, 3m Simpler algorithms may be straightforward to be ported onto GPU

platforms, but they may not be robust or efficient enough to begin with (i.e. they may be

very slow to converge or need very high number of floating operation counts to achieve a

given convergence criterion), particularly on very complex or large biomolecular systems.

Therefore, a thorough analysis of existing algorithms on GPUs is a necessary step to realize

markedly improved overall efficiency in numerical PBE solutions for biomolecular

applications.

To date only the relatively simple successive over-relaxation (SOR) method was

implemented on GPUs.14 However, our prior algorithm analysis of SOR and other

algorithms have shown its convergence rate is not among the best on CPU for large systems

Qi et al. Page 2

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

or tight convergence criterion even if it is a simple algorithm to implement.3l, 3m

Furthermore, there are two additional disadvantages when porting the SOR method to GPUs.

Firstly, a parallel SOR, such as red-black SOR, has to be used to utilize the parallel GPUs.

However the red-black SOR has worse convergence rate than the original SOR due to its

altered updating approach. Secondly, for most consumer-grade GPU cards, single precision

operations are widely supported with high efficiency. Double precision operations are

possible, but are at a significant performance disadvantage. Unfortunately use of single

precision further deteriorates the convergence of red-black SOR whether it is on GPUs or on

CPUs as our in-house testing has shown.

In this paper, we present the implementation and systemic assessment of four types of linear

PBE solvers on GPUs using the Nvidia CUDA (Version 7.5) libraries. In the following the

underlining linear systems solvers are first reviewed. This is followed by an assessment of

the accuracy and efficiency observed for different implementations. The impact of matrix

storage formats upon the computation efficiency is then discussed. Finally the memory

usage on the GPUs is briefly addressed.

2. Methods

2.1 Poisson-Boltzmann Equation

In implicit solvent models, the solvent is treated as high dielectric continuum and the solute

is approximated as low dielectric continuum with charges embedded inside. The PBE is then

introduced to describe the electrostatic interactions in the heterogeneous dielectric

environment, with the Boltzmann term describing the salt effect of a dissolved electrolyte.

This gives the well-known non-linear PBE

(1)

where ρ is the charge density, ϕ is the electrostatic potential, ε is the dielectric constant, and

λ is a masking function for the Stern layer. All variables are functions of the spatial vector r.

In the salt related term, ni is the number density of ion of type i in the bulk solution, qi is the

charge of the ion of type i, k is the Boltzmann constant and T is the temperature. When the

term qiϕ(r) / kT is small, the PBE can be linearized into

(2)

For biomolecules of arbitrary shape, the solution of equation (1) or (2) can only be obtained

numerically, typically through finite-difference procedures. In this scheme, the PBE is

discretized as follows

Qi et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(3)

where h is the grid spacing in each dimension, i, j, and k are the grid indexes along x, y and

z axes, respectively. εi (i, j, k) is the dielectric constant between grid points (i, j, k) and (i+1,

j, k). εj (i, j, k) and εk (i, j, k) are defined similarly. All the related coefficients in Boltzmann

term are absorbed into κ2, and q(i, j, k) is the charge within the cubic volume centered at (i,
j, k). The linear system can be conveniently written as

(4)

where A is the coefficient matrix of dielectric constants and the Boltzmann term, and b is the

constant vector of charges on the grids.

To solve equation (4), various solvers have been developed for biomolecular applications,

such as successive over-relaxation (SOR),15 conjugate gradient (CG),15 (modified)

incomplete Cholesky conjugate gradient ((M)ICCG),11 geometric multigrid (GMG),16 and

algebraic multigrid (AMG).17 All solvers proceed from an initial guess of ϕ(i, j, k) to

generate a sequence of improving solutions iteratively.

2.2 Conjugate Gradient Solvers

Symmetric and positive-definite linear systems are often solved with the CG solvers. The

CG method searches for the exact solution along a series of conjugate directions, and is

implemented as an iterative procedure as follows:

1. set l = 0, p0 = r0

2. compute the norm of ||rl||. If ||rl||/||b|| < δ, output ϕl. Otherwise go to the next step.

3. compute

4. compute

Qi et al. Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5. set l = l + 1 and go to step 2

The convergence of CG is optimal when the eigenvalues of the coefficient matrix are similar

to each other.11a Thus preconditioner is often used in the CG method to achieve this goal.

Specifically a preconditioner matrix M is introduced into equation (4)

(5)

so that the new linear system becomes

(6)

By directly incorporating preconditioning into CG iteration, the resulting algorithm can be

summarized as follows:

1. set l = 0, r0 = b − Aϕ0

2. solve Mz0 = r0 for z0, let p0 = z0

3. calculate the norm of residue ||rl||. If ||rl||/||b|| < δ, output ϕl. Otherwise go to the

next step.

4. set l = l + 1

5. calculate

6. solve Mzl = rl for zl

7. calculate

8. go to step 3

We can see that the preconditioned CG algorithm involves an additional operation at each

iteration to solve the linear system Mzl = rl.

2.3 Incomplete Cholesky Preconditioners

A commonly used type of preconditioners is based on the incomplete LDLT factorization

Qi et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(7)

Here the matrices are related to the original coefficient matrix A as A = L + D + LT with L
as the strictly lower triangular matrix of A and D as the positive diagonal matrix of A.

Finally D̃ is an undetermined positive diagonal matrix. If the diagonal of M is defined as D,

the preconditioned conjugate gradient is termed ICCG. In MICCG, the diagonal elements of

D̃ are optimized to further improve the convergence.8 The MICCG method is our default

CPU implementation for our PBSA program in the Amber and AmberTools releases.

2.4 Jacobi Preconditioner

The Jacobi preconditioner (aka diagonal preconditioner) simply extracts the main diagonal

D of A as M. Jacobi preconditioning is very inexpensive to use and is reasonably efficient

for diagonally dominant matrices, though its reduction in the iteration number is modest.

However, for the GPU implementation, the Jacobi preconditioner is advantageous because it

is completely lack of row dependency, leading to great parallel efficiency. Additionally, the

Jacobi preconditioner needs very little storage as to be discussed below.

2.5 Smoothed-aggregation-based Algebraic Multigrid Preconditioner

Multigrid methods are highly efficient techniques to solve linear or nonlinear equations.

Typically there are two classes of multigrid methods: geometric multigrid (GMG) and

algebraic multigrid (AMG).18 GMG methods require prior physical/mathematical

knowledge of the underlying discretization and grid hierarchy, whereas AMG methods only

require the coefficient matrix. Classical AMG methods involve the construction of a

hierarchy of grids using the original coefficient matrix. The hierarchical grids are obtained

by partitioning the grid nodes into coarse and fine grid nodes. The coarse grid nodes form a

coarse level, and an interpolation operator, via a weighted sum of the coarse grid nodes, is

used to interpolate a coarse level solution to a fine level. The restriction operator, usually

taken as the transpose of the interpolation operator, is used to restrict a fine level solution to

a coarse level.19 Aggregation AMG methods obtain the hierarchical grids by aggregating a

few fine grid nodes to form a coarse grid node. The interpolation operator uses a piecewise

constant interpolation to obtain a fine level solution from a coarse level solution. This leads

to rather sparse interpolation. The restriction operator is similar to that of the classical AMG

methods. The aggregation scheme reduces the memory requirement and improves the

interpolation efficiency, but it does not provide grid independent convergence.19b Therefore

smooth interpolation or smooth aggregation is often used to improve the convergence.20

Unlike classical AMG, smoothed-aggregation-based AMG (SA-AMG) is not robust for

various applications.19b Thus SA-AMG is often used as a preconditioner for generalized

minimal residual and conjugate gradient methods. In this study, we tested the use of SA-

AMG method to build a preconditioner (M) to the conjugate gradient method as

implemented in CUSP.

Qi et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.6 GPU Implementation

The latest generations of GPU cards and Nvidia CUDA provide mature computing platforms

for scientific applications. CUDA gives developers direct access to parallel computational

elements (GPUs) and enables code to run concurrently in CPUs. Several CUDA-compatible

libraries were utilized to implement a GPU-ready Amber/PBSA program. The CUDA Basic

Linear Algebra Subroutines (cuBLAS) library is a GPU-accelerated BLAS library that are

“6× to 17× faster” than the latest MKL in GEMM (GEneral Matrix Multiplication)

performance measurement.21 The Nvidia CUDA Sparse Matrix (cuSPARSE) library

provides basic linear algebra procedures for sparse matrix operations that are “up to 8×

faster” than the latest MKL.22 The cuSPARSE library is designed to interface with C or C++

functions. It supports multiple sparse matrix storage formats, such as Coordinate (COO),

Compressed Sparse Row (CSR), Compressed Sparse Column (CSC), ELLPACK (ELL),

Hybrid ELL+COO (HYB), and Blocked CSR. Finally CUSP is an open source C++ library

based on Thrust. It can also provide sparse matrix operations in the CUDA environment.23

CUSP supports COO, CSR, Diagonal (DIA), ELL, and HYB matrix formats.

In this study we implemented four types of FDM solvers, i.e. CG, ICCG, Jacobi-CG and

SA-AMG-CG using cuBLAS, cuSPARSE, and CUSP libraries. We also tested these

implementations with five different matrix formats DIA, CSR, COO, ELL, and HYB to

analyze the impact of matrix formats upon efficiency. A total of 15 GPU combinations are

possible as summarized in Table 1 with CG-CPU and ICCG-CPU also listed for comparison.

Apparently not every combination is available, e.g. the cuSPARSE library only works with

the CSR format; Jacobi-CG only works with the CUSP library, and SA-AMG-CG only

works with the CSR, COO and HYB formats in the CUSP library.

2.7 Computational Details

All CUDA solvers were implemented in the single precision within the Amber/PBSA

program of the Amber 16 package,24 while the system setup and the energy/force

calculation were still implemented in the double precision. In contrast, all implementations

in the CPU solvers use the double precision. A total of 573 biomolecular structures

including proteins, short peptides, and nucleic acids in the Amber benchmark suite were

used in our test.3l These biomolecules consist of atoms ranging from 247 to 8,254 and have

quite different geometries, and they were assigned charges of Cornell et al25 and the

modified Bondi radii.

All testings were performed with the following conditions unless specified otherwise. The

convergence criteria of 10−3 and 10−6 were used for performance comparisons for low and

high-precision applications, respectively. The default grid spacing of 0.5 Ǻ was used. The

ratio of the grid dimension over the solute dimension was set to 1.5. No electrostatic

focusing was applied for easy timing analysis. The potential values on all grids were

initialized to zero. The dielectric constants were set to 80 and 1 for solvent and solute,

respectively. The weighted harmonic average of the solvent and solute dielectric constants

was used as the boundary dielectric constants. Therefore, the symmetric and positive-

definite coefficient matrices were obtained and suitable for all tested linear solvers. In

addition, the FDM matrix was initialized into CSR format and transformed into other

Qi et al. Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

formats when needed. Finally both the free space boundary condition (FBC) and periodic

boundary condition (PBC) were tested. In PBC applications, we filled the matrix elements

on the additional 6 bands into the original 7 bands and stored their column index non-

consecutively in the CSR index arrays, thus we managed to use the same space as the

original 7 bands in free boundary condition. All other parameters were set as default in the

PBSA program in the Amber 16 package.24

We performed all measurements on a hybrid node with two NVIDIA GeForce GTX 980 Ti

GPU cards and one Intel Xeon E5-1620 v3 CPU and 16GB main memory. The test platform

is one of our standard GPU nodes with Intel X99 chipset, LGA2011-v3 CPU socket,

DDR4-2133 memory, and PCIE 3.0 ×16 interconnection between the host CPU and the two

GPU cards. The Intel Xeon E5-1620 v3 CPU was set as four threads, though all test runs

were performed on a single thread. The Operating System is CentOS 6.6 as distributed in the

ROCK 6.2 release. The CPU timing measurements include all execution time of the core

routine, i.e. time elapsed on both GPU and CPU, as well as time for transferring data

between GPU and CPU.

3. Results and Discussion

3.1 Accuracy of GPU implementations

It is important to guarantee that the GPU implementations achieve consistent numerical

results with existing CPU implementations within specified convergence criterion. As shown

in Figure 1 for calculations in the free boundary condition, the electrostatic solvation

energies on GPU (Jacobi-CG) and on CPU (CG) correlate quite well with both 10−3 and

10−6 convergence criteria. The linear regression slopes are 0.999931 and 0.999996,

respectively, and the correlation coefficients are 1.0 for both. The maximum relative energy

errors are 3.0×10−3 and 6.3×10−6, which are in agreement with the convergence criteria

chosen.

Similar agreements were also observed between the two implementations in the periodic

boundary condition as shown in Figure 2. The linear regression slopes are 0.999639 and 1.0

for 10−3 and 10−6 convergence criteria, respectively, and the correlation coefficients are 1.0

for both. The maximum relative errors are 3.9×10−3 and 5.8 ×10−6, respectively, in

agreement with the preset convergence criteria. For all other GPU implementations of which

the data are not shown here, similar agreements were also observed.

3.2 Efficiency of GPU implementations

To compare the efficiency of GPU and CPU implementations, we first selected eight

representative proteins and measured their solver CPU times with 10−3 and 10−6

convergence criteria, respectively. The standard CG solver as implemented on GPU and

CPU was first analyzed. Table 2 shows that the GPU/CG solver overall performs better than

the CPU/CG solver, with a speedup of ~6 to ~10 for the low convergence criterion and a

speedup of ~8 to ~13 for the high convergence criterion. This is encouraging given that the

tested GPU/CG solver is an unconditioned CG from the standard library without any change.

Qi et al. Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We next compared the GPU/CG solver with our default CPU solver CPU/ICCG, which was

hand-optimized in the matrix-free fashion for modern CPUs. It is interesting to note that

GPU/CG still performs better than CPU/ICCG for the larger proteins with the number of

grid nodes over 2 million at the low convergence criterion. Furthermore, it performs better

than CPU/ICCG for all tested proteins at the high convergence criterion.

A natural direction to go is to port ICCG to GPU, and this was implemented using the

cuSPARSE library in this study. Unfortunately, our test shows that ICCG performs poorly on

GPU platforms. This is consistent with the widely known fact that ICCG is not suitable for

parallel platforms. Indeed, the inefficiency of the GPU/ICCG solver is significant: over 20

times slower than the standard CPU/CG solver. It should be pointed out that the the poor

efficiency of GPU/ICCG is observed even with Nvidia’s in-house optimization.26 The

specialized solver intends to find any independence in the sparse matrix during the analysis

phase to solve the linear system in a parallel fashion.26 In the case of linear PBE systems,

however, this strategy fails to find any significant data independence in the seven-banded

matrix.

Nevertheless, there are other solvers that are more suitable for the parallel GPU platforms. It

appears that several are available. Our comprehensive analysis shows that Jacobi-CG is quite

attractive. It was implemented with the CUSP library in the DIA matrix format. As shown in

Table 2, the GPU/Jacobi-CG solver is about 95 to 283 times faster than GPU/ICCG for the

low convergence criterion; and 194 to 407 times faster than GPU/ICCG for the high

convergence criterion. The dramatically better performance of GPU/Jacobi-CG over GPU/

ICCG lies in the simple utilization of the diagonal matrix as a preconditioner, which is

completely without row dependency, so that it greatly facilitates parallel execution.

Another interesting solver that can take advantage of GPU platforms is the SA-AMG-CG

solver. We implemented the SA-AMG-CG solver in the CUSP library and observed

reasonable speedup. Different from ICCG, the GPU/SA-AMG-CG implementation is

observed to perform similarly among the best GPU implementations: slightly slower than

GPU/CG and GPU/Jacobi-CG, but more efficient than both CPU/CG and CPU/ICCG at the

high convergence criterion as shown in Table 2. It is less efficient than CPU/ICCG at the low

convergence criterion, but clearly better than the standard CPU/CG implementation. These

data indicate the potential to further implement multigrid types of linear solvers, such as

geometric multi-grid solvers, for GPU platforms.

Given the above detailed comparison of multiple implementations on selected proteins, it is

clear that the GPU/Jacobi-CG is overall the most efficient implementation at both testing

conditions (low and high convergence criteria). To properly gauge the overall speedups for

typical applications for both free space boundary condition and periodic boundary condition,

we plotted the speedup ratios of the GPU/Jacobi-CG implementation over the CPU/CG

implementation using all test cases. As shown in Figure 3 for the free space boundary

condition and Figure 4 for the periodic boundary condition, a speedup ratio of about 5 to 50

can be observed. The actual values clearly depend on the size/structure and of a given

system. An interesting observation is that the speedup is not influenced much by the

boundary conditions by comparing the trends in Figure 3 and Figure 4. However, it is clear

Qi et al. Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that the CPU/ICCG implementation is more efficient in the free space boundary condition

with speedup ratios up to 18 versus speedup ratios up to 6 in the periodic boundary

condition in the low convergence criterion. This is because the difficulties in implementing

periodic boundary condition in the highly optimized ICCG solver that prevent certainly data

management ideas, i.e. array padding, to be used on CPU platforms as discussed

previously.3n

As in other computational sciences, the sparse matrix structure is a typical feature when a

partial differential equation, such as PBE, is discretized. As a result sparse matrix-vector

multiplications (SpMV) are critical operations in PBE solvers and represents the dominant

cost in many iterative methods. In our CPU/CG and CPU/ICCG implementations, hand

tuning was employed to fully utilize the banded structure of the matrix for efficient SpMV

operations. For example, the SpMV operation between boundary elements and the potential

grids in the PBC linear solvers is carried out by directly shifting the column index into the

array index, avoiding extra matrix column manipulation.3n In addition, with only several

extra indices to mark the columns, seven arrays are enough to store the non-zero elements of

the banded coefficient matrix, i.e. no extra row or column index is needed. Compared to the

CSR format storage, this can save as much as 53% of the memory usage, which also leads to

dramatically reduced memory load and store operations. However, these improvements in

our CPU implementations are not fully available in the existing CUDA libraries. These

features will be adopted when developing hand-optimized GPU solvers in our next step.

3.3 Other issues of GPU implementations

Efficiency of a GPU solver is also significantly affected by the matrix storage format. There

are a number of sparse matrix representations with different storage requirements,

computational characteristics, and methods of accessing and manipulating matrix elements

as summarized in the Methods section. The DIA format is tailored for highly specific classes

of matrices and is the most computationally attractive for the banded matrices in our linear

PBE systems.27 This is apparent in Figure 5 with Jacobi-DIA and CG-DIA being the best.

However, the current cuSPARSE library does not support the DIA format, so that only the

CSR format, a general-purpose format, was used for performance evaluation. Finally it

should be pointed out none of the GPU/ICCG implementations are shown in Figure 5 due to

their extremely long execution times.

Given all the issues addressed, it is instructive to compare all GPU solver implementations

as shown in Figure 5. This comparison also provides an opportunity to study the robustness

of all GPU implementations. We examined all 573 test cases using both free space boundary

condition and periodic boundary condition at both convergence criteria, to analyze the

overall scaling of all GPU implementations. Indeed not every GPU implementation is robust

enough to function properly for all tested conditions and molecules. There are five failures

(failed to converge) and two unstable runs (converged but with unusually long time) for

GPU/SA-AMG-CG in three out of the five tested formats (CSR/COO/HYB). The method

fails in all test conditions and all molecules in the other two tested formats (DIA and ELL).

Most failures were due to bad memory allocation, and others were due to unknown internal

failures that lead to incorrect numerical solutions. This comprehensive scaling test confirms

Qi et al. Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that GPU/Jacobi-CG from the CUSP library outperforms all its GPU and CPU counterparts

significantly, and is also noticeably faster than our default CPU/ICCG implementation. As a

reference, the CPU/ICCG is on average 10 times faster than CPU/CG as shown in Figure 3

and 4, consistent with the findings of Wang et al.3l

3.4 Memory usage of GPU implementations

Memory usage is also crucial for GPU implementations because memory is often limited on

most consumer-grade graphics cards. Apparently different solvers and matrix storage

methods lead to different memory usages. In implementations with the CUSP library, typical

memory usage is 88×Ngrid bytes for GPU/CG and 92×Ngrid for GPU/Jacobi-CG in the

CSR matrix format. With the cuSPARSE library, GPU/CG consumes up to 76×Ngrid bytes

of GPU memory and GPU/ICCG uses 180×Ngrid bytes in the CSR matrix. Here the

estimations are based on the use of four-byte integer and float types. In addition, we

managed to use about the same memory for both PBC and FBC applications as mentioned in

Methods. This in part contributes to the consistent efficiency between the two boundary

conditions for the tested molecules.

The above estimations are only based on those arrays explicitly allocated in the program.

Run-time analysis by the NVIDIA hardware manage tool (nvidia-smi), however, shows that

the total memory is about twice as much due the hidden buffer space allocated within the

CUSP and cuSPARSE libraries. Thus the actual memory limit was underestimated in the

estimations. Extensive test of the fastest implementation, GPU/Jacobi-CG, shows that it was

able to successfully complete linear PBE calculations with ~29.6 million grid nodes on the

NVIDIA GTX 980 Ti cards with ~6GB GPU memory, about twice as smaller as the

estimation.

4. Conclusions

In this study, we implemented multiple linear PBE solvers based on the standard CUDA

libraries and conducted a systematic analysis on their performance with a large set of

realistic biomolecules. We first analyzed the accuracy of the GPU implementation with

respect to the CPU implementation in both free boundary condition and periodic boundary

condition. The analysis shows that the GPU and CPU implementations agree within

specified convergence criteria even if single precision was used in consumer grade graphics

cards used in the test.

Many GPU solvers perform better than the standard CPU/CG solver, with various speedup

ratios, depending on convergence criterion and size of the linear systems. In the

comprehensive scaling test, our data shows that GPU/Jacobi-CG from the CUSP library

outperforms all its GPU and CPU counterparts significantly. A speedup ratio of about 5 to

50 can be observed and it is not influenced much by the boundary conditions or convergence

criteria. This should be compared with our default CPU implementation – the CPU/ICCG

implementation, which is more efficient in the free space boundary condition. The speedup

is reduced in the high convergence criterion in both boundary conditions tested.

Unfortunately our test shows that the ICCG method performs poorly on GPU platforms.

Moreover, we implemented the SA-AMG-CG method and it was found to perform similarly

Qi et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

among the best GPU implementations. These data indicate the potential to further implement

multigrid types of linear solvers for GPU platforms.

It is also worth pointing out that the efficiency of a GPU solver is significantly affected by

matrix storage formats. The DIA format is tailored for banded matrices and is the most

computationally efficient for linear PBE matrices. Furthermore we discussed the memory

usage of these solvers. Extensive test of the fastest implementation, GPU/Jacobi-CG, shows

that it was able to successfully complete FDPB calculations with ~29.6 million grid points

on the NVIDIA GTX 980 Ti cards with 6GB GPU memory, about twice as smaller as the

theoretical analysis.

Finally further efficiency gain in GPU implementations is more likely to be achieved with

customized matrix-free operations, integrated grid stencil setup on GPU, and also multigrid

types of solvers, specifically tailored for our particular linear PBE problems. These

developments are currently underway in our group.

Acknowledgments

This work was supported by National Institutes of Health/NIGMS (GM093040 & GM079383).

References

1. (a) Davis ME, McCammon JA. ELECTROSTATICS IN BIOMOLECULAR STRUCTURE AND
DYNAMICS. Chem Rev (Washington, DC, U S). 1990; 90(3):509–521.(b) Honig B, Sharp K, Yang
AS. MACROSCOPIC MODELS OF AQUEOUS-SOLUTIONS - BIOLOGICAL AND
CHEMICAL APPLICATIONS. J Phys Chem. 1993; 97(6):1101–1109.(c) Honig B, Nicholls A.
CLASSICAL ELECTROSTATICS IN BIOLOGY AND CHEMISTRY. Science. 1995; 268(5214):
1144–1149. [PubMed: 7761829] (d) Beglov D, Roux B. Solvation of complex molecules in a polar
liquid: An integral equation theory. J Chem Phys. 1996; 104(21):8678–8689.(e) Cramer CJ, Truhlar
DG. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem Rev
(Washington, DC, U S). 1999; 99(8):2161–2200.(f) Bashford D, Case DA. Generalized born models
of macromolecular solvation effects. Annu Rev Phys Chem. 2000; 51:129–152. [PubMed:
11031278] (g) Baker NA. Improving implicit solvent simulations: a Poisson-centric view. Curr Opin
Struct Biol. 2005; 15(2):137–143. [PubMed: 15837170] (h) Chen JH, Im WP, Brooks CL.
Balancing solvation and intramolecular interactions: Toward a consistent generalized born force
field. J Am Chem Soc. 2006; 128(11):3728–3736. [PubMed: 16536547] (i) Feig M, Chocholousova
J, Tanizaki S. Extending the horizon: towards the efficient modeling of large biomolecular
complexes in atomic detail. Theor Chem Acc. 2006; 116(1–3):194–205.(j) Koehl P. Electrostatics
calculations: latest methodological advances. Curr Opin Struct Biol. 2006; 16(2):142–151.
[PubMed: 16540310] (k) Im W, Chen JH, Brooks CL. Peptide and protein folding and
conformational equilibria: Theoretical treatment of electrostatics and hydrogen bonding with
implicit solvent models. Peptide Solvation and H-Bonds. 2006; 72:173.(l) Lu BZ, Zhou YC, Holst
MJ, McCammon JA. Recent progress in numerical methods for the Poisson-Boltzmann equation in
biophysical applications. Communications in Computational Physics. 2008; 3(5):973–1009.(m)
Wang J, Tan CH, Tan YH, Lu Q, Luo R. Poisson-Boltzmann solvents in molecular dynamics
Simulations. Communications in Computational Physics. 2008; 3(5):1010–1031.(n) Altman MD,
Bardhan JP, White JK, Tidor B. Accurate Solution of Multi-Region Continuum Biomolecule
Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary
Elements. J Comput Chem. 2009; 30(1):132–153. [PubMed: 18567005] (o) Cai, Q., Wang, J.,
Hsieh, M-J., Ye, X., Luo, R. Chapter Six - Poisson–Boltzmann Implicit Solvation Models. In:
Ralph, AW., editor. Annual Reports in Computational Chemistry. Vol. 8. Elsevier; 2012. p. 149-162.
(p) Xiao L, Wang C, Luo R. Recent progress in adapting Poisson–Boltzmann methods to molecular
simulations. Journal of Theoretical and Computational Chemistry. 2014; 13(03):1430001.(q)

Qi et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Botello-Smith WM, Cai Q, Luo R. Biological applications of classical electrostatics methods.
Journal of Theoretical and Computational Chemistry. 2014; 13(03):1440008.

2. (a) Warwicker J, Watson HC. Calculation of the Electric-Potential in the Active-Site Cleft Due to
Alpha-Helix Dipoles. J Mol Biol. 1982; 157(4):671–679. [PubMed: 6288964] (b) Bashford D,
Karplus M. Pkas Of Ionizable Groups In Proteins - Atomic Detail From A Continuum Electrostatic
Model. Biochemistry. 1990; 29(44):10219–10225. [PubMed: 2271649] (c) Jeancharles A, Nicholls
A, Sharp K, Honig B, Tempczyk A, Hendrickson TF, Still WC. Electrostatic Contributions To
Solvation Energies - Comparison Of Free-Energy Perturbation And Continuum Calculations. J Am
Chem Soc. 1991; 113(4):1454–1455.(d) Gilson MK. Theory of Electrostatic Interactions in
Macromolecules. Curr Opin Struct Biol. 1995; 5(2):216–223. [PubMed: 7648324] (e) Edinger SR,
Cortis C, Shenkin PS, Friesner RA. Solvation free energies of peptides: Comparison of approximate
continuum solvation models with accurate solution of the Poisson-Boltzmann equation. J Phys
Chem B. 1997; 101(7):1190–1197.(f) Lu Q, Luo R. A Poisson-Boltzmann dynamics method with
nonperiodic boundary condition. J Chem Phys. 2003; 119(21):11035–11047.(g) Tan C, Yang L, Luo
R. How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative
analysis. J Phys Chem B. 2006; 110(37):18680–18687. [PubMed: 16970499] (h) Cai Q, Wang J,
Zhao HK, Luo R. On removal of charge singularity in Poisson-Boltzmann equation. J Chem Phys.
2009; 130(14)(i) Ye X, Cai Q, Yang W, Luo R. Roles of Boundary Conditions in DNA Simulations:
Analysis of Ion Distributions with the Finite-Difference Poisson-Boltzmann Method. Biophys J.
2009; 97(2):554–562. [PubMed: 19619470] (j) Ye X, Wang J, Luo R. A Revised Density Function
for Molecular Surface Calculation in Continuum Solvent Models. J Chem Theory Comput. 2010;
6(4):1157–1169. [PubMed: 24723844] (k) Luo R, Moult J, Gilson MK. Dielectric screening
treatment of electrostatic solvation. J Phys Chem B. 1997; 101(51):11226–11236.(l) Wang J, Tan C,
Chanco E, Luo R. Quantitative analysis of Poisson-Boltzmann implicit solvent in molecular
dynamics. Phys Chem Chem Phys. 2010; 12(5):1194–1202. [PubMed: 20094685] (m) Hsieh MJ,
Luo R. Exploring a coarse-grained distributive strategy for finite-difference Poisson-Boltzmann
calculations. J Mol Model. 2011; 17(8):1985–1996. [PubMed: 21127924] (n) Cai Q, Ye X, Wang J,
Luo R. On-the-Fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann
Methods. J Chem Theory Comput. 2011; 7(11):3608–3619. [PubMed: 24772042] (o) Botello-Smith
WM, Liu X, Cai Q, Li Z, Zhao H, Luo R. Numerical Poisson-Boltzmann Model for Continuum
Membrane Systems. Chem Phys Lett. 2012(p) Liu X, Wang C, Wang J, Li Z, Zhao H, Luo R.
Exploring a charge-central strategy in the solution of Poisson’s equation for biomolecular
applications. Phys Chem Chem Phys. 2013(q) Wang C, Wang J, Cai Q, Li ZL, Zhao H, Luo R.
Exploring High Accuracy Poisson-Boltzmann Methods for Biomolecular Simulations.
Computational and Theoretical Chemistry. 2013; 1024:34–44. [PubMed: 24443709]

3. (a) Klapper I, Hagstrom R, Fine R, Sharp K, Honig B. Focusing of Electric Fields in the Active Site
of Copper-Zinc Superoxide Dismutase Effects of Ionic Strength and Amino Acid Modification.
Proteins Structure Function and Genetics. 1986; 1(1):47–59.(b) Davis ME, McCammon JA. Solving
the Finite-Difference Linearized Poisson-Boltzmann Equation - a Comparison of Relaxation and
Conjugate-Gradient Methods. J Comput Chem. 1989; 10(3):386–391.(c) Nicholls A, Honig B. A
Rapid Finite-Difference Algorithm, Utilizing Successive over-Relaxation to Solve the Poisson-
Boltzmann Equation. J Comput Chem. 1991; 12(4):435–445.(d) Luty BA, Davis ME, McCammon
JA. Solving the Finite-Difference Nonlinear Poisson-Boltzmann Equation. J Comput Chem. 1992;
13(9):1114–1118.(e) Holst M, Saied F. Multigrid Solution of the Poisson-Boltzmann Equation. J
Comput Chem. 1993; 14(1):105–113.(f) Forsten KE, Kozack RE, Lauffenburger DA, Subramaniam
S. Numerical-Solution of the Nonlinear Poisson-Boltzmann Equation for a Membrane-Electrolyte
System. J Phys Chem. 1994; 98(21):5580–5586.(g) Holst MJ, Saied F. NUMERICAL-SOLUTION
OF THE NONLINEAR POISSON-BOLTZMANN EQUATION - DEVELOPING MORE ROBUST
AND EFFICIENT METHODS. J Comput Chem. 1995; 16(3):337–364.(h) Bashford D. An Object-
Oriented Programming Suite for Electrostatic Effects in Biological Molecules. Lecture Notes in
Computer Science. 1997; 1343:233–240.(i) Im W, Beglov D, Roux B. Continuum Solvation Model:
computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation.
Comput Phys Commun. 1998; 111(1–3):59–75.(j) Rocchia W, Alexov E, Honig B. Extending the
applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and
multivalent ions. J Phys Chem B. 2001; 105(28):6507–6514.(k) Luo R, David L, Gilson MK.
Accelerated Poisson-Boltzmann calculations for static and dynamic systems. J Comput Chem.
2002; 23(13):1244–1253. [PubMed: 12210150] (l) Wang J, Luo R. Assessment of Linear Finite-

Qi et al. Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Difference Poisson-Boltzmann Solvers. J Comput Chem. 2010; 31(8):1689–1698. [PubMed:
20063271] (m) Cai Q, Hsieh MJ, Wang J, Luo R. Performance of Nonlinear Finite-Difference
Poisson-Boltzmann Solvers. J Chem Theory Comput. 2010; 6(1):203–211. [PubMed: 24723843] (n)
Botello-Smith WM, Luo R. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical
Solutions of Periodic Poisson–Boltzmann Equation. J Chem Inf Model. 2015; 55(10):2187–2199.
[PubMed: 26389966]

4. (a) Cortis CM, Friesner RA. Numerical solution of the Poisson-Boltzmann equation using
tetrahedral finite-element meshes. J Comput Chem. 1997; 18(13):1591–1608.(b) Holst M, Baker N,
Wang F. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I.
Algorithms and examples. J Comput Chem. 2000; 21(15):1319–1342.(c) Baker N, Holst M, Wang
F. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at
solvent-accessible surfaces in biomolecular systems. J Comput Chem. 2000; 21(15):1343–1352.(d)
Shestakov AI, Milovich JL, Noy A. Solution of the nonlinear Poisson-Boltzmann equation using
pseudo-transient continuation and the finite element method. J Colloid Interface Sci. 2002; 247(1):
62–79. [PubMed: 16290441] (e) Chen L, Holst MJ, Xu JC. The finite element approximation of the
nonlinear Poisson-Boltzmann equation. SIAM Journal on Numerical Analysis. 2007; 45:2298–
2320.(f) Xie D, Zhou S. A new minimization protocol for solving nonlinear Poisson–Boltzmann
mortar finite element equation. BIT Numerical Mathematics. 2007; 47(4):853–871.(g) Wang J,
Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H, Luo R, Duan Y. Development of Polarizable
Models for Molecular Mechanical Calculations II: Induced Dipole Models Significantly Improve
Accuracy of Intermolecular Interaction Energies. J Phys Chem B. 2011; 115(12):3100–3111.
[PubMed: 21391583] (h) Lu B, Holst MJ, McCammon JA, Zhou YC. Poisson-Nernst-Planck
equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions. J
Comput Phys. 2010; 229(19):6979–6994. [PubMed: 21709855] (i) Bond SD, Chaudhry JH, Cyr EC,
Olson LN. A First-Order System Least-Squares Finite Element Method for the Poisson-Boltzmann
Equation. J Comput Chem. 2010; 31(8):1625–1635. [PubMed: 19908291]

5. (a) Miertus S, Scrocco E, Tomasi J. Electrostatic Interaction of a Solute with a Continuum - a Direct
Utilization of Abinitio Molecular Potentials for the Prevision of Solvent Effects. Chem Phys. 1981;
55(1):117–129.(b) Hoshi H, Sakurai M, Inoue Y, Chujo R. Medium Effects on the Molecular
Electronic-Structure .1. the Formulation of a Theory for the Estimation of a Molecular Electronic-
Structure Surrounded by an Anisotropic Medium. J Chem Phys. 1987; 87(2):1107–1115.(c) Zauhar
RJ, Morgan RS. The Rigorous Computation of the Molecular Electric-Potential. J Comput Chem.
1988; 9(2):171–187.(d) Rashin AA. Hydration Phenomena, Classical Electrostatics, and the
Boundary Element Method. J Phys Chem. 1990; 94(5):1725–1733.(e) Yoon BJ, Lenhoff AM. A
Boundary Element Method for Molecular Electrostatics with Electrolyte Effects. J Comput Chem.
1990; 11(9):1080–1086.(f) Juffer AH, Botta EFF, Vankeulen BAM, Vanderploeg A, Berendsen
HJC. The Electric-Potential of a Macromolecule in a Solvent - a Fundamental Approach. J Comput
Phys. 1991; 97(1):144–171.(g) Zhou HX. Boundary-Element Solution of Macromolecular
Electrostatics - Interaction Energy between 2 Proteins. Biophys J. 1993; 65(2):955–963. [PubMed:
8218918] (h) Bharadwaj R, Windemuth A, Sridharan S, Honig B, Nicholls A. The Fast Multipole
Boundary-Element Method for Molecular Electrostatics - an Optimal Approach for Large Systems.
J Comput Chem. 1995; 16(7):898–913.(i) Purisima EO, Nilar SH. A Simple yet Accurate
Boundary-Element Method for Continuum Dielectric Calculations. J Comput Chem. 1995; 16(6):
681–689.(j) Liang J, Subramaniam S. Computation of molecular electrostatics with boundary
element methods. Biophys J. 1997; 73(4):1830–1841. [PubMed: 9336178] (k) Vorobjev YN,
Scheraga HA. A fast adaptive multigrid boundary element method for macromolecular electrostatic
computations in a solvent. J Comput Chem. 1997; 18(4):569–583.(l) Totrov M, Abagyan R. Rapid
boundary element solvation electrostatics calculations in folding simulations: Successful folding of
a 23-residue peptide. Biopolymers. 2001; 60(2):124–133. [PubMed: 11455546] (m) Boschitsch AH,
Fenley MO, Zhou HX. Fast boundary element method for the linear Poisson-Boltzmann equation. J
Phys Chem B. 2002; 106(10):2741–2754.(n) Lu BZ, Cheng XL, Huang JF, McCammon JA. Order
N algorithm for computation of electrostatic interactions in biomolecular systems. Proc Natl Acad
Sci U S A. 2006; 103(51):19314–19319. [PubMed: 17148613] (o) Lu B, Cheng X, Huang J,
McCammon JA. An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann
Electrostatics. J Chem Theory Comput. 2009; 5(6):1692–1699. [PubMed: 19517026] (p) Bajaj C,
Chen SC, Rand A. An Efficient Higher-Order Fast Multipole Boundary Element Solution For

Qi et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Poisson-Boltzmann-Based Molecular Electrostatics. Siam Journal on Scientific Computing. 2011;
33(2):826–848. [PubMed: 21660123]

6. (a) Luo R, Head MS, Moult J, Gilson MK. pK(a) shifts in small molecules and HIV protease:
Electrostatics and conformation. J Am Chem Soc. 1998; 120(24):6138–6146.(b) Georgescu RE,
Alexov EG, Gunner MR. Combining conformational flexibility and continuum electrostatics for
calculating pK(a)s in proteins. Biophys J. 2002; 83(4):1731–1748. [PubMed: 12324397] (c) Nielsen
JE, McCammon JA. On the evaluation and optimization of protein X-ray structures for pKa
calculations. Protein Sci. 2003; 12(2):313–326. [PubMed: 12538895] (d) Warwicker J. Improved
pK(a) calculations through flexibility based sampling of a water-dominated interaction scheme.
Protein Sci. 2004; 13(10):2793–2805. [PubMed: 15388865] (e) Tang CL, Alexov E, Pyle AM,
Honig B. Calculation of pK(a)s in RNA: On the structural origins and functional roles of protonated
nucleotides. J Mol Biol. 2007; 366(5):1475–1496. [PubMed: 17223134]

7. (a) Shivakumar D, Deng YQ, Roux B. Computations of Absolute Solvation Free Energies of Small
Molecules Using Explicit and Implicit Solvent Model. J Chem Theory Comput. 2009; 5(4):919–
930. [PubMed: 26609601] (b) Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper
MD, Pande VS. Predicting small-molecule solvation free energies: An informal blind test for
computational chemistry. J Med Chem. 2008; 51(4):769–779. [PubMed: 18215013]

8. (a) Swanson JMJ, Henchman RH, McCammon JA. Revisiting free energy calculations: A theoretical
connection to MM/PBSA and direct calculation of the association free energy. Biophys J. 2004;
86(1):67–74. [PubMed: 14695250] (b) Bertonati C, Honig B, Alexov E. Poisson-Boltzmann
calculations of nonspecific salt effects on protein-protein binding free energies. Biophysical Journal.
2007; 92(6):1891–1899. [PubMed: 17208980] (c) Brice AR, Dominy BN. Analyzing the
Robustness of the MM/PBSA Free Energy Calculation Method: Application to DNA
Conformational Transitions. J Comput Chem. 2011; 32(7):1431–1440. [PubMed: 21284003] (d)
Luo R, Gilson HSR, Potter MJ, Gilson MK. The physical basis of nucleic acid base stacking in
water. Biophys J. 2001; 80(1):140–148. [PubMed: 11159389] (e) David L, Luo R, Head MS, Gilson
MK. Computational study of KNI-272, a potent inhibitor of HIV-1 protease: On the mechanism of
preorganization. J Phys Chem B. 1999; 103(6):1031–1044.(f) Luo R, Gilson MK. Synthetic adenine
receptors: Direct calculation of binding affinity and entropy. J Am Chem Soc. 2000; 122(12):2934–
2937.(g) Luo R, Head MS, Given JA, Gilson MK. Nucleic acid base-pairing and N-
methylacetamide self-association in chloroform: affinity and conformation. Biophys Chem. 1999;
78(1–2):183–193. [PubMed: 10343387]

9. (a) Marshall SA, Vizcarra CL, Mayo SL. One- and two-body decomposable Poisson-Boltzmann
methods for protein design calculations. Protein Sci. 2005; 14(5):1293–1304. [PubMed: 15802649]
(b) Hsieh MJ, Luo R. Physical scoring function based on AMBER force field and Poisson-
Boltzmann implicit solvent for protein structure prediction. Proteins-Structure Function and
Bioinformatics. 2004; 56(3):475–486.(c) Wen EZ, Luo R. Interplay of secondary structures and
side-chain contacts in the denatured state of BBA1. J Chem Phys. 2004; 121(5):2412–2421.
[PubMed: 15260796] (d) Wen EZ, Hsieh MJ, Kollman PA, Luo R. Enhanced ab initio protein
folding simulations in Poisson-Boltzmann molecular dynamics with self-guiding forces. J Mol
Graphics Modell. 2004; 22(5):415–424.(e) Lwin TZ, Luo R. Overcoming entropic barrier with
coupled sampling at dual resolutions. J Chem Phys. 2005; 123(19)(f) Lwin TZ, Zhou RH, Luo R. Is
Poisson-Boltzmann theory insufficient for protein folding simulations? J Chem Phys. 2006; 124(3)
(g) Lwin TZ, Luo R. Force field influences in beta-hairpin folding simulations. Protein Sci. 2006;
15(11):2642–2655. [PubMed: 17075138] (h) Tan YH, Luo R. Protein stability prediction: A
Poisson-Boltzmann approach. J Phys Chem B. 2008; 112(6):1875–1883. [PubMed: 18211063] (i)
Tan Y, Luo R. Structural and functional implications of p53 missense cancer mutations. BMC
Biophysics. 2009; 2(1):5.(j) Korman TP, Tan YH, Wong J, Luo R, Tsai SC. Inhibition kinetics and
emodin cocrystal structure of a type II polyketide ketoreductase. Biochemistry. 2008; 47(7):1837–
1847. [PubMed: 18205400]

10. Wang J, Cai Q, Li Z-L, Zhao H-K, Luo R. Achieving energy conservation in Poisson-Boltzmann
molecular dynamics: Accuracy and precision with finite-difference algorithms. Chem Phys Lett.
2009; 468(4–6):112–118. [PubMed: 20098487]

11. (a) Meijerink JA, Vandervorst HA. ITERATIVE SOLUTION METHOD FOR LINEAR-
SYSTEMS OF WHICH COEFFICIENT MATRIX IS A SYMMETRIC M-MATRIX. Mathematics
of Computation. 1977; 31(137):148–162.(b) Gustafsson I. A CLASS OF FIRST ORDER

Qi et al. Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FACTORIZATION METHODS. BIT Numerical Mathematics. 1978; 18(1):142–156.(c) Eisenstat
SC. EFFICIENT IMPLEMENTATION OF A CLASS OF PRECONDITIONED CONJUGATE-
GRADIENT METHODS. Siam Journal on Scientific and Statistical Computing. 1981; 2(1):1–4.
(d) Meijerink JA, Vandervorst HA. GUIDELINES FOR THE USAGE OF INCOMPLETE
DECOMPOSITIONS IN SOLVING SETS OF LINEAR-EQUATIONS AS THEY OCCUR IN
PRACTICAL PROBLEMS. J Comput Phys. 1981; 44(1):134–155.

12. (a) Götz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. Routine Microsecond
Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J Chem Theory
Comput. 2012; 8(5):1542–1555. [PubMed: 22582031] (b) Páll S, Hess B. A flexible algorithm for
calculating pair interactions on SIMD architectures. Comput Phys Commun. 2013; 184(12):2641–
2650.(c) Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine Microsecond
Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh
Ewald. J Chem Theory Comput. 2013; 9(9):3878–3888. [PubMed: 26592383]

13. (a) Ufimtsev IS, Martínez TJ. Quantum Chemistry on Graphical Processing Units. 1. Strategies for
Two-Electron Integral Evaluation. J Chem Theory Comput. 2008; 4(2):222–231. [PubMed:
26620654] (b) Asadchev A, Gordon MS. New Multithreaded Hybrid CPU/GPU Approach to
Hartree–Fock. J Chem Theory Comput. 2012; 8(11):4166–4176. [PubMed: 26605582] (c) Titov
AV, Ufimtsev IS, Luehr N, Martinez TJ. Generating Efficient Quantum Chemistry Codes for Novel
Architectures. J Chem Theory Comput. 2013; 9(1):213–221. [PubMed: 26589024]

14. (a) Colmenares J, Ortiz J, Rocchia W. GPU linear and non-linear Poisson–Boltzmann solver
module for DelPhi. Bioinformatics. 2014; 30(4):569–570. [PubMed: 24292939] (b) Colmenares J,
Galizia A, Ortiz J, Clematis A, Rocchia W. A Combined MPI-CUDA Parallel Solution of Linear
and Nonlinear Poisson-Boltzmann Equation. BioMed Research International. 2014; 2014:560987.
[PubMed: 25013789]

15. Press, WH., Teukolsky, SA., Vetterling, WT., Flannery, BP. Numerical recipes : the art of scientific
computing. Cambridge University Press; Cambridge [Cambridgeshire]; New York: 1986.

16. Alcouffe RE, Brandt A, Dendy JE, Painter JW. THE MULTI-GRID METHOD FOR THE
DIFFUSION EQUATION WITH STRONGLY DISCONTINUOUS COEFFICIENTS. Siam
Journal on Scientific and Statistical Computing. 1981; 2(4):430–454.

17. Ruge, JWKS. Algebraic multigrid. In: McCormick, SF., editor. Multigrid Methods. Vol. 3. SIAM;
Philadelphia: 1987. p. 73-130.

18. Stuben K. ALGEBRAIC MULTIGRID (AMG) - EXPERIENCES AND COMPARISONS.
Applied Mathematics and Computation. 1983; 13(3–4):419–451.

19. (a) Stuben K. A review of algebraic multigrid. Journal of Computational and Applied Mathematics.
2001; 128(1–2):281–309.(b) Gandham R, Esler K, Zhang Y. A GPU accelerated aggregation
algebraic multigrid method. Computers & Mathematics with Applications. 2014; 68(10):1151–
1160.

20. Vaněk P, Mandel J, Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth
order elliptic problems. Computing. 1996; 56(3):179–196.

21. [accessed October 1st, 2016] Nvidia NVIDIA CUDA Basic Linear Algebra Subroutines library.
https://developer.nvidia.com/cublas

22. [accessed October 1st, 2016] Nvidia NVIDIA CUDA Sparse Matrix library. https://
developer.nvidia.com/cusparse

23. [accessed October 1st, 2016] Nvidia NVIDIA CUSP library. https://developer.nvidia.com/cusp

24. Case, DA., Betz, RM., Botello-Smith, W., Cerutti, DS., Cheatham, TEI., Darden, TA., Duke, RE.,
Giese, TJ., Gohlke, H., Goetz, AW., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A.,
Lee, TS., LeGrand, S., Li, P., Lin, C., Luchko, T., Luo, R., Madej, B., Mermelstein, D., Merz,
KM., Monard, G., Nguyen, H., Nguyen, HT., Omelyan, I., Onufriev, A., Roe, DR., Roitberg, A.,
Sagui, C., Simmerling, CL., Swails, J., Walker, RC., Wang, J., Wolf, RM., Wu, X., Xiao, L., York,
DM., Kollman, PA. Amber 2016. University of California; San Francisco: 2016.

25. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T,
Caldwell JW, Kollman PA. A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF
PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES. J Am Chem Soc. 1995;
117(19):5179–5197.

Qi et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusp

26. Naumov M. Incomplete-LU and Cholesky preconditioned iterative methods using CUSPARSE and
CUBLAS. Nvidia white paper. 2011

27. Bell, N., Garland, M. Nvidia Technical Report NVR-2008-004. Nvidia Corporation; 2008.
Efficient sparse matrix-vector multiplication on CUDA.

Qi et al. Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Correlations (a), (c) and differences (b), (d) of electrostatic solvation energies on GPU

(Jacobi with CUSP library and DIA matrix format) and on CPU (CG) for the protein test set.

Free space boundary condition was used. The convergence criterion was set to 10−3 (a), (b)

and 10−6 (c), (d). The linear regression slopes are 0.999931 and 0.999996 for 10−3 and 10−6

criterion respectively, and the correlation coefficients are 1.0 for both.

Qi et al. Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Correlations (a), (c) and differences (b), (d) of electrostatic solvation energies on GPU

(Jacobi with CUSP library and DIA matrix format) and on CPU (CG) for the protein test set.

The periodic boundary condition (PBC) was used. The convergence criterion was set to 10−3

(a), (b) and 10−6 (c), (d). The linear regression slopes are 0.999639 and 1.0 for 10−3 and

10−6 criterion respectively, and the correlation coefficients are 1.0 for both.

Qi et al. Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Comparison between PB solvers on GPU (Jacobi with CUSP library and DIA matrix format)

and on CPU with free space boundary condition for the protein test set, as functions of

number of atoms and grids respectively. The convergence criterion was set to 10−3 (a), (b)

and 10−6 (c), (d).

Qi et al. Page 20

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Comparison between PB solvers on GPU (Jacobi with CUSP library and DIA matrix format)

and on CPU (ICCG) with PBC for the protein test set, as functions of number of atoms and

grids respectively. The convergence criterion was set to 10−3 (a), (b) and 10−6 (c), (d).

Qi et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Average time used by different CPU and GPU solvers for selected test proteins. The detail of

each solver combination is elaborated in Table 1. The GPU/ICCG solver is not listed due to

their extremely long execution times. The convergence criterion was set to 10−3 (top) and

10−6 (bottom).

Qi et al. Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qi et al. Page 23

Table 1

Details of tested solver combinations.

Solver Combination Description

Jacobi-DIA-CUSP Jacobi-preconditioned CG using CUSP library with DIA matrix format

Jacobi-ELL-CUSP Jacobi-preconditioned CG using CUSP library with ELL matrix format

Jacobi-HYB-CUSP Jacobi-preconditioned CG using CUSP library with HYB matrix format

Jacobi-CSR-CUSP Jacobi-preconditioned CG using CUSP library with CSR matrix format

Jacobi-COO-CUSP Jacobi-preconditioned CG using CUSP library with COO matrix format

AMG-CSR-CUSP Smoothed-aggregation-based AMG using CUSP library with CSR matrix format

AMG-COO-CUSP Smoothed-aggregation-based AMG using CUSP library with COO matrix format

AMG-HYB-CUSP Smoothed-aggregation-based AMG using CUSP library with HYB matrix format

CG-ELL-CUSP CG using CUSP library with ELL matrix format

CG-HYB-CUSP CG using CUSP library with HYB matrix format

CG-CSR-CUSP CG using CUSP library with CSR matrix format

CG-COO-CUSP CG using CUSP library with COO matrix format

CG-DIA-CUSP CG using CUSP library with DIA matrix format

CG-CSR-cuSPARSE CG using cuSPARSE library with CSR matrix format

ICCG-CSR-cuSPARSE ICCG using cuSPARSE library with CSR matrix format

CG-CPU CG on CPU using standard system library with matrix free coding

ICCG-CPU ICCG on CPU using standard system library with matrix free coding

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qi et al. Page 24

Ta
b

le
 2

A
ve

ra
ge

 ti
m

e
(i

n
se

co
nd

)
us

ed
 b

y
C

PU
 a

nd
 G

PU
 s

ol
ve

rs
 f

or
 e

ig
ht

 s
el

ec
te

d
te

st
 p

ro
te

in
s

an
d

re
pr

es
en

ta
tiv

e
so

lv
er

s.
 T

he
 C

G
 a

nd
 J

ac
ob

i-
pr

ec
on

di
tio

ne
d

C
G

on
 G

PU
 w

er
e

ca
rr

ie
d

ou
t w

ith
 C

U
SP

 li
br

ar
y

an
d

D
IA

 m
at

ri
x

fo
rm

at
, a

nd
 th

e
SA

-A
M

G
-p

re
co

nd
iti

on
ed

 C
G

 o
n

G
PU

 w
as

 c
ar

ri
ed

 o
ut

 w
ith

 C
U

SP
 li

br
ar

y

an
d

C
O

O
 m

at
ri

x
fo

rm
at

, w
hi

le
 th

e
IC

C
G

 s
ol

ve
r

on
 G

PU
 w

as
 im

pl
em

en
te

d
w

ith
 c

uS
PA

R
SE

 li
br

ar
y

an
d

C
SR

 m
at

ri
x

fo
rm

at
. T

he
 ti

m
in

g
sc

he
m

e
fo

r
ea

ch

so
lv

er
 in

cl
ud

e
al

l e
xe

cu
tio

n
tim

e
of

 th
e

co
re

 r
ou

tin
e

co
de

, i
.e

. t
im

e
el

ap
se

d
on

 d
ev

ic
e

(G
PU

)
an

d
on

 h
os

t (
C

PU
)

an
d

on
 tr

an
sf

er
ri

ng
 d

at
a

be
tw

ee
n

th
e

de
vi

ce
 a

nd
 th

e
ho

st
. B

ot
h

10
−

3
an

d
10

−
6

cr
ite

ri
a

w
er

e
us

ed
 f

or
 c

om
pa

ri
so

n.

P
ro

te
in

N
gr

id
C

P
U

G
P

U

C
G

IC
C

G
C

G
IC

C
G

Ja
co

bi
-C

G
SA

-A
M

G
-C

G

C
on

ve
rg

en
ce

 1
0−3

1p
m

c
73

94
31

1.
81

0.
21

0.
32

24
.6

5
0.

26
0.

57

1e
01

10
10

51
0

3.
36

0.
33

0.
44

37
.3

1
0.

26
0.

68

1g
hc

12
44

22
0

5.
02

0.
46

0.
54

51
.3

3
0.

31
0.

79

1f
53

14
66

60
0

4.
73

0.
32

0.
53

42
.4

8
0.

30
0.

89

1e
0a

16
51

19
0

4.
47

0.
47

0.
52

60
.5

7
0.

32
0.

97

1e
v0

19
12

38
0

5.
48

0.
79

0.
61

91
.3

8
0.

41
1.

06

1d
z7

21
60

05
0

7.
62

0.
86

0.
72

10
6.

19
0.

43
1.

15

1a
p0

26
03

13
0

6.
75

1.
22

0.
67

14
4.

31
0.

51
1.

34

C
on

ve
rg

en
ce

 1
0−6

1p
m

c
73

94
31

4.
39

0.
67

0.
52

61
.9

9
0.

32
0.

60

1e
01

10
10

51
0

7.
28

0.
96

0.
69

84
.9

8
0.

36
0.

72

1g
hc

12
44

22
0

9.
87

1.
32

0.
86

11
8.

73
0.

44
0.

81

1f
53

14
66

60
0

12
.6

8
1.

47
1.

05
12

9.
50

0.
47

0.
92

1e
0a

16
51

19
0

9.
75

1.
8

0.
85

16
2.

12
0.

50
1.

01

1e
v0

19
12

38
0

13
.1

8
2.

42
1.

05
21

9.
29

0.
61

1.
11

1d
z7

21
60

05
0

15
.7

2
2.

79
1.

20
24

9.
95

0.
65

1.
21

1a
p0

26
03

13
0

18
.7

8
3.

59
1.

43
32

5.
58

0.
80

1.
39

J Chem Theory Comput. Author manuscript; available in PMC 2017 December 13.

	Abstract
	Graphical Abstract
	1. Introduction
	2. Methods
	2.1 Poisson-Boltzmann Equation
	2.2 Conjugate Gradient Solvers
	2.3 Incomplete Cholesky Preconditioners
	2.4 Jacobi Preconditioner
	2.5 Smoothed-aggregation-based Algebraic Multigrid Preconditioner
	2.6 GPU Implementation
	2.7 Computational Details

	3. Results and Discussion
	3.1 Accuracy of GPU implementations
	3.2 Efficiency of GPU implementations
	3.3 Other issues of GPU implementations
	3.4 Memory usage of GPU implementations

	4. Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

