Skip to main content
. Author manuscript; available in PMC: 2017 Dec 13.
Published in final edited form as: J Chem Theory Comput. 2017 Jun 7;13(7):3378–3387. doi: 10.1021/acs.jctc.7b00336

Table 2.

Average time (in second) used by CPU and GPU solvers for eight selected test proteins and representative solvers. The CG and Jacobi-preconditioned CG on GPU were carried out with CUSP library and DIA matrix format, and the SA-AMG-preconditioned CG on GPU was carried out with CUSP library and COO matrix format, while the ICCG solver on GPU was implemented with cuSPARSE library and CSR matrix format. The timing scheme for each solver include all execution time of the core routine code, i.e. time elapsed on device (GPU) and on host (CPU) and on transferring data between the device and the host. Both 10−3 and 10−6 criteria were used for comparison.

Protein Ngrid CPU GPU
CG ICCG CG ICCG Jacobi-CG SA-AMG-CG
Convergence 10−3 1pmc 739431 1.81 0.21 0.32 24.65 0.26 0.57
1e01 1010510 3.36 0.33 0.44 37.31 0.26 0.68
1ghc 1244220 5.02 0.46 0.54 51.33 0.31 0.79
1f53 1466600 4.73 0.32 0.53 42.48 0.30 0.89
1e0a 1651190 4.47 0.47 0.52 60.57 0.32 0.97
1ev0 1912380 5.48 0.79 0.61 91.38 0.41 1.06
1dz7 2160050 7.62 0.86 0.72 106.19 0.43 1.15
1ap0 2603130 6.75 1.22 0.67 144.31 0.51 1.34
Convergence 10−6 1pmc 739431 4.39 0.67 0.52 61.99 0.32 0.60
1e01 1010510 7.28 0.96 0.69 84.98 0.36 0.72
1ghc 1244220 9.87 1.32 0.86 118.73 0.44 0.81
1f53 1466600 12.68 1.47 1.05 129.50 0.47 0.92
1e0a 1651190 9.75 1.8 0.85 162.12 0.50 1.01
1ev0 1912380 13.18 2.42 1.05 219.29 0.61 1.11
1dz7 2160050 15.72 2.79 1.20 249.95 0.65 1.21
1ap0 2603130 18.78 3.59 1.43 325.58 0.80 1.39