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Abstract

Electrostatic interactions play crucial roles in biophysical processes such as protein folding and 

molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely 

used in modeling these important processes. Though great efforts have been put into developing 

efficient PBE numerical models, challenges still remain due to the high dimensionality of typical 

biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE 

solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, 

including both standard and preconditioned conjugate gradient (CG) solvers with several 

alternative preconditioners. Our implementation utilizes standard Nvidia® CUDA libraries 

cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be 

achieved given that the single precision is often used for numerical applications on GPU 

platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, 

with a significant speedup over standard CG solver on CPU in our diversified test cases. Our 

analysis further shows that different matrix storage formats also considerably affect the efficiency 

of different linear PBE solvers on GPU, with the diagonal format best suited for our standard 

finite-difference linear systems. Further efficiency may be possible with matrix-free operations 

and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific 

linear systems.
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1. Introduction

In recent years Poisson-Boltzmann equation (PBE)-based electrostatics modeling has gained 

wide acceptance in biomolecular applications, given the crucial roles played by the 

electrostatic interactions in biophysical processes such as protein-protein and protein-ligand 

interactions.1 Due to the high dimensionalities of typical biomolecular systems, it is 

extremely important to increase the accuracy and efficiency of PBE models.2

For biomolecular applications, the PBE is impossible to be solved analytically, so that only 

numerical solutions are possible. Traditional numerical schemes include the finite difference 

method (FDM)3 where difference grids are used to discretize the space and build up a set of 

linear/nonlinear equations from the PBE, and the finite-element method4 where arbitrarily 

shaped biomolecules are discretized by using elements with a set of associated basis 

functions. The boundary element method is another alternative approach, in which only the 

surfaces of the molecules are discretized.5 Numerical PBE methods have been applied to the 

prediction of pKa values for ionizable groups in biomolecules,6 solvation free energies,7 

binding free energies,8 and protein folding and design.9

Among these approaches, the FDM is most widely adopted and has been incorporated in 

programs such as DelPhi,3a, 3c, 3j UHBD,3b, 3d APBS,3e, 3g CHARMM/PBEQ,3c, 3i and 

Amber/PBSA.2h, 3l−n, 10 The resulting algebraic systems are often solved by using conjugate 

gradient methods with or without preconditioners.3b, 3k, 11 As computational studies shift to 

larger and more complex biomolecular systems, both the data storage and convergence rate 

become more challenging to address on traditional CPU platforms. These challenges are 

more pronounced when incorporating the PBE in typical molecular simulations involving 

thousands to millions of snapshots.

Recently, graphics processing units (GPU) have been used in a wide range of computational 

chemistry problems, including MD simulations12 and ab initio quantum mechanical (QM) 

calculations13 with impressive speedup. Different from CPUs that are designed for 

sequential execution, GPUs have a parallel architecture that is suited for high-performance 

computation with dense data parallelism, and have enjoyed rapid adoption over the last 

decade. A number of publications have also shown the use of GPUs to accelerate PBE linear 

systems for biomolecular systems and reported impressive speedup.14 However, different 

from MD or QM simulations, various PBE solvers perform with markedly different 

efficiency.3l, 3m Simpler algorithms may be straightforward to be ported onto GPU 

platforms, but they may not be robust or efficient enough to begin with (i.e. they may be 

very slow to converge or need very high number of floating operation counts to achieve a 

given convergence criterion), particularly on very complex or large biomolecular systems. 

Therefore, a thorough analysis of existing algorithms on GPUs is a necessary step to realize 

markedly improved overall efficiency in numerical PBE solutions for biomolecular 

applications.

To date only the relatively simple successive over-relaxation (SOR) method was 

implemented on GPUs.14 However, our prior algorithm analysis of SOR and other 

algorithms have shown its convergence rate is not among the best on CPU for large systems 
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or tight convergence criterion even if it is a simple algorithm to implement.3l, 3m 

Furthermore, there are two additional disadvantages when porting the SOR method to GPUs. 

Firstly, a parallel SOR, such as red-black SOR, has to be used to utilize the parallel GPUs. 

However the red-black SOR has worse convergence rate than the original SOR due to its 

altered updating approach. Secondly, for most consumer-grade GPU cards, single precision 

operations are widely supported with high efficiency. Double precision operations are 

possible, but are at a significant performance disadvantage. Unfortunately use of single 

precision further deteriorates the convergence of red-black SOR whether it is on GPUs or on 

CPUs as our in-house testing has shown.

In this paper, we present the implementation and systemic assessment of four types of linear 

PBE solvers on GPUs using the Nvidia CUDA (Version 7.5) libraries. In the following the 

underlining linear systems solvers are first reviewed. This is followed by an assessment of 

the accuracy and efficiency observed for different implementations. The impact of matrix 

storage formats upon the computation efficiency is then discussed. Finally the memory 

usage on the GPUs is briefly addressed.

2. Methods

2.1 Poisson-Boltzmann Equation

In implicit solvent models, the solvent is treated as high dielectric continuum and the solute 

is approximated as low dielectric continuum with charges embedded inside. The PBE is then 

introduced to describe the electrostatic interactions in the heterogeneous dielectric 

environment, with the Boltzmann term describing the salt effect of a dissolved electrolyte. 

This gives the well-known non-linear PBE

(1)

where ρ is the charge density, ϕ is the electrostatic potential, ε is the dielectric constant, and 

λ is a masking function for the Stern layer. All variables are functions of the spatial vector r. 

In the salt related term, ni is the number density of ion of type i in the bulk solution, qi is the 

charge of the ion of type i, k is the Boltzmann constant and T is the temperature. When the 

term qiϕ(r) / kT is small, the PBE can be linearized into

(2)

For biomolecules of arbitrary shape, the solution of equation (1) or (2) can only be obtained 

numerically, typically through finite-difference procedures. In this scheme, the PBE is 

discretized as follows
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(3)

where h is the grid spacing in each dimension, i, j, and k are the grid indexes along x, y and 

z axes, respectively. εi (i, j, k) is the dielectric constant between grid points (i, j, k) and (i+1, 

j, k). εj (i, j, k) and εk (i, j, k) are defined similarly. All the related coefficients in Boltzmann 

term are absorbed into κ2, and q(i, j, k) is the charge within the cubic volume centered at (i, 
j, k). The linear system can be conveniently written as

(4)

where A is the coefficient matrix of dielectric constants and the Boltzmann term, and b is the 

constant vector of charges on the grids.

To solve equation (4), various solvers have been developed for biomolecular applications, 

such as successive over-relaxation (SOR),15 conjugate gradient (CG),15 (modified) 

incomplete Cholesky conjugate gradient ((M)ICCG),11 geometric multigrid (GMG),16 and 

algebraic multigrid (AMG).17 All solvers proceed from an initial guess of ϕ(i, j, k) to 

generate a sequence of improving solutions iteratively.

2.2 Conjugate Gradient Solvers

Symmetric and positive-definite linear systems are often solved with the CG solvers. The 

CG method searches for the exact solution along a series of conjugate directions, and is 

implemented as an iterative procedure as follows:

1. set l = 0, p0 = r0

2. compute the norm of ||rl||. If ||rl||/||b|| < δ, output ϕl. Otherwise go to the next step.

3. compute

4. compute
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5. set l = l + 1 and go to step 2

The convergence of CG is optimal when the eigenvalues of the coefficient matrix are similar 

to each other.11a Thus preconditioner is often used in the CG method to achieve this goal. 

Specifically a preconditioner matrix M is introduced into equation (4)

(5)

so that the new linear system becomes

(6)

By directly incorporating preconditioning into CG iteration, the resulting algorithm can be 

summarized as follows:

1. set l = 0, r0 = b − Aϕ0

2. solve Mz0 = r0 for z0, let p0 = z0

3. calculate the norm of residue ||rl||. If ||rl||/||b|| < δ, output ϕl. Otherwise go to the 

next step.

4. set l = l + 1

5. calculate

6. solve Mzl = rl for zl

7. calculate

8. go to step 3

We can see that the preconditioned CG algorithm involves an additional operation at each 

iteration to solve the linear system Mzl = rl.

2.3 Incomplete Cholesky Preconditioners

A commonly used type of preconditioners is based on the incomplete LDLT factorization
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(7)

Here the matrices are related to the original coefficient matrix A as A = L + D + LT with L 
as the strictly lower triangular matrix of A and D as the positive diagonal matrix of A. 

Finally D̃ is an undetermined positive diagonal matrix. If the diagonal of M is defined as D, 

the preconditioned conjugate gradient is termed ICCG. In MICCG, the diagonal elements of 

D̃ are optimized to further improve the convergence.8 The MICCG method is our default 

CPU implementation for our PBSA program in the Amber and AmberTools releases.

2.4 Jacobi Preconditioner

The Jacobi preconditioner (aka diagonal preconditioner) simply extracts the main diagonal 

D of A as M. Jacobi preconditioning is very inexpensive to use and is reasonably efficient 

for diagonally dominant matrices, though its reduction in the iteration number is modest. 

However, for the GPU implementation, the Jacobi preconditioner is advantageous because it 

is completely lack of row dependency, leading to great parallel efficiency. Additionally, the 

Jacobi preconditioner needs very little storage as to be discussed below.

2.5 Smoothed-aggregation-based Algebraic Multigrid Preconditioner

Multigrid methods are highly efficient techniques to solve linear or nonlinear equations. 

Typically there are two classes of multigrid methods: geometric multigrid (GMG) and 

algebraic multigrid (AMG).18 GMG methods require prior physical/mathematical 

knowledge of the underlying discretization and grid hierarchy, whereas AMG methods only 

require the coefficient matrix. Classical AMG methods involve the construction of a 

hierarchy of grids using the original coefficient matrix. The hierarchical grids are obtained 

by partitioning the grid nodes into coarse and fine grid nodes. The coarse grid nodes form a 

coarse level, and an interpolation operator, via a weighted sum of the coarse grid nodes, is 

used to interpolate a coarse level solution to a fine level. The restriction operator, usually 

taken as the transpose of the interpolation operator, is used to restrict a fine level solution to 

a coarse level.19 Aggregation AMG methods obtain the hierarchical grids by aggregating a 

few fine grid nodes to form a coarse grid node. The interpolation operator uses a piecewise 

constant interpolation to obtain a fine level solution from a coarse level solution. This leads 

to rather sparse interpolation. The restriction operator is similar to that of the classical AMG 

methods. The aggregation scheme reduces the memory requirement and improves the 

interpolation efficiency, but it does not provide grid independent convergence.19b Therefore 

smooth interpolation or smooth aggregation is often used to improve the convergence.20

Unlike classical AMG, smoothed-aggregation-based AMG (SA-AMG) is not robust for 

various applications.19b Thus SA-AMG is often used as a preconditioner for generalized 

minimal residual and conjugate gradient methods. In this study, we tested the use of SA-

AMG method to build a preconditioner (M) to the conjugate gradient method as 

implemented in CUSP.
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2.6 GPU Implementation

The latest generations of GPU cards and Nvidia CUDA provide mature computing platforms 

for scientific applications. CUDA gives developers direct access to parallel computational 

elements (GPUs) and enables code to run concurrently in CPUs. Several CUDA-compatible 

libraries were utilized to implement a GPU-ready Amber/PBSA program. The CUDA Basic 

Linear Algebra Subroutines (cuBLAS) library is a GPU-accelerated BLAS library that are 

“6× to 17× faster” than the latest MKL in GEMM (GEneral Matrix Multiplication) 

performance measurement.21 The Nvidia CUDA Sparse Matrix (cuSPARSE) library 

provides basic linear algebra procedures for sparse matrix operations that are “up to 8× 

faster” than the latest MKL.22 The cuSPARSE library is designed to interface with C or C++ 

functions. It supports multiple sparse matrix storage formats, such as Coordinate (COO), 

Compressed Sparse Row (CSR), Compressed Sparse Column (CSC), ELLPACK (ELL), 

Hybrid ELL+COO (HYB), and Blocked CSR. Finally CUSP is an open source C++ library 

based on Thrust. It can also provide sparse matrix operations in the CUDA environment.23 

CUSP supports COO, CSR, Diagonal (DIA), ELL, and HYB matrix formats.

In this study we implemented four types of FDM solvers, i.e. CG, ICCG, Jacobi-CG and 

SA-AMG-CG using cuBLAS, cuSPARSE, and CUSP libraries. We also tested these 

implementations with five different matrix formats DIA, CSR, COO, ELL, and HYB to 

analyze the impact of matrix formats upon efficiency. A total of 15 GPU combinations are 

possible as summarized in Table 1 with CG-CPU and ICCG-CPU also listed for comparison. 

Apparently not every combination is available, e.g. the cuSPARSE library only works with 

the CSR format; Jacobi-CG only works with the CUSP library, and SA-AMG-CG only 

works with the CSR, COO and HYB formats in the CUSP library.

2.7 Computational Details

All CUDA solvers were implemented in the single precision within the Amber/PBSA 

program of the Amber 16 package,24 while the system setup and the energy/force 

calculation were still implemented in the double precision. In contrast, all implementations 

in the CPU solvers use the double precision. A total of 573 biomolecular structures 

including proteins, short peptides, and nucleic acids in the Amber benchmark suite were 

used in our test.3l These biomolecules consist of atoms ranging from 247 to 8,254 and have 

quite different geometries, and they were assigned charges of Cornell et al25 and the 

modified Bondi radii.

All testings were performed with the following conditions unless specified otherwise. The 

convergence criteria of 10−3 and 10−6 were used for performance comparisons for low and 

high-precision applications, respectively. The default grid spacing of 0.5 Ǻ was used. The 

ratio of the grid dimension over the solute dimension was set to 1.5. No electrostatic 

focusing was applied for easy timing analysis. The potential values on all grids were 

initialized to zero. The dielectric constants were set to 80 and 1 for solvent and solute, 

respectively. The weighted harmonic average of the solvent and solute dielectric constants 

was used as the boundary dielectric constants. Therefore, the symmetric and positive-

definite coefficient matrices were obtained and suitable for all tested linear solvers. In 

addition, the FDM matrix was initialized into CSR format and transformed into other 
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formats when needed. Finally both the free space boundary condition (FBC) and periodic 

boundary condition (PBC) were tested. In PBC applications, we filled the matrix elements 

on the additional 6 bands into the original 7 bands and stored their column index non-

consecutively in the CSR index arrays, thus we managed to use the same space as the 

original 7 bands in free boundary condition. All other parameters were set as default in the 

PBSA program in the Amber 16 package.24

We performed all measurements on a hybrid node with two NVIDIA GeForce GTX 980 Ti 

GPU cards and one Intel Xeon E5-1620 v3 CPU and 16GB main memory. The test platform 

is one of our standard GPU nodes with Intel X99 chipset, LGA2011-v3 CPU socket, 

DDR4-2133 memory, and PCIE 3.0 ×16 interconnection between the host CPU and the two 

GPU cards. The Intel Xeon E5-1620 v3 CPU was set as four threads, though all test runs 

were performed on a single thread. The Operating System is CentOS 6.6 as distributed in the 

ROCK 6.2 release. The CPU timing measurements include all execution time of the core 

routine, i.e. time elapsed on both GPU and CPU, as well as time for transferring data 

between GPU and CPU.

3. Results and Discussion

3.1 Accuracy of GPU implementations

It is important to guarantee that the GPU implementations achieve consistent numerical 

results with existing CPU implementations within specified convergence criterion. As shown 

in Figure 1 for calculations in the free boundary condition, the electrostatic solvation 

energies on GPU (Jacobi-CG) and on CPU (CG) correlate quite well with both 10−3 and 

10−6 convergence criteria. The linear regression slopes are 0.999931 and 0.999996, 

respectively, and the correlation coefficients are 1.0 for both. The maximum relative energy 

errors are 3.0×10−3 and 6.3×10−6, which are in agreement with the convergence criteria 

chosen.

Similar agreements were also observed between the two implementations in the periodic 

boundary condition as shown in Figure 2. The linear regression slopes are 0.999639 and 1.0 

for 10−3 and 10−6 convergence criteria, respectively, and the correlation coefficients are 1.0 

for both. The maximum relative errors are 3.9×10−3 and 5.8 ×10−6, respectively, in 

agreement with the preset convergence criteria. For all other GPU implementations of which 

the data are not shown here, similar agreements were also observed.

3.2 Efficiency of GPU implementations

To compare the efficiency of GPU and CPU implementations, we first selected eight 

representative proteins and measured their solver CPU times with 10−3 and 10−6 

convergence criteria, respectively. The standard CG solver as implemented on GPU and 

CPU was first analyzed. Table 2 shows that the GPU/CG solver overall performs better than 

the CPU/CG solver, with a speedup of ~6 to ~10 for the low convergence criterion and a 

speedup of ~8 to ~13 for the high convergence criterion. This is encouraging given that the 

tested GPU/CG solver is an unconditioned CG from the standard library without any change.
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We next compared the GPU/CG solver with our default CPU solver CPU/ICCG, which was 

hand-optimized in the matrix-free fashion for modern CPUs. It is interesting to note that 

GPU/CG still performs better than CPU/ICCG for the larger proteins with the number of 

grid nodes over 2 million at the low convergence criterion. Furthermore, it performs better 

than CPU/ICCG for all tested proteins at the high convergence criterion.

A natural direction to go is to port ICCG to GPU, and this was implemented using the 

cuSPARSE library in this study. Unfortunately, our test shows that ICCG performs poorly on 

GPU platforms. This is consistent with the widely known fact that ICCG is not suitable for 

parallel platforms. Indeed, the inefficiency of the GPU/ICCG solver is significant: over 20 

times slower than the standard CPU/CG solver. It should be pointed out that the the poor 

efficiency of GPU/ICCG is observed even with Nvidia’s in-house optimization.26 The 

specialized solver intends to find any independence in the sparse matrix during the analysis 

phase to solve the linear system in a parallel fashion.26 In the case of linear PBE systems, 

however, this strategy fails to find any significant data independence in the seven-banded 

matrix.

Nevertheless, there are other solvers that are more suitable for the parallel GPU platforms. It 

appears that several are available. Our comprehensive analysis shows that Jacobi-CG is quite 

attractive. It was implemented with the CUSP library in the DIA matrix format. As shown in 

Table 2, the GPU/Jacobi-CG solver is about 95 to 283 times faster than GPU/ICCG for the 

low convergence criterion; and 194 to 407 times faster than GPU/ICCG for the high 

convergence criterion. The dramatically better performance of GPU/Jacobi-CG over GPU/

ICCG lies in the simple utilization of the diagonal matrix as a preconditioner, which is 

completely without row dependency, so that it greatly facilitates parallel execution.

Another interesting solver that can take advantage of GPU platforms is the SA-AMG-CG 

solver. We implemented the SA-AMG-CG solver in the CUSP library and observed 

reasonable speedup. Different from ICCG, the GPU/SA-AMG-CG implementation is 

observed to perform similarly among the best GPU implementations: slightly slower than 

GPU/CG and GPU/Jacobi-CG, but more efficient than both CPU/CG and CPU/ICCG at the 

high convergence criterion as shown in Table 2. It is less efficient than CPU/ICCG at the low 

convergence criterion, but clearly better than the standard CPU/CG implementation. These 

data indicate the potential to further implement multigrid types of linear solvers, such as 

geometric multi-grid solvers, for GPU platforms.

Given the above detailed comparison of multiple implementations on selected proteins, it is 

clear that the GPU/Jacobi-CG is overall the most efficient implementation at both testing 

conditions (low and high convergence criteria). To properly gauge the overall speedups for 

typical applications for both free space boundary condition and periodic boundary condition, 

we plotted the speedup ratios of the GPU/Jacobi-CG implementation over the CPU/CG 

implementation using all test cases. As shown in Figure 3 for the free space boundary 

condition and Figure 4 for the periodic boundary condition, a speedup ratio of about 5 to 50 

can be observed. The actual values clearly depend on the size/structure and of a given 

system. An interesting observation is that the speedup is not influenced much by the 

boundary conditions by comparing the trends in Figure 3 and Figure 4. However, it is clear 
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that the CPU/ICCG implementation is more efficient in the free space boundary condition 

with speedup ratios up to 18 versus speedup ratios up to 6 in the periodic boundary 

condition in the low convergence criterion. This is because the difficulties in implementing 

periodic boundary condition in the highly optimized ICCG solver that prevent certainly data 

management ideas, i.e. array padding, to be used on CPU platforms as discussed 

previously.3n

As in other computational sciences, the sparse matrix structure is a typical feature when a 

partial differential equation, such as PBE, is discretized. As a result sparse matrix-vector 

multiplications (SpMV) are critical operations in PBE solvers and represents the dominant 

cost in many iterative methods. In our CPU/CG and CPU/ICCG implementations, hand 

tuning was employed to fully utilize the banded structure of the matrix for efficient SpMV 

operations. For example, the SpMV operation between boundary elements and the potential 

grids in the PBC linear solvers is carried out by directly shifting the column index into the 

array index, avoiding extra matrix column manipulation.3n In addition, with only several 

extra indices to mark the columns, seven arrays are enough to store the non-zero elements of 

the banded coefficient matrix, i.e. no extra row or column index is needed. Compared to the 

CSR format storage, this can save as much as 53% of the memory usage, which also leads to 

dramatically reduced memory load and store operations. However, these improvements in 

our CPU implementations are not fully available in the existing CUDA libraries. These 

features will be adopted when developing hand-optimized GPU solvers in our next step.

3.3 Other issues of GPU implementations

Efficiency of a GPU solver is also significantly affected by the matrix storage format. There 

are a number of sparse matrix representations with different storage requirements, 

computational characteristics, and methods of accessing and manipulating matrix elements 

as summarized in the Methods section. The DIA format is tailored for highly specific classes 

of matrices and is the most computationally attractive for the banded matrices in our linear 

PBE systems.27 This is apparent in Figure 5 with Jacobi-DIA and CG-DIA being the best. 

However, the current cuSPARSE library does not support the DIA format, so that only the 

CSR format, a general-purpose format, was used for performance evaluation. Finally it 

should be pointed out none of the GPU/ICCG implementations are shown in Figure 5 due to 

their extremely long execution times.

Given all the issues addressed, it is instructive to compare all GPU solver implementations 

as shown in Figure 5. This comparison also provides an opportunity to study the robustness 

of all GPU implementations. We examined all 573 test cases using both free space boundary 

condition and periodic boundary condition at both convergence criteria, to analyze the 

overall scaling of all GPU implementations. Indeed not every GPU implementation is robust 

enough to function properly for all tested conditions and molecules. There are five failures 

(failed to converge) and two unstable runs (converged but with unusually long time) for 

GPU/SA-AMG-CG in three out of the five tested formats (CSR/COO/HYB). The method 

fails in all test conditions and all molecules in the other two tested formats (DIA and ELL). 

Most failures were due to bad memory allocation, and others were due to unknown internal 

failures that lead to incorrect numerical solutions. This comprehensive scaling test confirms 
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that GPU/Jacobi-CG from the CUSP library outperforms all its GPU and CPU counterparts 

significantly, and is also noticeably faster than our default CPU/ICCG implementation. As a 

reference, the CPU/ICCG is on average 10 times faster than CPU/CG as shown in Figure 3 

and 4, consistent with the findings of Wang et al.3l

3.4 Memory usage of GPU implementations

Memory usage is also crucial for GPU implementations because memory is often limited on 

most consumer-grade graphics cards. Apparently different solvers and matrix storage 

methods lead to different memory usages. In implementations with the CUSP library, typical 

memory usage is 88×Ngrid bytes for GPU/CG and 92×Ngrid for GPU/Jacobi-CG in the 

CSR matrix format. With the cuSPARSE library, GPU/CG consumes up to 76×Ngrid bytes 

of GPU memory and GPU/ICCG uses 180×Ngrid bytes in the CSR matrix. Here the 

estimations are based on the use of four-byte integer and float types. In addition, we 

managed to use about the same memory for both PBC and FBC applications as mentioned in 

Methods. This in part contributes to the consistent efficiency between the two boundary 

conditions for the tested molecules.

The above estimations are only based on those arrays explicitly allocated in the program. 

Run-time analysis by the NVIDIA hardware manage tool (nvidia-smi), however, shows that 

the total memory is about twice as much due the hidden buffer space allocated within the 

CUSP and cuSPARSE libraries. Thus the actual memory limit was underestimated in the 

estimations. Extensive test of the fastest implementation, GPU/Jacobi-CG, shows that it was 

able to successfully complete linear PBE calculations with ~29.6 million grid nodes on the 

NVIDIA GTX 980 Ti cards with ~6GB GPU memory, about twice as smaller as the 

estimation.

4. Conclusions

In this study, we implemented multiple linear PBE solvers based on the standard CUDA 

libraries and conducted a systematic analysis on their performance with a large set of 

realistic biomolecules. We first analyzed the accuracy of the GPU implementation with 

respect to the CPU implementation in both free boundary condition and periodic boundary 

condition. The analysis shows that the GPU and CPU implementations agree within 

specified convergence criteria even if single precision was used in consumer grade graphics 

cards used in the test.

Many GPU solvers perform better than the standard CPU/CG solver, with various speedup 

ratios, depending on convergence criterion and size of the linear systems. In the 

comprehensive scaling test, our data shows that GPU/Jacobi-CG from the CUSP library 

outperforms all its GPU and CPU counterparts significantly. A speedup ratio of about 5 to 

50 can be observed and it is not influenced much by the boundary conditions or convergence 

criteria. This should be compared with our default CPU implementation – the CPU/ICCG 

implementation, which is more efficient in the free space boundary condition. The speedup 

is reduced in the high convergence criterion in both boundary conditions tested. 

Unfortunately our test shows that the ICCG method performs poorly on GPU platforms. 

Moreover, we implemented the SA-AMG-CG method and it was found to perform similarly 
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among the best GPU implementations. These data indicate the potential to further implement 

multigrid types of linear solvers for GPU platforms.

It is also worth pointing out that the efficiency of a GPU solver is significantly affected by 

matrix storage formats. The DIA format is tailored for banded matrices and is the most 

computationally efficient for linear PBE matrices. Furthermore we discussed the memory 

usage of these solvers. Extensive test of the fastest implementation, GPU/Jacobi-CG, shows 

that it was able to successfully complete FDPB calculations with ~29.6 million grid points 

on the NVIDIA GTX 980 Ti cards with 6GB GPU memory, about twice as smaller as the 

theoretical analysis.

Finally further efficiency gain in GPU implementations is more likely to be achieved with 

customized matrix-free operations, integrated grid stencil setup on GPU, and also multigrid 

types of solvers, specifically tailored for our particular linear PBE problems. These 

developments are currently underway in our group.
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Figure 1. 
Correlations (a), (c) and differences (b), (d) of electrostatic solvation energies on GPU 

(Jacobi with CUSP library and DIA matrix format) and on CPU (CG) for the protein test set. 

Free space boundary condition was used. The convergence criterion was set to 10−3 (a), (b) 

and 10−6 (c), (d). The linear regression slopes are 0.999931 and 0.999996 for 10−3 and 10−6 

criterion respectively, and the correlation coefficients are 1.0 for both.
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Figure 2. 
Correlations (a), (c) and differences (b), (d) of electrostatic solvation energies on GPU 

(Jacobi with CUSP library and DIA matrix format) and on CPU (CG) for the protein test set. 

The periodic boundary condition (PBC) was used. The convergence criterion was set to 10−3 

(a), (b) and 10−6 (c), (d). The linear regression slopes are 0.999639 and 1.0 for 10−3 and 

10−6 criterion respectively, and the correlation coefficients are 1.0 for both.
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Figure 3. 
Comparison between PB solvers on GPU (Jacobi with CUSP library and DIA matrix format) 

and on CPU with free space boundary condition for the protein test set, as functions of 

number of atoms and grids respectively. The convergence criterion was set to 10−3 (a), (b) 

and 10−6 (c), (d).
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Figure 4. 
Comparison between PB solvers on GPU (Jacobi with CUSP library and DIA matrix format) 

and on CPU (ICCG) with PBC for the protein test set, as functions of number of atoms and 

grids respectively. The convergence criterion was set to 10−3 (a), (b) and 10−6 (c), (d).
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Figure 5. 
Average time used by different CPU and GPU solvers for selected test proteins. The detail of 

each solver combination is elaborated in Table 1. The GPU/ICCG solver is not listed due to 

their extremely long execution times. The convergence criterion was set to 10−3 (top) and 

10−6 (bottom).
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Table 1

Details of tested solver combinations.

Solver Combination Description

Jacobi-DIA-CUSP Jacobi-preconditioned CG using CUSP library with DIA matrix format

Jacobi-ELL-CUSP Jacobi-preconditioned CG using CUSP library with ELL matrix format

Jacobi-HYB-CUSP Jacobi-preconditioned CG using CUSP library with HYB matrix format

Jacobi-CSR-CUSP Jacobi-preconditioned CG using CUSP library with CSR matrix format

Jacobi-COO-CUSP Jacobi-preconditioned CG using CUSP library with COO matrix format

AMG-CSR-CUSP Smoothed-aggregation-based AMG using CUSP library with CSR matrix format

AMG-COO-CUSP Smoothed-aggregation-based AMG using CUSP library with COO matrix format

AMG-HYB-CUSP Smoothed-aggregation-based AMG using CUSP library with HYB matrix format

CG-ELL-CUSP CG using CUSP library with ELL matrix format

CG-HYB-CUSP CG using CUSP library with HYB matrix format

CG-CSR-CUSP CG using CUSP library with CSR matrix format

CG-COO-CUSP CG using CUSP library with COO matrix format

CG-DIA-CUSP CG using CUSP library with DIA matrix format

CG-CSR-cuSPARSE CG using cuSPARSE library with CSR matrix format

ICCG-CSR-cuSPARSE ICCG using cuSPARSE library with CSR matrix format

CG-CPU CG on CPU using standard system library with matrix free coding

ICCG-CPU ICCG on CPU using standard system library with matrix free coding
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