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Abstract

Although brain oscillations involving the basal ganglia (BG) have been the target of exten-

sive research, the main focus lies disproportionally on oscillations generated within the BG

circuit rather than other sources, such as cortical areas. We remedy this here by investigat-

ing the influence of various cortical frequency bands on the intrinsic effective connectivity of

the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we con-

struct a detailed neural model of the complete BG circuit based on fine-tuned spiking neu-

rons, with both electrical and chemical synapses as well as short-term plasticity between

structures. As a measure of effective connectivity, we estimate information transfer between

nuclei by means of transfer entropy. Our model successfully reproduces firing and oscil-

latory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed,

effective connectivity changes dramatically for different cortical frequency bands and phase

offsets, which are able to modulate (or even block) information flow in the three major BG

pathways. In particular, alpha (8–12Hz) and beta (13–30Hz) oscillations activate the direct

BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the

subthalamic nucleus—globus pallidus loop. In contrast, gamma (30–90Hz) frequencies

block the information flow from the cortex completely through activation of the indirect

pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to

spontaneous activity generated in the globus pallidus. Our results indicate the existence of a

multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical

oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-gen-

erated subthalamic beta activity. These two findings suggest new insights into the patho-

physiology of specific BG disorders.

Introduction

Rhythmic activity is one of the most widely-studied phenomena in the brain [1]. In the mam-

malian cortex, oscillations in low-frequency ranges (<100 Hz) have been associated with

numerous cognitive and motor functions, that vary from feature binding [2] and mental simu-

lation [3] to movement preparation and execution [4]. This cortical phenomenon provides a

fruitful framework to study neural computation and has given rise to theories that account for
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the control of communication between regions [5, 6] as well as memory formation and

retrieval [7].

Oscillatory phenomena are not only prevalent in the cortex but also a prominent feature of

other sub-cortical structures. In the basal ganglia (BG), a fundamental structure of all verte-

brate brains [8, 9], low-frequency oscillations are ubiquitous during spontaneous activity.

Moreover, they are magnified in neurodegenerative disorders that affect this structure, such as

Parkinson’s (PD) or Huntington’s (HD) disease. Although the cortex and the BG are highly

interconnected, both functionally and structurally, it is still unclear which elements of this rich

oscillatory behaviour are generated in the cortex and processed in the BG, or vice versa.

Experimental and theoretical studies have provided initial evidence suggesting that BG

activity at some specific frequency bands is driven by areas of the cortex [10, 11]. Moreover,

those signals appear to be not simply relayed through the BG pathways but are rather subjected

to some sort of internal processing, depending on their initial frequency [11]. However, most

of the evidence that has been acquired so far does not come from studies on healthy humans,

due to the inability of most current non-invasive recording techniques to be applied in sub-

cortical structures. Instead, most studies are confined either to animal models or human

patients who undergo deep brain stimulation (DBS), a common surgical treatment of BG dis-

eases which provides the opportunity to record the spiking activity of multiple structures

simultaneously.

From a behavioural perspective, the BG are widely-assumed and recently found to be a key

component in voluntary action selection and motor planning [12–15]. One of their roles is to

provide reactive behavioural inhibition via competition between their main pathways. They

have been also found to be involved in sequence learning [16] and working memory [17].

Moreover, a pathological disturbance of the balance between these pathways, for instance after

the depletion of the neurotransmitter dopamine in PD, can cause a number of motor symp-

toms including tremor, bradykinesia and rigidity, as well as various cognitive and psychiatric

dysfunctions [18].

For all the aforementioned reasons, a substantial number of computational models have

been proposed [19–25] (for reviews see [26, 27]) in order to investigate BG pathophysiology

and assess their role in signal processing, motor and cognitive control. Yet the topic of cortical

oscillations is largely neglected in the majority of these models which, depending on their level

of detail, focus either on inter- or intra-nuclei interactions and locally generated rhythms.

The purpose of this study is to redress this imbalance and foreground the theme of cortical

oscillations by means of a new biologically plausible computational model of the BG circuitry.

Our model is the first, to our knowledge, to integrate fine-tuned models of phenomenological

spiking neurons, hence it is called neural, that correspond to different sub-types of cells within

the BG nuclei, electrical and plastic chemical synapses and anatomically-derived striatal con-

nectivity. Using this model, we carry out an analysis of the relationship between cortical fre-

quency, level of dopamine, locally generated oscillations and the information flow between the

BG structures.

We found that the effective connectivity between the BG substructures, and by extension

BG function, is completely controlled by the frequency and phase of cortical oscillations. Via

this mechanism, cortical signals can be relayed, blocked or transformed depending on which

BG pathway remains open in each frequency range. Hence, information that has been pro-

cessed in the cortex can either continue to reverberate through functionally-connected cortical

regions, or flow through the thalamus. These results suggest that the BG can be viewed as the

“gear box” of the cortex. Different rhythmic cortical areas are able to switch between a reper-

toire of available basal ganglia modes which, in turn, change the course of information flow

back to and within the cortex. Furthermore, we predict that exaggerated beta band activity, a
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typical symptom in PD [11, 28], originates in the subthalamic nucleus (STN) on account of the

dynamics of individual neurons within this structure, but it is entrained by the cortex.

The discussion of this paper provides a review of the literature related to low-frequency

bands, along with a comparison against our results, which leads to a number of proposed cog-

nitive mechanisms related to each band. Finally, we point out the impact of the phase offset

between cortical oscillators on the interaction between the STN and the external segment of

globus pallidus (GPe), as well as its role in modulating BG output.

Results

New BG neural model

Our optimization process resulted in eight new spiking models of BG neurons, based on the

phenomenological Izhikevich equations [29], that were integrated into a large-scale model of

the BG canonical circuit. This was successfully tuned to reproduce the firing patterns observed

in biological BG neurons, both measured in brain slices as well as in in vivo behavioural stud-

ies. Fig 1.A shows the internal structure of the model, with emphasis on the synaptic types

between the BG nuclei. The spontaneous firing rates of all optimized types of neurons, when

their synaptic input current is zero, are compared with real data in Fig 1.B.

The optimization of the connectivity between BG nuclei was achieved based on two differ-

ent functional scenarios that resulted in the firing rates illustrated in Fig 1.D, which will be

Fig 1. Architecture and firing behaviour of the system. A: The BG circuit as realized in the present study. Dopamine (DA) influences

both the internal behaviour of MSNs and FSIs as well as the impact of various synaptic conductances. B: Firing rates of the various neuron

types when isolated. Boxplots show median, first-third quartiles, and minimum-maximum of the mean firing rate of each simulated neuron.

Solid error bars represent mean and standard deviation of recorded (real) spontaneous activity. Data for GPe neurons were taken from [30],

for STN neurons from [31] and for SNr neurons from [32]. Neuron sub-types of the striatum include medium spiny-projection neurons (MSN)

and fast-spiking interneurons (FSI), the STN includes rebound-bursting (RB), long-lasting rebound spikes (LLRS) and no-rebound (NR)

neurons, and the GPe includes the three types GPeA−C. C: Cortical input-firing rate curve of striatal neurons when the complete model is in

use. The dashed lines illustrate the MSND1 curve for low dopamine (grey) and high dopamine (black) in the system. D: The mean firing rates,

over 500 3-second trials, of the various neuron types when the complete model is in use. The stimulated channel represents the channel that

received enhanced cortical input during the phasic mode, while the set of bar charts below show the firing rates of the two neighbouring

channels. The error bars show standard deviation. In tonic mode, there is no discrimination between channels and the small differences in

the two sets of bar charts are the result of random noise. The double asterisk (**) denotes an independent two-sample T-test with p-value <
< 0.01.

https://doi.org/10.1371/journal.pone.0189109.g001
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termed as tonic and phasic modes throughout this document. In the tonic mode, the model

received the same cortical input in all input areas, which had a low mean firing rate of 3

spikes/sec and represented the default tonically-active state of the BG neurons. Additionally,

the phasic mode was accompanied by a higher level of stimulation in a single microscopic

channel, the subgroup of BG neurons that are structurally connected to a particular cortical

ensemble, via a fixed 10 spikes/sec-activation of the corresponding ensemble (see S1 Fig). This

enhanced cortical input was able to cause transient effects in the BG network, and it repre-

sented the scenario that this part of the BG circuitry is highly engaged in a motor or cognitive

task.

In both modes, the model produced behaviour which agrees well with the current literature.

The phasic cortical stimulation of a single channel was enough to drop the firing rate of SNr to

almost 0 spikes/sec, while activity in neighbouring channels decreased to only around 29%.

This behaviour has been associated with decision making [13, 19, 33], since it allows the BG

circuitry to selectively halt inhibition of the area in the thalamus that is targeted by the affected

microscopic channel.

In additional experiments, the cortical input that the model received had an oscillatory

behaviour, as described in methodology, with a mutual amplitude across the cortical spike gen-

erators of the same channel and a fixed frequency, picked randomly from 0 to 100Hz. In the

case of a phasic channel, the amplitude of the oscillations was 10 spikes/sec while the ampli-

tude in tonic channels was again 3 spikes/sec. Although this type of phasic input caused almost

identical changes to the firing rates of the STN and GPe, compared to the initial experiments

where each channel had a fixed firing rate, it had a strong influence on the activity of SNr, as

well as some small influence on the striatum (see statistical tests in Fig 1.D). In particular, the

SNr firing rate varied greatly for different cortical frequencies, between 0.13 and 23.71 spikes/

sec compared to 0.07–1.25 spikes/sec in the static case, with a standard deviation of 6.33

spikes/sec. A Spearman’s rank-order correlation coefficient test between the cortical frequency

and the firing rate of SNr resulted in ρ = −0.882 and p-value <10−40, indicating a nearly mono-

tonic relationship. However, despite the fact that SNr showed such a different behaviour in the

same channel, the firing rates of the neighbouring channels were indistinguishable in both

cases (p-value of T-test: *0.569).

Finally, when given strong cortical stimulation, the model produced symmetric activity in

both groups of MSN neurons, at around 30 spikes/sec. This was a result of the fine balance

between MSND1 excitation, which is potentiated by dopamine, and connectivity asymmetries

in local inhibition favouring MSND2 neurons. Further simulations revealed the existence of a

transition threshold at around 9.5 spikes/sec of cortical stimulation, above which, the firing

rate of MSND2 neurons exceeds MSND1, supporting the recently-proposed hypothesis of a

decision threshold between the direct and indirect pathways in the striatum [34].

Fig 1.C illustrates this transition of the dominating neuron type, as well as the effect of

dopamine in MSND1 neurons that resulted in the modulation of the former. The baseline

dopamine level is considered to be 30% [19, 23]. In low dopamine conditions (0%), this deci-

sion threshold shifts to around 3 spikes/sec of cortical stimulation while for high dopamine

(90%), it exceeds 18 spikes/sec, an unrealistically high rate for corticostriatal neurons during

behaviour [35].

Dopaminergic modulation of intrinsically-induced beta oscillations in the

GPe-STN loop

One major and well-studied feature of the BG function is the existence of strong, intrinsically-

generated, oscillatory activity that originates from recurrent connections between the STN and

Cortical oscillations and the basal ganglia
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GPe [36, 37]. The next step of this work was to investigate the oscillatory behaviour generated

within our model, before moving to cortical oscillations, in order to assess the extent to which

it agrees with the literature. To calculate the power spectra of the different BG structures we

employed the multitaper method [38], which offers good frequency specificity and is able to

detect low-frequency signals, better than other typical methods [39]. This method was applied

on 1ms-binned, mean-centred and Gaussian-smoothed spike trains, with a simulated duration

of 3 seconds each.

Without any fluctuations of the firing rate of the input ensembles, the model was able to

generate beta oscillations internally, mainly visible in STN and GPe, whose peak frequency

varied depending on the activation of each channel. When the stimulation was limited at the

tonic levels, the STN displayed strong lower-beta oscillations with a sharp peak at 18–20Hz

while the GPe showed a weaker peak at the same frequencies (Fig 2.B). An increase of the

input firing rate to 10 spikes/sec (phasic input) to a single channel, enough to cause silence in

GPe and SNr, diminished the difference between areas of low frequency bands in STN (10–

50Hz), which remained, however, highly active (Fig 2.A).

Furthermore, the level of dopamine in the neuron equations of the network was found to

modulate these low-frequency oscillations in different ways. In an phasic STN channel, dopa-

mine above the normal levels (d1,2 > 0.3) was able to suppress the power of oscillations lower

than 20Hz (Fig 2.C) and strongly amplify the upper-beta band (23–30Hz), resulting in a clear

peak at 28–30Hz. On the other hand, low dopamine caused an amplification of the lower-beta

band, almost linearly proportional to the level of reduction, from 0% to 30%, without any sig-

nificant effects on the other frequency bands.

Fig 2. Frequency spectrum of STN-GPe loop without oscillatory input. Dopamine reduces lower-beta oscillations and modulates the spectrum. A, B:

Up: Average power spectrum for different dopamine levels during the phasic (A) and tonic fixed (B) state of a single microscopic channel in the level of the

STN and GPe. The spectrum is normalized by the maximum value of STN power in A, and both STN and GPe in B. The light grey areas represent the

standard deviation of the average power spectrum for random dopamine levels between 0 and 1 (n = 4000). Down: Spearman’s rank correlation coefficient

(ρ) and the slope of best-fit regression line between frequency power and DA levels measured in the above runs. The black lines indicate areas where p-

value is less than 0.05. C: Mean power of the four interesting frequency bands for different plausible dopamine levels, during the phasic state of a

microscopic channel in STN. D: Average cross-correlation between the firing rates of each neuron in the STN, presented for different levels of dopamine and

used as a measure of synchrony within the STN. The solid line represents correlation when stimulation to the BG is applied transiently, after the subtraction

of the same statistic produced by surrogate data, while the dashed line shows the result of stimulation over a long time period. E: Average power spectrum of

a phasic STN channel under healthy and PD conditions. In all cases, the shaded areas or lines represent standard deviation.

https://doi.org/10.1371/journal.pone.0189109.g002
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Finally, in tonic activation of a BG channel, high levels of dopamine caused a slight shift in

the peak beta frequency in STN and abolished any indication of enhanced beta activity in GPe.

As in the case of a phasic channel, these oscillatory effects were more noticeable for dopamine

values significantly higher than the net concentration. This dopamine increase is expected in

healthy brains, where the level of dopamine can be boosted by phasic release during behaviour

[40].

Interestingly, similar oscillatory patterns have been found in clinical recordings of PD

patients, during “on-” and “off-medication” periods [41]. To simulate the ‘off’ Parkinsonian

BG state more accurately, we assumed complete dopamine depletion (d1,2 = 0), as well as an

increase of the cortical impact to the striatum and STN. Although PD does not influence the

firing rate of the majority of biological corticostriatal neurons, low dopaminergic transmission

has been shown to cause high levels of cross-correlated activity between the cortex and the stri-

atum [42] and hyperactivity in STN [43, 44]. Hence, to capture this effect here, we tested two

different adjustments to the model, a 20% increase of the cortical firing rate, as well as a 10%

increase of the conductance of the synapses that originate from the cortical ensembles. Both

simulations resulted in almost identical changes in STN behaviour, that agree well with the lit-

erature [41, 43]. These comprise a substantial increase of the power of lower-beta oscillations,

shown in Fig 2.E, a 20% drop of low-gamma and upper-beta oscillations, and a 20% increase

of the overall STN firing rate.

The excessively rhythmic behaviour of the phasic STN is particularly interesting, as its neu-

rons remained uncoupled without the inhibition of GPe (most GPe neurons connected to a

phasic STN channel remain silent), leading to the conclusion that the emergent oscillatory pat-

terns are a result of membrane potential dynamics of the STN neurons.

In pursuit of this idea, we conducted a statistical analysis comparing the interspike intervals

(ISIs) of the three simulated neuron types in STN, in order to evaluate the behaviour of its

individual cells. The coefficient of variation (CV) of ISIs was used to measure irregular firings,

while bursting activity was measured by means of the asynchrony index (AI), the ratio of the

mode to the mean ISI [45]. Small values of AI<1 indicate a large portion of short ISIs com-

pared to the mean firing rate.

Fig 3 illustrates that, indeed, excessive beta activity observed in the Parkinsonian ‘off’ state

is orchestrated by rhythmic bursts, produced by the rebound-bursting (RB) STN neurons. It is

worth noted that the term “rebound” here is used only as a part of the name of this neuron

type since, in this case, RB neurons produced bursts without the presence of inhibition.

Although the rest of the neurons in the STN exhibited highly regular behaviour that did not

change between ‘on’ and ‘off’ states (CV = 8.9% ± 0.02, AI� 1 ± 0.05), the firing patterns of RB

neurons were less regular (on: CV = 37% ± 0.08, off: CV = 50.2% ± 0.08), and produced rhyth-

mic bursts (on: AI = 0.89 ± 0.3, off: AI = 0.69 ± 0.2) while in the ‘off’ state (for an example see

Fig 3.A). Hence, by combining bursts with ISIs approximately between 5 and 10 ms (Fig 3.B)

interrupted by longer ISIs between 13 and 40 ms, this rhythmic activity of RB neurons can

explain the frequency peak at 20Hz that was illustrated in Fig 2.E. The statistics presented in

this paragraph concern all neurons in a phasic STN channel, averaged over all simulated trials.

The tonic channels of the same simulations were not taken into account here as the inhibition

of the tonic GPe introduces an extra level of complexity to the analysis of the STN patterns.

Furthermore, we observed that tonic activation of GPe was able to (weakly) increase syn-

chronization between STN neurons for approximately 400 ms, following the stimulation of the

underlying BG channel. Fig 2.D shows that this synchronization in phasic STN channels was

influenced by dopamine, in an inversely-proportional manner. This behaviour is not surpris-

ing, since the lack of dopamine was shown to cause increases in the same frequency bands

both in GPe and STN, thus facilitating synchronization. In addition, the overall low levels of

Cortical oscillations and the basal ganglia
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cross-correlation are also expected, as the metric Cxy in Fig 2.D reflects an average comparison

between all (largely uncoupled) simulated neurons in the STN. To further confirm this obser-

vation, we created a number of surrogate time series of the binned spike events of each neuron,

randomly shuffled over time [46], which destroyed any linear correlations between spikes. A

comparison with the original time series produced by our model showed that there was close-

to-zero correlation between synchronization and dopamine in the case of the surrogate data,

in contrast to the former case, thus the null hypothesis of uncorrelated noise can be rejected.

Finally, although STN neuron synchronization decays over time in our simulations, it is pos-

sible that in biological BG this effect would be echoed back via increased beta oscillations in the

BG-thalamo-cortical loop. To test if the STN syncronous state can be maintained when it is

driven by extrinsic beta activity, we compared the STN behaviour of the above example, as

opposed to the case when the simulated cortical ensembles oscillate at a upper-beta frequency

(f = 25Hz) with a weak amplitude of A = 6 spikes/sec, without changing the overall cortical fir-

ing rate. As a measure of synchrony, we extracted the instantaneous phases of each STN neuron

using the Hilbert transform across each mean-centred and Gaussian-smoothed spike train. The

synchrony F was then calculated as the average of 1

N

PN
j eiyH

j ðtÞ over time t, where N is the num-

ber of STN neurons and y
H
j ðtÞ represents the instantaneous Hilbert phase of the neuron j. This

method was selected for its tolerance to amplitude changes [47], since cortical oscillations at the

same frequency can increase the amplitude of the STN emerging beta. After 100 simulations for

different initial conditions, the static case resulted in average synchrony Fph = 0.26 ± 0.01 in a

phasic microscopic channel and Fto = 0.32 ± 0.01 in a tonic channel, where the symbol ± repre-

sents standard error. This 23% higher value in the tonic case was anticipated as the GPe is active

and able to provide inhibitory feedback to the STN. On the other hand, cortical beta oscillations

raised the syncrony in phasic channels to Fto levels (F25Hz
ph ¼ 0:34� 0:02), even though the GPe

remained silent, therefore supporting the initial hypothesis that STN synchronization could be

maintained if it could cause excessive beta to the cortical areas that project back to the STN.

Fig 3. Firing patterns of the three types of STN neurons. A: Two recorded examples of STN neurons in a phasic channel show irregular

(left) and regular (right) firing patterns, as well as the behaviour of the same neurons during the Parkinsonian ‘off’ state. In this example, the

RB neuron exhibits rhythmic bursts in the beta band. B–D: ISI distributions of STN neuron types, superimposed on stacked histograms. The

letters μ and σ represent the mean and standard deviation repsectively, across all spike events of each neuron. The gray shadow (when

both shades are combined) represents the total STN distribution during the ‘off’ state, while the light gray shadow shows only the distribution

of RB neurons.

https://doi.org/10.1371/journal.pone.0189109.g003
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Parkinsonian beta activity can be locally-generated but cortically-

entrained

Within the BG, recordings of PD patients and primate subjects show exaggerated beta oscilla-

tions in the STN [11, 28, 48, 49] that correlate with the pathological symptoms of PD [50, 51]

and exhibit high local coherence [52]. Although a well studied phenomenon, the literature pro-

vides conflicting evidence regarding the source of these oscillations, which are thought to

either be generated internally, via the STN-GPe reciprocal coupling [21, 36, 53, 54], or within

other BG nuclei, such as the striatum [55], or in certain areas of the cerebral cortex [10, 49].

One compelling hypothesis, presented in [11], is that upper-beta oscillations of the motor

cortex entrain beta activity generated within the BG, which however peaks in the lower-beta

band, during the Parkinsonian ‘off’ medication state. Our results support this hypothesis and

provide a potential explanation that points to the internal dynamics of the STN rebound burst-

ing (RB) neurons as the source of these pathological oscillations.

In the simulated Parkinsonian state of a phasic channel in Fig 2, our model indeed pro-

duced excessive lower-beta oscillations, enhanced by both dopamine depletion and the poten-

tiated cortico-subthalamic projections. Despite its influence on beta amplitude, however, the

lack of dopamine was not sufficient to increase the average synchronization between pairs of

STN neurons, as it is found in-vivo [52], unless the STN activity was measured transiently,

right after the halt of cortical beta oscillations (Fig 2.D). To solve this problem and achieve a

synchronous steady state, the model was stimulated with a weak oscillatory cortical input in

upper-beta band (25 Hz), which was found able to entrain the STN neurons and increase the

average instantaneous phase-synchronization F by 31%. The oscillatory behaviour that

emerged after this modification closely resembles STN field potential recordings in the motor

BG of PD patients in [41], and reveals a difference between the role of lower and upper beta

bands, which is consistent with the discussion in [11].

Only low cortical frequencies can be maintained throughout the BG

structure

When the BG model received oscillatory input from the simulated cortical ensembles, it exhib-

ited a mixed behaviour. In this experiment, a phasic BG channel was stimulated by a cortical

ensemble with frequency f1 2 (0, 80) Hz and amplitude A1 = 10 spikes/sec, while a second

neighbouring channel received input from a tonic ensemble with amplitude A1 = 3 spikes/sec,

frequency f2 = f1 and random relative phase ϕ2 2 [0, 2π). The aim here was to explore the

ability of the model’s internal dynamics to filter out some frequency bands while preserving

others, which would allow the discrimination between cortical frequencies that pass to the

thalamus and end up back in the cortex. The metrics used for this analysis were the power of

the examined frequency band in each nucleus and the coherence between the cortical inputs

and the nuclei. Frequency spectra were calculated using the same methodology as before,

while coherence was defined as the normalized cross-spectral density between the above

sources.

In low frequencies, between 0 and 30 Hz, the oscillatory patterns of the cortical inputs were

largely replicated in all BG nuclei, in both the phasic and neighbouring tonic channels, with

the exception of the tonic STN. In contrast, cortical activity at higher frequencies was pre-

served in the striatum but declined in subsequent structures. This is evident in Fig 4.A and 4.B,

where frequency power and coherence match at most input frequencies. One clear reason for

this decline is the blockage of the GPe and SNr activity in the phasic channel, that occurred at

high frequencies due to the strong striatal inhibition. However, the fact that cortical oscilla-

tions in certain frequency bands could not be followed by the tonic STN (see low beta and
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gamma bands), or by the tonic GPe and SNr that were not silent (see gamma band), points to

the existence of another mechanism that filters out certain frequency bands.

One candidate explanation for the filtering of certain frequencies by the tonic BG, which

was revealed here, regards the inter-channel competition that was evoked by the MSN collater-

als and the multi-channel excitation from the STN. In particular, neurons of the STN that

correspond to the stimulated (phasic) channel, were able to send EPSPs to GPe neurons of

neighbouring channels, which in turn inhibited neighbouring STN neurons and cancelled out

the initial oscillatory EPSPs from the cortex. Fig 4.C shows that, without the influence of GPe

inhibition, tonic STN neurons (with phasic neighbours) tended to adapt to cortical oscillations

at frequencies 13–40 Hz with a maximum effectiveness, while under normal conditions, this

frequency band shifted to 0–12 Hz. Phasic channels were not influenced by GPe inhibition

Fig 4. Cortical coherence throughout the BG. A) Cortical coherence and B) frequency spectrum and of the

BG nuclei for different cortical frequencies f1. A unified spectrum for all striatal populations was included (Str),

since they all exhibited very similar behaviour. C, D) Z-score transformation of the cortical frequency f1 in the

STN power spectrum of the neighbouring (C) and the phasic (D) channels.

https://doi.org/10.1371/journal.pone.0189109.g004
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(Fig 4.D). In a similar fashion, this self-cancelling mechanism affected the entire BG circuitry

via STN EPSPs, and facilitated the blockage of high-frequency cortical coherence.

Furthermore, the striatum produced harmonic oscillations (mainly in MSND1 neurons), at

frequencies limited to the low and gamma ranges (Fig 4.B). Unlike cortical oscillations, har-

monics passed only to the SNr of the phasic channel via the direct pathway, and they were

strongly amplified along this route. This effect of cortical harmonics could constitute a BG

mechanism that facilitates inhibition over excitation, and allows inhibitory BG pathways to be

more tolerant to different phases than the hyper-direct pathway.

Finally, we ran the same experiments in PD conditions to evaluate its impact on the above

mechanisms. The only noticeable effect was the increase of the frequency range of cortical

oscillations that can be maintained throughout the BG. The maximum frequencies increased

by 20%–40% across all BG nuclei. This result was consistent for both frequency power and

coherence.

Cortical frequency defines the effective connectivity of the BG pathways

The effective connectivity between the BG structures over a certain period of time can be mea-

sured by calculating the causal interactions between their corresponding spiking time series,

using a variety of statistical methods. In this work, we used pairwise transfer entropy (TE)

[56], a generalization of granger causality, when the Gaussianity of the time series cannot be

assumed [57]. TE between two time series X and Y at time t measures to what extent the couple

(Xt−τ, Yt−τ) is more resourceful in forecasting Yt, than just the value of Yt−τ [58]. It is expressed

as

TX!Y ¼ �
X

t

pðxt; x
ðkÞ
t� t
; yðlÞt� t
Þ log

pðxtjx
ðkÞ
t� t; y

ðlÞ
t� tÞ

pðxtjx
ðkÞ
t� tÞ

ð1Þ

where k, l are the lengths of the events xi 2 X and yi 2 Y respectively, and the time constant τ
indicates the interval between the two measurements, i.e. the time delay of the information

flow. The choice of τ in measuring TE between neuronal ensembles is very important and can

lead to significantly different numbers (see S2 Fig), that might be influenced by the delays of

different afferent connections. A reasonable choice, which was also adopted in this work, is to

calculate the TE that arises on the timescale of the AP propagation via the chemical synapses

between the examined ensembles.

For the generation of the time series, 10 seconds worth of data was recorded, for every fre-

quency of cortical oscillation between 1 and 100 Hz. The amplitude of the oscillation in the

examined BG channel was set to A = 10 spikes/sec while oscillations in neighbour channels

were limited to 3 spikes/sec. The phase offset ϕ between cortical oscillations of this channel

and other neighbours was randomized uniformly in every run. Finally, the spiking activity of

each BG nucleus was summed for each millisecond and then low-passed using a discrete-time

RC filter (RC = 2, dt = 0.1). For the calculation of the probability density functions in Eq 1,

Kraskov’s kernel estimator was employed, a non-parametric method without the need for

fine-tuning that is proven to be suitable for our perpose [59].

Fig 5.A illustrates the resulting spectrum of TEs between the cortex and the BG nuclei (first

half) and for the main pathways of the BG circuit (second half). We observed a clear distinc-

tion between input frequency bands, giving rise to completely different behaviour in the

model (Fig 5.B). The greatest variation arose in low-frequency bands, between 4 and 30Hz,

under the very conditions that are necessary to allow the relay of information via the BG.

If viewed as information channels, the three major BG pathways remained widely open

during stimulation at alpha frequencies (Fig 5.A and 5.B gray column). In the indirect
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pathway, striatal neurons were able to affect the behaviour of the SNr via the GPe, bypassing

modulation by the STN-GPe loop and, as a result, the input-output information flow in the

BG maximized compared to any other frequency band (Ctx-SNr in Fig 5.A). In the case of the

lower-beta band, greater information flow from the cortex allowed the STN to modulate the

indirect pathway, and to maintain a higher impact than the GPe on the SNr. Stimulation at

upper-beta frequencies exposed a different balance, where the flow of information via the STN

and GPe is restricted to interactions within the STN-GPe loop, and thus the SNr behaviour is
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https://doi.org/10.1371/journal.pone.0189109.g005
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dictated by the MSND1 inhibition. At gamma frequencies, a cortical information blockade

turned the STN into a local-circuit component that affected the SNr only via GPe inhibition.

The full indirect pathway dominated the BG behaviour and blocked cortical information flow.

Finally, below alpha, the impact of the GPe on the SNr was maximal at theta frequencies

(4–8Hz), even though the information flow from excitatory sources towards the GPe abated

considerably. In fact, the amount of TGPe−SNr was found to have increased by 84 ± 58% com-

pared to the sum of TE towards the GPe, a fact that leads to the hypothesis that, under these

conditions, some of the information that arrives to the SNr is generated within the GPe.

Fig 5.C summarizes the above observations and illustrates the impact of the cortical fre-

quencies on the activation of the three main BG pathways. This analysis was based on a heuris-

tic method, where the values of TE between the consecutively connected nodes of a pathway

were multiplied and then normalized with respect to their distribution across cortical frequen-

cies. Interestingly, as evidenced by this figure, different frequency bands give rise to different

combinations of open pathways, increasing the repertoire of potential functions that the BG

are able to perform.

Furthermore, we observed that in certain low frequencies, the phase offset ϕ between the

two oscillating cortical ensembles was able to change how the STN and GPe interact with their

adjacent nuclei. In Fig 5.D, different phase offsets between alpha oscillations were able to

block, or reverse the direction of information flow between STN and GPe, which was also

accompanied by a pronounced effect on the pathways that include them. This was more evi-

dent when the strong cortical signal of the phasic channel (10 spikes/sec) preceded in time the

weaker (tonic) oscillatory signal of a neighbouring channel, i.e. 0� ϕ� π. In this case, the

flow of information was stronger towards the STN, and the activation of the hyper-direct

pathway was largely modulated by the influence of GPe (Spearman’s correlation between

TSTN−GPe and TSTN−SNr: ρ = −0.72, p� 5 × 10−17), while in the opposite case, when −π� ϕ� 0,

the prevailing direction of the flow also reversed. This effect had significant ramifications for

the balance between hyper-direct and indirect pathways which was found to be strongly corre-

lated with the direction of flow between the STN and GPe (Spearman’s correlation between
TSTN� GPe
TGPe� STN

and
TSTN� SNr
TGPe� SNr

: ρ = −0.44, p� 3 × 10−05). This set of observations provides insight into the

modulation mechanism of the STN-GPe loop and indicates the importance of phase-to-phase

coherence in low-frequencies.

As previously, we used scrambled surrogate testing to confirm that our observations were

not a result of uncorrelated noise. After randomly shuffling the time-series of each nucleus for

1000 times, the average TE for all connections became 2.6 × 10−3 ± 8.5 × 10−4, and it was simi-

larly distributed across different frequencies. Hence, as these values are considerably lower

than the resulting TEs in Fig 5 and the dependency of the input frequecy was destroyed, the

null hypotheses of (1) no significant information transfer between source and target nuclei

and (2) absence of correlation between frequency and the measured TE can be both rejected in

the above observations.

The effect of the relative phase. As illustrated in Fig 4.C, the existence of a closed loop

between STN and GPe contributes to the maintenance of cortical frequencies in the alpha

band, and their blockage in higher bands. Without feedback inhibition, the rhythmic bursts of

STN-RB neurons succumb to the cortical beta rhythms, due to their natural tendency to

engage in beta activity (Fig 3). Then, we showed that at the same alpha frequencies, the direc-

tion of information flow inside the STN-GPe loop changes depending on the relative phase of

the stimulus versus other background oscillatory activity that influences neighbouring areas.

Both these remarks highlight the strong functional connection between this internal loop and

cortical low oscillations.
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A closer examination of the effect of the phase offset ϕ reveals a number of modes of the

STN-GPe function, able to trigger a competition between the two involved pathways (indirect/

hyper-direct) over the range of possible values of ϕ. An example behaviour for alpha frequen-

cies is illustrated in Fig 6, where both the absolute magnitude and the sign of ϕ 2 [−π, π) con-

tribute to the outcome of this competition. (See S3 Fig for more frequency ranges with similar

behaviour.) While large alpha offsets always activate the indirect and suppress the hyper-direct

pathway, values close to zero have the opposite result, notably when the strong input signal is

preceded by background oscillation in neighbouring channels. This asymmetry cannot be

observed in the direct pathway, which is not directly influenced by either STN or GPe. Thus,

its TE maximises monotonically and smoothly around ϕ = 0.

Discussion

The first main contribution of this work is a new detailed neural model of the BG canonical

circuit which can be used as a tool for both producing and testing hypotheses related to the BG

function. Due to the enormous interest in this brain region, there are numerous available

computational modelling approaches in the literature [19–25, 60] (for reviews see: [26, 27]). A

series of modelling research has utilized the conductance properties of STN and GPe neurons

in order to explore synaptic and cellular mechanisms of neural oscillations in the BG. Some of

these approaches aim to capture the exact electrophysiology of BG nuclei [60, 61] while others

focus on the mathematical interpretation of conductance properties [62]. However, whereas

conductance-based models provide a much greater level of detail than simple phenomenolo-

gial neuron equations, this advantage is, to some extent, lost in large-scale simulations. Their

large number of parameters increases the difficulty of achieving biologically plausible variabil-

ity and their much higher computational cost limits the number of units that can be used in a

simulation. The current study is focused on features that have a clear and strong effect in BG

network dynamics, such as short-term plasticity, number of neurons (and ratios of types of

neurons) in each nuclei, both electrical and chemical synapses and spatially embedded striatal

circuitry. To our knowledge, has so far been no large-scale neural model of the complete BG

circuitry, that integrates this number of features of the BG physiology.

Oscillatory behaviour emerged through the model dynamics that resembles various known

BG phenomena. Although similar oscillatory frequencies have been observed in a number of

other early bottom-up studies, including [19] and [63], the fact that the tuning process fol-

lowed here was based only on simple firing rate rules and neuron electrophysiology, updating

the maximum synaptic conductances and the internal phenomenological parameters of the

Fig 6. Competition of STN-/GPe-mediated pathways triggered by cortical alpha. Inner circle: Synaptic

connection with the highest TE in the GPe (A) or the STN (B), for different phase offsets ϕ. Outer circle:

Normalized TE across the values of ϕ in the indirect (A), hyper-direct (B) and direct (C) pathways as defined in

Fig 5. Black and white colours correspond to 100% and 0% respectively.

https://doi.org/10.1371/journal.pone.0189109.g006
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individual neurons respectively, gives extra value to the presented novel results. As our simula-

tions show, the frequency of the cortical input can be maintained throughout the BG structures

and dramatically changes the way that the BG circuit operates.

One of the weak points of low-level computational models is that the large number of

parameters entailed can generate broad types of behaviour, depending on the tuning applied.

In our approach, we tried to minimize this effect by tuning this model from the bottom up,

almost entirely on electrophysiological studies while the focused level of behaviour is oscilla-

tions of neural populations. In the rest of this section, we discuss the consistency between our

results and previously published experimental data and theories, and we provide a number of

predictions that are supported by our simulations and can be tested in further experimental or

modelling work.

Is the source of parkinsonian beta a combination of STN dynamics and

cortico-subthalamic entrainment?

Numerous associations can be made between the oscillatory behaviour of our model and

experimental data both in the healthy and Parkinsonian BG. In [4], Leventhal et al. discovered

that beta power in the cortex and the BG of healthy mice changes distinctively during behav-

iour. They also measured coherence and correlation of frequency bands throughout the BG

and found that, during their behavioural experiments, coherence was maintained at both

alpha and beta frequencies but disappeared at higher frequencies. In Fig 4.A. we observed the

same phenomenon in our modelled BG both in a stimulated channel that was driven by a pha-

sic, oscillatory cortical activity, as well as in neighbouring areas.

The clear leading role of low cortical oscillations in affecting the BG function shown here is

also supported by EEG studies with PD patients. Ahn et al. found correlations between various

cortical areas and single STN units in beta band and not in gamma [64]. In addition, Shima-

moto et al. found excessive synchronization between local field potentials in M1 and STN

units, at theta, alpha and beta frequencies [65]. However, more complicated oscillatory phe-

nomena found in the latter study, such as phase amplitude coupling, that also facilitates

gamma synchrony, were not replicated in our experiments, as the simulated cortical activity

was always set to follow a single-frequency oscillation. Finally, Ahn et al. [66] investiageted this

topic using a small-scale computational model and proposed that excessive Parkinsonian beta

oscillations could be due to both the cortical and BG mechanisms.

Within the microcircuit, the current work predicts that excessive beta activity is generated

locally, by the dynamics of a sub-type of STN neurons, but entrained by cortical activity at a

slightly higher frequency. Nevertheless, the question remains of how cortical upper-beta can

be the source of this entrainment. More light can be shed at the single-unit level, where the

majority of the STN neurons showed a mixed rhythmic bursting behaviour, similar to record-

ings in [44], with a frequency peak at around 18 Hz (Fig 3.A). In particular, we observed that,

without the influence of the GPe, which is locally inhibited on phasic microscopic channels,

and with excessive excitation from the cortex, the rebound-bursting STN neurons generate

free and uncoupled oscillations, resulting mainly from their internal dynamics. Since they are

uncoupled, these oscillations are prone to entrainment by external stimuli, insofar as those sti-

muli also oscillate at a compatible frequency, such as in the experiment described above.

The plausibility of the firing patterns of both the pathological and healthy simulated STN

neurons can be supported by a number of empirical studies. The positively skewed distribution

of the inverse ISIs of these neurons, shown in Fig 3.B, agrees well with the distribution of single

neuron firing rates, recorded in the STN of healthy monkeys [43]. After a treatment with the

neurotoxin MPTP, which is known to cause Parkinsonian-like symptoms [67], the distribution
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of firing rates shifted towards higher values and had a flattened profile, a feature that was also

captured by the simulated Parkinsonian ‘off’ state and illustrated in the same figure. Further-

more, the ratio of burst-like neurons and the distribution of mean ISIs for each STN neuron in

Fig 3.D is consistent with the results of multi-electrode recordings in human PD patients in

[44], where the power spectra of individual STN neurons were found to peak at 17.9 ± 6 Hz.

The pathological mechanism we propose here could be further investigated experimentally,

with a signal-cancellation technique either at the level of the cortex (as in [68]) or directly in

the STN using, for instance, DBS electrodes. Our hypothesis predicts that, in highly active

areas, a reduction of the influence of cortical upper-beta activity to STN neurons will also

reduce the correlation between their spike trains, as they will lose their main source of entrain-

ment, but it will leave the amplitude of lower-beta almost intact.

Moreover, the behaviour of the system in the tonic state reveals the role of the GPe in the

generation and maintenance of synchrony within the STN. In Fig 2.B, oscillations in STN and

GPe are highly coherent at lower-beta frequencies, a relation that is inversely proportional to

the amount of dopamine in the system. In the resting Parkinsonian state, characterized by zero

dopamine, enhanced cortico-subthalamic connections and tonic cortical activation, inhibitory

feedback from the GPe was able to increase the average instantaneous synchrony F of STN

neurons by 23% and maintain it for 400 ms after the silence of GPe. This leads to further pre-

dictions regarding the interaction between the STN and GPe. First, in periods when the BG

input nuclei have areas that are highly active, a subgroup of GPe neurons is expected to be

silent, due to high inhibition from MSND2 neurons (Fig 1). These periods of silence have been

observed before in the GPe [69], and have been linked to striatal inhibition [70], but based on

our model, they should also exhibit high correlation with STN activation. Following this vein,

long periods of silence in GPe neurons lead to a halt of the only source of inhibitory feedback

to the connected STN neurons. As a result, if cortical beta is cancelled out as proposed in the

Results section, highly active STN neurons are expected to become unable to maintain any syn-

chronous state, and have minimum correlation (as in Fig 2.D), if the duration of this activity

exceeds a time threshold.

Apart from the peaks in beta band of the STN power spectrum, Lopez et al. in [41] found a

second area, at very high frequencies around 350 Hz, that was evidently high. This activity was

shifted towards lower frequencies (250 Hz) without medication for the Parkinsonian symp-

toms. Although neither case has been captured by our simulations, this was possibly due to the

nature of the multitaper method used for spectral analysis, which is insensitive to weak signals

at high frequencies [39].

Finally, one more factor that might contribute to the synchronous activity within the STN

is the complete BG-thalamo-cortical loop, which involves the hyper-direct BG pathway. Since

the STN neurons are able to generate beta patterns spontaneously, they might also be able to to

enhance beta activity throughout this loop, even in the case that GPe neurons are locally silent.

This can be tested in future work, with an extended version of our model, that also incorpo-

rates neural populations corresponding to both thalamic and cortical areas.

Oscillations and the BG function

Beta oscillations are also prevalent in the healthy function of the BG and they are strongly asso-

ciated with the motor system of the brain [4, 11, 71–73]. As in the Parkinsonian ‘off’ state [74],

they show peaks in both lower and upper-beta ranges, but with a higher median frequency

[73], since lower-beta is more sensitive to suppression by dopamine [11]. This feature was

reproduced in our simulations, where dopamine was able to control the level of internally-gen-

erated lower-beta and effectively reduce it in exchange for upper-beta oscillations, in an almost
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linear manner (see Fig 2.C). If this ability to change the peak of beta activity is confirmed

experimentally, then small fluctuations in rebound-beta that are usually present after the exe-

cution of a task [75] or after artificial modulation of dopamine [76] could be reflected in the

level of dopamine that changes due to a post-decision evaluation [77].

With regard to their function, one theory proposes that beta oscillations are used to “signal

the status quo” across brain regions [72], both at the perceptual-cognitive and motor level, in

case that its maintenance is anticipated or intended. Furthermore, a behavioural study with

simultaneous, multiple recordings in healthy rats provides evidence that beta oscillations in

the BG are strongly related to cue utilization [4], and suggests that high beta activity reflects “a

post-decision stabilized state of cortical-BG networks, which normally reduces interference

from alternative potential actions”. These views can explain the rigidity and hypokinesia of PD

patients who also exhibit abnormally exaggerated beta activity, the observed beta desynchroni-

zation in movement preparation and execution [15, 78, 79], as well as the beta rebound in

NO-GO decisions [75]. However, it is still unclear why these oscillations have such a strong

effect in maintaining the current state of the brain. One recent review suggests that beta oscilla-

tions regulate the information capacity of the phasic channels of the loops involving the BG

[51].

Here we propose that the BG is able to selectively gate information flow in these channels,

via a combination of internally-generated and cortically-driven beta activities, driven by the

current level of dopamine and the cortical frequency respectively. We show that, even when

their amplitude is kept fixed, different cortical beta frequencies are able to completely change

the information flow throughout the BG. The increased flow in low bands in Fig 5 is consistent

with the view in [51], and provides a lower bound for the information capacity during the beta

regime. More specifically, towards lower beta frequencies, the communication channels of the

three major BG pathways open gradually and monotonically, with the same rate but different

offsets (Fig 5.C). At 13 Hz, the lowest beta frequency, all three pathways have a global peak,

while at the highest beta (30 Hz), they are fully blocked. Hence, the frequency of beta can be

used by the cortex as a lever that adjusts the impact of the three BG pathways, and thus plays a

decisive role in the generation of movement [13, 15, 80].

Apart from beta, other frequency bands also showed unique characteristics in our simula-

tions. Alpha rhythms resulted in BG effective connectivity changes that were similar to beta,

promoting all three BG pathways but with an emphasis on the indirect pathway, and with even

higher input-output information flow. In experimental studies, alpha activity has been also

very closely associated with beta, exhibiting desynchronization prior to movement and sup-

pression during movement execution [11, 81, 82]. However, these rhythms are considered to

have a distinct function [10, 52, 79, 81, 82] and they have been mainly associated with emo-

tional stimuli [83], as well as the attentional system of the brain [10, 11, 84]. In particular, there

is cumulative evidence that strong alpha power is able to inhibit task-irrelevant regions in the

cortex and thus control information flow [3, 84, 85], while it is argued that alpha desynchroni-

zation allows the formation and retrieval of new memories [7]. Finally, alpha power cannot be

significantly regulated by the level of dopamine [86], a fact that shows another major difference

in the function of these rhythms at the level of the BG. The constant tendency of alpha to pro-

mote information flow via the indirect pathway, as observed in Fig 5, agrees well with the

above theories. This pathway has been shown to play a critical role in proactive inhibitory

control [15, 87] and cause movement suppression [12, 14, 88] by evoking a rapid disinhibition

of a subset of SNr neurons. Thus, it is likely that a local increase in alpha power brings the

affected cortical region to a stable state, where the cortico-BG-thalamic loop is active but, at

the same time, restricted from accessing memory processes and with the corresponding motor

responses inhibited.
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The two final frequency bands under consideration are theta and gamma. The coexistence

of these two bands is a well studied phenomenon in the cortex [89], which, as opposed to alpha

and beta, promotes the formation and retrieval of episodic memories via phase-amplitude

entrainment between different regions [90]. However, in this study we assess theta and gamma

separately to maintain consistency in our methodology and enable the direct comparison with

other frequency bands. Cortical theta (*5 Hz) is involved in various cognitive processes [91]

such as memory retention, novelty detection, processing of negative rewards [92] and goal

maintenance [93]. Within the BG, theta is found to increase in the rat striatum during a deci-

sion-making task [94], while in humans, theta in STN increases during sensorimotor conflicts

[95]. Gamma, on the other hand, is mainly associated with active information processing and

feature binding [2, 5, 6]. Unlike alpha and beta, it is characterized by high amplitudes during

movement [68, 79] and in combination with theta, it facilitates communication between differ-

ent cortical areas, thus enabling high-level cognitive control such as the simultaneous mainte-

nance of behavioural goals [93].

Interestingly, both gamma band and theta at 5 Hz minimized input-output information

flow from the simulated cortical ensembles to the SNr and enabled only the indirect path-

way without any modulation from the STN-GPe loop. This similar connectivity pattern

indicates that any combination of these two rhythms, as in the aforementioned studies, will

also bring the BG to the same state. Hence, our model suggests that cortical information

which has been generated and processed via alpha/gamma rhythms is not able to circulate

through the cortico-BG-thalamo-cortical loop, without the presence of another low-fre-

quency band.

Furthermore, in the case of gamma, the D1 striatonigral MSNs acted as an information

sink, receiving strong inputs from the cortex but with a minimal impact on the SNr, while

theta rhythms caused GPe to fire spontaneously and dominate the behaviour of the output

SNr, thus acting as an information source. This effect in the GPe was sensitive to the phase of

theta, and it was most prominent when the phase of the phasic channel followed in time the

phase of neighbouring-channel oscillations, particularly at an offset of � � � p

2
(see S3 Fig).

All things considered, a picture emerges regarding the function of the BG during cognitive

processing at theta/gamma rhythms. Our model’s behaviour in these two bands can be viewed

as a mechanism that isolates the cortex from the environment, while new information is being

processed in multiple cortical regions. In the case of a sensorimotor conflict, theta is increased

in the cortex, and the GPe is ‘instructed’ to inhibit SNr in order for the conflict to be resolved.

This behaviour is different than in the case of alpha, which boosted the circulation of informa-

tion via the BG, while inhibiting relevant motor actions with the facilitation of the indirect

pathway. Hence, due to the distinction between the aforementioned bands, the cortex acquires

the ability to process information through a variety of streams, either by using intermediary

subcortical structures, or directly, across different regions.

Although there is no direct connection between GPe and theta function, inhibition of this

structure via deep brain stimulation (DBS) has been found to improve cognitive symptoms of

Huntington’s disease [96–98], a condition that is associated with episodic memory loss [99]

and increased ectopic theta [100] (for a review see [101]), among other symptoms. However,

further work is required to verify the above computational predictions, and to answer to the

emerging questions regarding the BG function. From an experimental perspective, the role of

theta in the GPe, as well as BG effective connectivity changes during behaviour, require exten-

sive investigation. In addition, computational modelling could shed light on the possible

combinations of the above mechanisms and the transient versus steady-state dynamics that

emerge. Finally, an interdisciplinary investigation on how the effects of the above pathological

Cortical oscillations and the basal ganglia

PLOS ONE | https://doi.org/10.1371/journal.pone.0189109 December 13, 2017 17 / 40

https://doi.org/10.1371/journal.pone.0189109


frequencies can be cancelled out could potentially boost current research on adaptive DBS

techniques [102].

The STN-GPe circuit

The fact that the GPe becomes silent during the phasic mode in our simulations does not con-

tradict with the literature. First, this behaviour reflects to only a very small portion of GPe neu-

rons that are associated with the microscopic channel and exhibits a phasic response. Second,

the recordings in our results were conducted for two simulated seconds during which, the cor-

tical input maintained a steady firing rate (either oscillatory or completely fixed). In real condi-

tions, feedback from the BG via the thalamus, would cause changes to the cortex after some

milliseconds of the initial GPe inhibition and the input that the BG receives would be modified

accordingly. In support of this behaviour, it has been shown in primate recordings [103, 104]

that GPe neurons are inhibited transiently for approximately 25 ms after cortical stimulation.

The diversity of the STN-GPe interactions for different cortical phase alignments leads to a

hypothesis that breaks this loop down into two coexisting mechanisms. First, the rhythmic

inhibition and excitation of the SNr by these two structures may act as a force that attempts to

align the phases of different cortical low-frequency signals, in order to achieve optimal com-

munication [5, 6]. However, although perfect phase alignment can maximize information

exchange in neural populations, optimal behavioural performance often requires more meta-

stable dynamics [105]. Hence, as an additional mechanism, the BG may be able to impose a

veto on two conflicting signals, via the excessive activation of the indirect pathway, in case that

the above process results in the wrong alignment, i.e. an amplitude difference that favours the

leading signal. This veto can be released if the balance of amplitudes changes, and the leading

signal increases its impact on its counterpart. This mechanism could allow the BG to function

in a Hebbian fashion and provide the right temporal conditions for the integration of anatomi-

cally distinct signals.

The credibility of this hypothesis can be further tested by the addition of neural cortical

oscillators as well as a thalamic nucleus to the model presented in this study. This would allow

the reverberation of the same cortical signal through the BG and reveal the conditions under

which a coalition of cortical ensembles can be phase-coupled via the influence of the STN-GPe

circuit.

All in all, the great variability of responses observed during our simulations highlights the

extensive repertoire of BG functions. These cannot be completely captured by the analysis of

this paper, even in the toy case of fixed dopamine and steady cortical inputs with fixed fre-

quencies. Nevertheless, our study showed that oscillatory frequencies and phase alignments

could be the means by which the cortex selects between these functions, and led to a number

of predictions that can be tested in future work.

Materials and methods

The predominant part of the methodology presented here is a new spiking neuron model of

the complete motor BG circuitry, partly based on well-established models of various features

of the BG nuclei, an early version of which can be found in [106]. In particular, the striatum

model was partially adopted from [23], the conductance delays between nuclei were taken

from [19] and the parameters for short-term plasticity between the BG nuclei from [22]. This

section provides justification and a full description of the mathematical models and the rest of

the design choices that were made for this simulation, as well as the tuning process that fol-

lowed. The source code of this spiking neuron model is written in the programming language
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Python, using the simulation library Brian [107], and can be found at https://github.com/

zfountas/basal-ganglia-model.

Anatomy

Canonical circuit. The internal structure of the majority of the BG forms a single canoni-

cal circuit (Fig 1.A), massively replicated in different scales. Macroscopically, it is part of a

complex set of parallel loops that involve the thalamus, limbic regions and almost all major

regions of the cortex including sensory, motor and associative areas [8, 108]. However, at the

level of the BG, these loops can be further broken down into parallel microscopic channels

that involve the same canonical circuit and, with a small overlap, maintain the anatomical divi-

sion and somatotopic organization found in the cortex [19, 109, 110].

A widely accepted hypothesis is that these microscopic channels represent different com-

peting “action requests” [33] that originate from the cortex. These requests are processed by

the BG circuit, which, under some conditions [106], is able to select the most salient (or

urgent) potential action [13, 19, 111].

Along these lines, the model presented here comprises six neural populations that corre-

spond to the four major nuclei of the biological BG and form the canonical circuit described

above. These include the striatum and the subthalamic nucleus (STN), the two main input

structures in the BG, the external part of the globus pallidus (GPe), as well as the substantia

nigra pars reticulata (SNr), one of the two output structures of the BG. Furthermore, the effect

of the pars compacta part of the substantia nigra (SNc) is realized through the concentration of

the neurotransmitter dopamine (DA) in the different parts of the network (green colour in

Fig 1.A).

The internal structure of the striatum has been modelled using three different groups that

correspond to its three major neural populations. The first two groups constitute the two cate-

gories of medium spiny-projection neurons (MSNs), divided based on the dominant type of

their dopamine receptors, which belong either to the D1- or D2-like families. Depending on

their category, these neurons are either enhanced (MSND1) or depressed (MSND2) by the pres-

ence of dopamine. They have been predicted to comprise the 99% of the striatal volume [112],

a number that was also maintained here.

Finally, the remaining 1% of the striatum is occupied by fast-spiking gabaergic interneurons

(FSIs) that are affected by both types of dopamine receptors and are highly interconnected

with both electrical and GABAergic synapses. Despite their small concentration, FSIs have a

great influence on the rest of the striatum, and it has been shown that inhibition from a single

FSI cell is able to block action potentials in large numbers of MSNs [113].

To estimate the number of neurons within each nucleus, we kept the same ratios of neurons

found in rat BG [114]. The final numbers can be found in Table 1 and result in a total of 9586

neurons that form the BG network. The probability for a connection between two neurons

PX−Y depends on the pre- (X) and post-synaptic (Y) nuclei and can be found in the same table.

The values of these probabilities were inferred by the same method that was used for the ran-

dom model of striatum in [23]. For connections that involve only striatal neurons, the required

data was obtained by the spatially embedded model in [112], while the model in [22] was used

for any other connection.

Lateral inhibition. Within each nucleus in our model, there are three largely isolated

subgroups that correspond to three microscopic channels of the BG circuit. As mentioned

before, the BG preserves the anatomical organization of their cortical inputs, thus connections

between nuclei are mainly topographic and influence only the same channel in the target

nucleus. As an exception, the STN glutamatergic efferents cause diffuse excitation [111],

Cortical oscillations and the basal ganglia

PLOS ONE | https://doi.org/10.1371/journal.pone.0189109 December 13, 2017 19 / 40

https://github.com/zfountas/basal-ganglia-model
https://github.com/zfountas/basal-ganglia-model
https://doi.org/10.1371/journal.pone.0189109


equally distributed across adjacent channels. In addition, evidence for local axon collaterals in

GPe [116] and SNr [117] suggests that lateral inhibition in these structures also spans to neigh-

bour functional subdivisions, and thus, it is also considered diffuse.

The striatum, on the other hand, has more complicated intrinsic connectivity which arises

from both its enormous size and the extensively overlapping network of axon collaterals [118,

119]. A large debate has been provoked regarding its connectivity structure and computational

function. The “domain” theory [120] suggests that the striatum is divided into groups, or

domains, of highly inter-connected neurons that form local winner-takes-all elements, while

more recent studies show that striatal lateral connectivity is weak and sparse, and indicate that

the striatal computational element should be spread across the MSN network [112, 121].

Here we use two different probability values Pint and Pext that represent lateral connections

within and between striatal channels respectively, thus allowing both views of localized and

sparse connectivity to be tested. To calculate the values of these probabilities for each type of

striatal local connection we generated a spatial model of two adjacent striatal microscopic

channels and calculated the internal and external mean connection probabilities. Assuming

that all neurons of a single channel are limited within a spherical boundary, the radius of this

sphere can be found from R ¼ 3V
4p

� �1=3
, where V ¼ Nch

84900
mm3 is the simulated striatal volume

(since in 1mm3 there are 84,900 neurons [112]) and Nch = (NMSN + NFSI)/3 is the number of

neurons within this sphere. For the values of NMSN and NFSI that are given in Table 1,

R = 205.8μm3.

The estimated probabilities, which are also shown in the same table, where found after the

calculation of the average number of contacts within and between these two adjacent areas,

using the distribution of expected number of intersections with respect to the distance between

the somas of two neurons, in [112].

Table 1. Network parameters.

Parameter Source Parameter Source

NMSN = 2790000 × 0.99/S [20, 114] PCtx−STN = 0.03 [23, 112]

NFSI = 2790000 × 0.1/S [20, 114] PCtx−MSN = 0.084 [23, 112]

NGPe = 46000/S [114] PCtx−FSI = 0.084 **

NSTN = 13600/S [114] PSD1−SNr = 0.033 ***

NSNr = 26300/S [114] PSD2−GPe = 0.033 ***

NTi
= 1000 Assumed PSTN−SNr = 0.3 ***

RGPeA
= 0.0405 [30, 69] PSTN−GPe = 0.3 ***

RGPeB
= 0.85 [69] PGPe−STN = 0.1 ***

RGPeC
= 0.1095 [30, 69] PGPe−SNr = 0.1066 ***

RRB = 0.6 [115] PGPe−GPe = 0.1 ***

RLLRS = 0.25 [115] PSNr−SNr = 0.1 Assumed

RNR = 0.15 [115] PintMSN� MSN ¼ 0:0718 ****

S = 300 * PextMSN� MSN ¼ 0:0082 ****

PintFSI� MSN ¼ 0:2925 **** PintFSI� FSI ¼ 0:5864 ****

PextFSI� MSN ¼ 0:0314 **** PextFSI� FSI ¼ 0:0092 ****

* Assumed to be adequate for 3 channels

** Same as PCtx−MSN [112]

*** Calculated keeping the ratios from [22]

**** Calculated using probability distributions from [112]

https://doi.org/10.1371/journal.pone.0189109.t001
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In addition, the striatum was shown to be asymmetric with respect to inhibition that

MSND1 and MSND2 neurons receive, both in conductance strength and number of connec-

tions. Local MSN collaterals have fewer and weaker connections that arrive to striatopallidal

neurons than the opposite [122, 123], while FSIs also target mostly MSND1 [124] neurons. This

strong inhibition of the direct pathway compensates for the over-excitement of these cells via

D1 receptor activation, and thus brings more balance to the intrinsic activity of the striatum.

To account for the effect of the above asymmetries, the probabilities in Table 1 change

to PD2−D1 = PMSN−MSN
� W, PD1−D2 = PMSN−MSN

� (2 − W), PFSI−D1 = PFSI−MSN
� W and

PFSI−D2 = PFSI−MSN
� (2 − W), where W defines the trade-off of inhibition between the direct

and indirect striatal neurons. The default value used is W = 1.5 which is consistent with pre-

vious studies [34, 122, 124]. Finally, changes in maximum conductances G of collateral MSN

connections were inferred from [122]. For recurrent MSND1 connections G = 1.2 � GSD−SD

and for MSND2 to MSND1 connections G = 0.4 � GSD−SD.

Mathematical models

Neuron dynamics. The electrical activity of individual cells of the BG was simulated using

the single-compartmental “simple model” that was proposed by [29, 125]. In this phenomeno-

logical model, the membrane potential v of the neuron is governed by the equation

C
dv
dt
¼ kðv � vrÞðv � vtÞ � uþ I þ CN ð0; s2Þ ð2Þ

where I is the dendritic and synaptic current, C the membrane capacitance of the cell body, vr

the resting membrane potential, vt the instantaneous threshold potential, k an abstract parame-

ter and u is an abstract recovery variable with

du
dt
¼ a b v � vrð Þ � uð Þ ð3Þ

In this equation, a and b are two additional abstract parameters of the model. Finally, the neu-

ron is said to fire a spike when its membrane potential exceeds the threshold value vpeak. In this

case, the variables of the model reset to general cation currents

v! c

u! uþ d
ð4Þ

where c and d are further abstract parameters.

If tuned properly, this model is able to display the known types of dynamical behaviour of

all cortical and sub-cortical neural cells, and to quantitatively reproduce their sub-threshold,

spiking, and bursting activity in response to pulses of DC current [125]. In addition, the recov-

ery variable in (3) could be tuned to represent a specific mechanism of an ion channel such as

the calcium-activated potassium channels in STN neurons [126] as will be shown in section

STN model.

The Eqs 2 and 3 can be reduced to a simpler form, originally presented in [29] and widely

used, which contains only two independent parameters. However, the choice of the current

extended form is considered more appropriate for this study, since the majority of the parame-

ters and the variables here acquire biophysical meaning, which simplifies the complexity of cal-

culations and tuning. For example, electric potentials, such as v, are represented in mVolts and

the input current I in pAmperes.
Heterogeneity of the neurons in the network is achieved by the stochastic perturbation

of the capacitance C of each neuron by a small random factor, sampled from a Gaussian
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distribution with mean Cμ and standard deviation 0.1 × Cμ. In addition, every neuron includes

a general Gaussian noise factor N ð0; s2Þ, added to its membrane potential, with a constant

standard deviation (σ in Eq 2), which depends on the type of the neuron. This term represents

the effect of external afferents that are not part of the this model and are considered stable dur-

ing our simulations.

Synaptic dynamics. Neurons in the network are connected with up to three different cate-

gories of synapses, depending on their position and type. A synapse can be either simple chem-

ical, chemical plastic or electrical. The simple case of a static chemical synapse is implemented

with a standard conductance-based model [127] with different parameter values for different

neurotransmitters and connectivity. At any given point of time t, the current of each synapse

can be described with

Is
ijðtÞ ¼

Gije� ðt� ðtiþlÞÞ=tsðEs � vjÞ if t � ðti þ lÞ

0 if t < ðti þ lÞ

8
<

:
ð5Þ

where ti is the time of last firing of neuron i, λ is the delay of the synapse, Gij is the maximum

conductance of the synapse, i.e. the weight of this connection, s is the type of the synaptic

receptor, Es is the synaptic reversal potential and τs the synaptic decay time constant. At the

arrival time (ti + λ), a new spike propagates to the post-synaptic neuron j, the synaptic current

jumps to the value gij and finally decays exponentially with rate τ.

The effect of different pairings of neurotransmitter and postsynaptic receptor can be

expressed by means of combinations of (Es, τs), with the latter representing the duration of a

neurotransmitter re-uptake and dispersal. The dominant excitatory neurotransmitter in this

simulation is glutamate, which corresponds to AMPA and NMDA postsynaptic receptors,

while the corresponding inhibitory neurotransmitter, γ-Aminobutyric acid, is thought to bind

to GABAA receptors. Following the methodology in [19], the inhibitory receptors GABAB are

not explicitly simulated, since they mainly evoke intracellular signal transduction in the post-

synaptic neuron instead of generating current [128].

Furthermore, certain types of synapses in the network are thought to be plastic (see Fig 1.A),

in order to simulate the effect of short-term facilitation and depression found in real BG con-

nectivity [129–131], but not simulated until recently [22]. In particular, striatal gabaergic effer-

ents to GPe and SNr have been shown to be facilitated in periods of MSN bursts [70, 129, 130],

while GPe-SNr synapses have the opposite effect [129]. The remaining SNr afferents that origi-

nate from STN have been predicted in [22] to also be depressing, a mechanism that was later

found to be regulated by GABAB receptors [132]. Finally, short-term effects of plasticity have

been reported to exist between more structures in the BG but in some cases without a clear

facilitating or depressing pattern (e.g. GP-GP recurrent synapses [130]) and in other cases very

slowly activated (e.g. GPe-STN synapses [131]). Hence, these chemical synapses have been

treated as fixed.

In the case of a plastic synapse, two extra variables, uþs and x�s , are used to calculate the level

of facilitation and depression respectively [133]. Their dynamics are governed by

td
dx�s
dt
¼ 1 � x�s ð6Þ

tf
duþs
dt
¼ U � uþs ð7Þ

where τf and τd define the exponential decay time constant, and the abstract parameter

U 2 [0, 1] controls the amount of synaptic facilitation. At the time t = ti + λ of a postsynaptic
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event, the two plasticity variables update to

x�s  x�s � ð1 � uþs Þ ð8Þ

uþs  uþs þ U � ð1 � uþs Þ ð9Þ

with 0< U< 1, and the final synaptic current that arrives at the postsynaptic neuron is given

as

Is
ijðti þ lÞ ¼ uþs x�s gijðEs � vjÞ ð10Þ

The values for the parameters U, τrec and τfac can be found in [22]. Although the model of

plasticity used in this study was more complex than Eqs (6–10), our synaptic models resulted

to almost identical relations between synaptic IPSP amplitudes and spike frequencies as in [22]

(See S4 Fig).

Finally, when two neurons i and j of the network have a direct electrical connection, or gap

junction, they both receive an extra current

Igap
ij ¼ ggapðvgap � vi=jÞ ð11Þ

where ggap is the conductance (weight) of the gap junction and vgap represents the potential of

an extra mutual compartment at the point of the interaction [23]. This potential links the two

neurons via the equation

tgap

dvgap

dt
¼ vi þ vj � 2vgap

ð12Þ

and provides a force that decreases the difference between the neuron voltages with rate τgap.

All things considered, the total input I that a neuron receives via Eq (2) has the general

form

I ¼ Iampa þ BðvÞInmda þ Igaba þ Igap þ Ispon ð13Þ

where Ix ¼
P

iI
x
ij is the sum of all synapses of type x, BðvÞ ¼ 1

1:0þ0:28�e� 0:062v is the voltage-depen-

dent magnesium plug in the NMDA receptors [23] and Ispon is an extra spontaneous current

that is used to fit each neuron model to both in vitro and in vivo neurophysiological

recordings.

Neuromodulation. Neurons in the BG receive dopamine from the SNc which can affect

the impact of the synaptic current of certain neurons as well as the internal dynamical behav-

iour of others. The neurons and synapses that are affected by dopamine are depicted in

Fig 1.A. Although the level of dopamine is considered to have a single fixed value throughout

the system, we have used two variables d1 = d2 that correspond to the D1- and D2-like receptor

families respectively, and influence the system differently.

To account for the dopaminergic effects, the synaptic input (13) as well as the neuron Eqs

(2 and 3) change according to the Table 2.

Cortical input. The BG receive their main input from pyramidal glutamatergic projec-

tions from layer V of different areas of the cortex as well as the Thalamus [119]. Since the

circuitry modelled here captures connectivity principles existing in most of the BG parallel lay-

ers [8], the main focus of the cortical simulation lies on the oscillatory nature of these inputs

rather than region-dependent characteristics. Hence, thalamic input is omitted and cortical

afferents are represented by abstract isolated neural ensembles Ti, each realized through 1000
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inhomogeneous poison event generators with rate parameter

liðtÞ ¼ Aicosð2pfit þ �iÞ þ Fspon
i ð14Þ

where fi is the frequency, Ai is the amplitude, ϕi 2 [0, 2π) the phase and Fspon
i the tonic sponta-

neous firing rate of the oscillatory ensemble Ti. Each of these ensembles is considered to proj-

ect afferent axons in a single channel (with the same index i) of the BG circuitry, without

affecting the rest of the cortical activity.

Base firing rate of a tonic cortical ensemble is thought to have a mean value of 3 spikes/sec,

equal to the non-oscillating spontaneous activity �Fspon
i , while a phasically-active ensemble oscil-

lates with amplitude Ai = 7 spikes/sec and thus peaks at Fspon
i þ Ai ¼ 10 spikes/sec.

This behaviour is consistent with recordings in corticostriatal pyramidal cells of motor [35,

134] and sensory [135, 136] cortices, two of the regions that are greatly involved in sending

excitatory inputs to the BG.

Neural parameter estimation

Phenomenological spiking neuron models offer a computationally cheap and powerful

method for neural simulations, whose accuracy, however, depends on the quality of fine-tun-

ing of the model’s parameters. This process can be very difficult for models that contain a large

number of parameters that need to be adjusted or for real neurons with a large repertoire of

behaviours that need to be replicated, and for this reason various methods have been proposed

(for a review see [137]). To fine-tune the neurons in GPe, STN and SNr, we employed a hybrid

method, presented in [138], that combines a global and a local optimization algorithm to cre-

ate models that approximate the neural behaviour recorded in empirical studies. In particular,

as an objective function, we took into account the major electrophysiological properties of

these neurons (e.g. the action potential amplitude and width, the resting and threshold poten-

tials, the rheobase current, etc), as well as their steady-state frequency-current (F-I) and volt-

age-current (V-I) relations.

Due to great similarities of the overall BG dynamical behaviour across species, capturing

which is the primary goal of this work, animal studies were taken into account in cases where

human studies do not provide enough information on the electrophysiology of individual BG

cells. Hence, although the resulting network may fail to capture some of the underlying physio-

logical mechanisms, it was able to closely reproduce known rich dynamics of the neurons

located in the BG nuclei, as shown in detail below.

GPe model. Although GPe neurons in primates have been shown to exhibit two spiking

patterns (HFP and LFB neurons [69]), it is not yet clear whether the same classification holds

Table 2. Neuron equations and synaptic input with dopamine.

MSND1 vr vr(1 + β1d1) β1 = 0.0289

d d(1 − β2d1) β2 = 0.331

Inmda(1 + β3d1) + Iampa + Igaba β3 = 0.5

MSND2 k k(1 − β1d2) β1 = 0.032

Iampa(1 − β2d2) + Inmda + Igaba β2 = 0.3

FSI vr vr(1 + β1d1) β1 = 0.1

Iampa + Igaba(1 − β2d2) β2 = 0.625

STN (Iampa + Inmda)(1 − β1d2) + Igaba(1 − β2d2) β1,2 = 0.5

GPe (Iampa + Inmda)(1 − β1d2) + Igaba(1 − β2d2) β1,2 = 0.5

Equations and parameters are taken from [19] and [23].

https://doi.org/10.1371/journal.pone.0189109.t002
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for their electrophysiological properties, due to the lack of intracellular recordings in primate

GPe [30]. This problem can be bypassed by studying the rodent globus pallidus (GP), which is

believed to be homologous to the primate and human GPe [139] with retained firing patterns

[140]. In [30], GP neurons were examined intracellularly, in order to draw conclusions about

the analogous structure in primates, and a different three-fold classification of the GPe neu-

rons was proposed [30, 141]. In this work, we followed the same approach and we created

three different models of GPe neurons that correspond to the three different types of GP neu-

rons in [30].

Table 3 includes all intrinsic parameters and Fig 7 illustrates the basic properties of the

three resulting neuron models that show distinct electrophysiological characteristics and

match to the literature. From a behavioural perspective, all GPe neurons have similar rheobase

currents but only type B neurons are able to evoke rebound firing (Fig 7.E). Furthermore, the

firing rate of type B neurons increases almost linearly with increasing input rate, while types A

and C peak at around 10 and 14 spikes/sec respectively.

Interestingly, the behaviour of type B neurons closely resembles the HFP cells in GPe while

the other two types behave very similarly to LFB cells. Taking this into account, in this study

we consider GP neurons of type B as HFP neurons found in primates and neurons of types A

and C as LFB. Hence, to determine the percentage of each type of neurons in our modelled

GPe, we kept the ratio of HFP:LFB found in [69] (NHFP = 85% and NLFB = 15%). In addition,

to further break down LFB neurons into types A and C, we used an approximation based on

the number of neurons examined in [30], where n = 14/76 and n = 38/76 for type A and C neu-

rons respectively. The final ratios of GPe neurons are given in Table 1.

SNr model. GABAergic SNr neurons show relatively simple, agile behaviour, that can be

captured by a single set of parameters. They are able to spontaneously fire high-frequency

spikes that quickly turn into bursts or silence via either excitation or inhibition respectively, by

the three basic BG pathways (For review see [146]). This behaviour is facilitated by their ability

to emit rebound spikes [145] whose intensity changes with respect to the level of hyperpolari-

zation. However, these cells are not able to directly influence the internal dynamics of the BG

since they project only to the thalamus and dopaminergic neurons.

The majority of the electro-physiological data used for tuning the SNr neurons here were

extracted from a study in rat’s SNr [32] which served as the basis of our model. Thus, data

Table 3. GPe and SNr neuron parameters.

GPe SNr

Parameter Type A Type B Type C source source

vr (mV) -50.7 -53 -54 Taken from [30] -64.58 The value from [142] ±5

vt (mV) -42 -44 -43 Taken from [30] -51.8 Taken from [32]

vpeak (mV) 38 25.0 34.5 Taken from [30] 9.8 Calculated from [32]

Cfig (pF) 55 68 57 Tuned manually 172.1 Tuned manually

Csim (pF) 70 ± 16.5 68 ± 16.4 65 ± 16 Optimized 200 ± 44.5 Optimized

a 0.29 0.0045 0.42 -”- 0.113 -”-

b 4.26 3.895 7 -”- 11.057 -”-

c (mV) -57.4 -58.36 -52 -”- -62.7 -”-

d 110 0.353 166 -”- 138.4 -”-

k 0.06 0.943 0.099 -”- 0.7836 -”-

Ivitro (pA) 107 52 187.5 -”- 150 -”-

Ivivo (pA) 167 64 237.5 Tuned manually 235 Tuned manually

σ (mV) 3 3 3 -”- 5 -”-

https://doi.org/10.1371/journal.pone.0189109.t003
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from other experimental studies were selected only if consistent with the former. The parame-

ters of the resulting model are shown in Table 3 and its final behaviour is illustrated in Fig 7.

STN model. Neurons in STN can be categorized according to their response after long

hyperpolarization, since they exhibit three distinctively different behaviours [53, 115, 126].

The majority type of neurons elicits short rebound bursts (RB), as a response to pallidal

Fig 7. Properties of BG tuned neurons. A: Steady-state F-I curves of the tuned models (solid lines). Bi-iii:

V-I curves of the same neurons. In both cases, the coloured dots represent real in vitro recordings. STN: Real

F-I data obtained from [126] and V-I data provided by Daisuke Kase and Keiji Imoto. GPe: Real data of the

three neuron types retrieved from rat slices in [30]. SNr: Real recordings were extracted from [32] and are

compatible with later observed slope (12.8 + −1.13 spikes/sec per 100 pA) in [143], while the neuron’s

rheobase current was taken from [144] and it is around −65 pA. C: Better fit of RB neurons to the real F-I curve

is achieved by applying constant Gaussian noise with σ = 1.5 mV. D: Responses of STN neurons to

hyperpolarizing current steps of −100, −200 and −400 pA. E: Responses of GPe neurons to hyperpolarizing

current reveals rebound behaviour in GPeB cells. F: Neuron response for hyperpolarizing current −0.6 nA

matches recordings in [145]. G: Phase portait of the SNr neuron in (F). H: Box plot of the AHP amplitudes for

varying capacitance C, along with the real mean and std for each neuron type retrieved from the same study.

https://doi.org/10.1371/journal.pone.0189109.g007
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GABAA inhibition [115], while a quarter of the STN neurons respond with long-lasting

rebound spikes (LLRS) at lower firing rates [53]. Finally, a small amount of neurons do not

produce any rebound effect and thus can be called no-rebound (NR) neurons.

When depolarized above the rheobase level, STN neurons exhibit a more homogeneous

behaviour, with a sigmoid F-I relation [126, 147] and they are able to fire at high firing rates of

more than 100 spikes/sec [126]. Their distinct patterns of rebound response, as well as the sig-

moid shape of their F-I relation, are mainly regulated by calcium via voltage-gated calcium

channels (Ca2+) that activate in low thresholds [53, 115, 147], as well as a type of Ca2+-activated

K
+

ion channels (SK KCa channels) [126].

Our approach here was to model the three different STN types with different sets of equa-

tions and to introduce one additional recovery variable (u2) to Izhikevich equations, as sug-

gested in [125] and [138], to account for the effects of the aforementioned ionic mechanisms,

without losing the basic repertoire of dynamical behaviours that are supported with the basic

recovery variable u = u1.

With the addition of u2, Eqs (2–4) change to

C
dv
dt
¼ kðv � vrÞðv � vtÞ � u1 � w2 � u2 þ I þ CN ð0; s2Þ ð15Þ

du1

dt
¼ a1ðb1ðv � vrÞ � u1Þ ð16Þ

du2

dt
¼ a2ðGb2ðv � vr2Þ � u2Þ ð17Þ

For NR neurons G is set to be equal to 1, while for RB and LLRS neurons G = H(vr2 − v) is

the heaviside step function. This makes vr2 to act as a threshold below which, the recovery vari-

able u2 activates, causing rebound responses.

Furthermore, when v� vpeak + Uu2, the model variables reset to

v ¼ c � Uu2 ð18Þ

u1 ¼ u1 þ d1 ð19Þ

u2 ¼ u2 þ d2 ð20Þ

revealing two more mechanisms of the new recovery variable.

Besides hyperpolarization, calcium-related ion channels also activate after the rising phase

of APs, influencing their shape, as well as the F-I relation of the neuron, therefore d2 6¼ 0. One

of their effects, particularly visible during rebound bursts [126], is to decrease the size of the

APs. In the equations above, this effect is controlled by the term U. Since d2 6¼ 0, the value of

u2 can increase dramatically at high firing rates, causing the AP height to converge to a zero

value. Hence, to avoid this phenomenon, we set

U ¼
1

w1ju2j þ
1

w1

ð21Þ

which minimizes the impact of u2 to the AP size when |u2| >> 0.

Like in the case of GPe neurons, to determine the ratios of each type of neurons in our

modelled STN, we used a rough approximation based on the number of neurons examined in
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[115]. In this study, 17 out of 20 neurons were found to elicit rebound bursts, 5 of which had a

long duration and thus can be considered as LLRS neurons. The final ratios of STN neurons

are given in Table 1.

The parameters of the final optimized models are shown in Table 4 and their properties are

illustrated in Fig 7, where the strengths and weaknesses of each model are clear. While all neu-

rons reproduce the rebound activity of their corresponding biological counterparts, only RB

neurons were successfully tuned to follow the sigmoid pattern of the STN F-I relations. How-

ever, this was adequate to prevail the behaviour of the STN nucleus, since these neurons consti-

tute its vast majority.

All things considered, neuron optimization was conducted successfully for the purposes of

this study, resulting to models with realistic dynamical behaviour and electrophysiological

properties. However, for a more accurate result, that focuses on the complex dynamics of indi-

vidual neurons in STN, further work is required. This would involve optimization based on

broader criteria, such as the distinction between transient and steady-state F-I and V-I rela-

tions, which was however impossible here, due to the lack of consistent electrophysiological

data.

Connectivity estimation

The transmission delays of impulses across the synapses of our system were taken from [19],

and their values are shown in Table 5. In this section, we present the methodology we used, in

the form of an algorithm, to estimate the maximum synaptic conductances Gi of the network,

as well as two neural parameters (the external spontaneous current Ispon = Ivivo and noise σ)

based on information about the BG connectivity and firing rate taken from the literature.

The initial value of the noise factor σ needed to be increased significantly for neurons in the

MSN, FSI and STN, in order to simulate the effect of the different inputs to the BG from exter-

nal structures that are not modelled here (e.g. other areas of the cortex). Also, a similar increase

Table 4. STN neuron parameters.

Parameter RB LLRS NR source

vr(mV) -56.2 -56.2 -58.5 [148]

vt(mV) -41.4 -50 -43.75 [149]

vpeak(mV) 15.4 15.4 15.4 [149]

Csim(pF) 23 ± 6.4 40 ± 8.8 30 ± 8.4 Optimized

Cfig(pF) 23 40 23 -”-

a1 0.021 0.05 0.44 -”-

b1 4 0.2 -1.35 -”-

c(mV) -47.7 -60 -52.34 -”-

d1 17.1 1 17.65 -”-

a2 0.123 0.001 0.32 -”-

b2 0.015 0.3 3.13 -”-

d2 -68.4 10 92 -”-

vr2 (mV) -60 -60 -43.2 -”-

k 0.439 0.3 0.105 -”-

w1 0.1 0.01 0.001 -”-

w2 0 0 1 -”-

Ivitro (pA) 56.1 25 -1 -”-

Ivivo (pA) 56.1 8 -18 Tuned manually

σ (mV) 0.5 0.5 0.5 -”-

https://doi.org/10.1371/journal.pone.0189109.t004
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was necessary for GPe and SNr neurons, to account for inputs from other areas of STN which

might correspond to different tonically-active microscopic channels. Finally, the spontaneous

current Ivivo was also altered for each BG nucleus, in order to approximate their basal firing

rates, when all synaptic inputs are blocked.

This process consisted of the following steps, that are specialized for each afferent structure

and aim to approximate results of empirical experiments.

NMDA:AMPA ratios. Initially, the ratio of the two neurotransmitters used to model the

glutamatergic synapses of our model needed to be determined for all excitatory synapses

shown in Fig 1. As discussed in [112] and [23], it has been shown that FSI neurons receive

only AMPA excitatory input from the cortex. Götz et al. [151] investigated the effect of AMPA

and NMDA receptors in the rest of the glutamate-based synapses of the BG and found that

they both play an important role in the excitation of the BG neurons. To approximate the

NMDA:AMPA conductance ratios, we considered the ratios of the peak current for each type

of receptor, which was obtained in [151] using glutamate in nucleated patches of BG cells. The

final values for each ratio are given in Table 5. Hence, to estimate connectivity weights of the

excitatory synapses we tuned only one conductance (AMPA) which was used to infer the cor-

responding NMDA values.

Striatum. This was the first structure whose connectivity was tuned, since its activity does

not depend on any other BG nuclei according to our model’s architecture. The dominant stria-

tal cell, the MSN, fires at 0.01–2.0 spikes/sec in basal tonic mode and 17–48 spikes/sec in peri-

ods of high activation or bursting [22, 153]. Also, in vivo mouse recordings have found that the

basal firing rate FSIs in the striatum is between 10–15 spikes/sec while it increases up to 60–80

spikes/sec during behavioral tasks [154, 155].

Table 5. Synaptic parameters.

Connection λ (ms) G (nS) G0 (nS) E (mV) τ (ms)

Ctx!a MSND1/D2 10 0.6 - 0 * 6 [23, 150]

Ctx!n MSND1/D2 ×0.5 [150] - 0 * 160 [23, 150]

Ctx!a FSI 10 0.55 - 0 [23, 150] 6 [23, 150]

Ctx!a STN 2.5 0.388 - 0 * 2 *

Ctx!n STN ×0.6 [151] - 0 * 100 *

STN!a SNr 1.5 14 ** 49.5 0 * 2 *

STN!n SNr ×0.42 [151] 20.8 0 * 100 *

STN!a GPe 2 1.447 - 0 * 2 *

STN!n GPe ×0.36 [151] - 0 * 100 *

SD1!g SNr 4 4.5 156.3 -80 * 5.2 [22, 129]

SD2!g GPe 5 5.435 21.6 -65 [22] 6 [22]

GPe!g STN 4 0.518 - -84 [22, 152] 8 [22, 152]

GPe!g SNr 3 93 603.9 -80 * 2.1 [22, 129]

GPe!g GPe 1 0.765 - -65 [22] 5 [22]

SNr!g SNr 1 0.2 - -80 * 3 *

MSN!g MSN 1 0.75 [23, 121] - -60 [23, 150] 4 [23, 150]

FSI!g FSI 1 1.1 [23, 124] - -60 [23, 150] 4 [23, 150]

FSI!g MSND1/D2 1 3.75 [23] - -60 [23, 150] 4 [23, 150]

* General value for this parameter [127].

** Local optimization.

Values of G without explanation were obtained with manual optimization.

The arrows!X represent synapses that express the neurotransmitter AMPA, NMDA and GABAA, for X = a, n and g respectively.

https://doi.org/10.1371/journal.pone.0189109.t005
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To tune our striatal neurons, we employed only the model of striatum, striatal afferents and

internal striatal connectivity, we initially set all cortical firing rates to be 3 spikes/sec and then

we changed T1 to 10 spikes/sec to account for tonic and bursting modes respectively. The

parameters that were tuned are σmsn, σfsi, Gctx−msn and Gctx−fsi.

STN. The basal firing rate of STN is around 10 spikes/sec and increases 100% without the

influence of GPe [31]. In periods of high activation, STN neurons show mixed dynamical

behaviour and fire at around 30–50 spikes/sec [15]. Hence, to tune the network properties of

STN, we followed the next two steps:

1. Similarly to the previous case, we used only the model of STN and tuned parameters related

to cortical afferent axons (Gctx−stn, σstn and Pctx−stn) in order to make it fire at around 20

spikes/sec in tonic mode (without GPe inhibition) and around 40 spikes/sec in periods of

high activation.

2. We then forced GPe to fire at 30 spikes/sec (by using a poisson process instead of the neu-

ron equations) and tuned Ggpe−stn to make STN fire at around 10 spikes/sec.

An adequate result was achieved by setting the conductance strength of the cortico-striatal

afferents, for both AMPA and NMDA receptors to 0.25 nS, decreasing the STN noise to

σstn = 0.5 mV and setting Pctx−stn = 3% which results to 30 spikes/sec arriving to each STN neu-

ron in the tonic mode and 100 spikes/sec in periods of high activation.

GPe. Recordings of the GPe have shown that its basal firing rate is around 30 spikes/sec

[22]. After STN lesions, GPe’s activity decreases 50% [156] while it increases 55% without stria-

tal inhibition and local collaterals [157]. The parameters that influence the basal firing rates

and connections between STN and GPe and need to be tuned are Ivivo−gpe, Gstn−gpe, Gmsn−gpe,

Ggpe−gpe and σgpe. The first parameter has been already optimized in order to make each type of

GPe neurons to be close to the critical state between their two firing modes (see Neural param-

eter estimation). Since the remaining four-dimensional parameter space is complex for hand-

tuning, we employed the classical Nelder-Mead method for local search [158], with the follow-

ing fitness function:

1. Use GPe (without the Striatum and local collaterals) and force STN to fire at 10 spikes/sec.

Return |FR(GPe) − 46.5|.

2. Turn the striatum and local GPe collaterals on and return |FR(GPe) − 30|.

3. Turn STN off and return |FR(GPe) − 15|.

SNr. Different reports show SNr to fire at rates between 22–29 spikes/sec, when the BG

operate normally (STN at 10, the striatum around 1 and the GPe around 30 spikes/sec) [22,

159–161]. Also, without the influence of the GPe, SNr is shown to increase its firing rate more

than 300% [22, 157], while without STN, the firing rate is decreased 50% [156].

To approximate the effect of the incoming synapses to SNr, we used again the local search

method described above, in the parameter space {Ivivo−snr, Gstn−snr, Gsnr−snr, Gmsn−snr}. The fit-

ness function in this case includes the following steps:

1. Turn off GPe, and reduce maximum conductance of STN-SNr connections to Gstn−snr/2.

Return |FR(SNr) − 76.5|.

2. Turn off STN and force GPe to fire at 15 spikes/sec. Return |FR(SNr) − 12, 5|.

The two-fold reduction of STN maximum conductances was necessary to simulate the

effect of the depressive STN synapses to SNr [162], since its firing rate will be increased 100%
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without the influence of GPe. As the final step, using the whole BG model, we hand-tuned

Ggpe−snr such that SNr fires at around 25.5 spikes/sec, which is the average value of the different

findings.

Short-term plasticity. The above procedure results in a static model of the BG connectiv-

ity, where the strength of all synapses remains fixed for the whole duration of a simulation. Its

behaviour represents the stead-state tonic mode of the BG circuit, where synaptic conduc-

tances G have already been modulated with respect to the tonic firing rate of the pre-synaptic

neuclei.

To find the initial conductance of each synapse G0, we need to calculate the degree by

which it changes in tonic mode. If STFX(f) encodes the conductance change due to short-term

facilitation for a nucleus X and firing rate f, and STDX(f) the corresponding relation for

depression, then the current synaptic conductance can be found as GX
0
ðf Þ ¼ GX=STFXðf Þ or

GX
0
ðf Þ ¼ GX=STDXðf Þ � U for facilitating or depressing synapses respectively. Hence, from S4

Fig: STFSD1(1.1) = 1.5, STFSD2(1.1) = 1.05, STDGPe(30) = 0.154 and STDSTN(10) = 0.283. The

final conductances G0 are given in Table 5.

In conclusion, estimating connectivity between and within the BG nuclei comprises a semi-

automated procedure that resulted in a model with realistic firing rates in both tonic mode and

during periods of high cortical activation (Fig 1.B and 1.C). This procedure should be followed

again, in case that a different number of channels or neurons within a channel is chosen.

Supporting information

S1 Fig. Connectivity of the STN in the phasic mode. The STN sends diffuse connections to

the GPe that spread across all simulated neighbouring channels. The transparency of the

arrows represents the firing rate of the source structure.

(EPS)

S2 Fig. Transfer entropy for various delays. Animated visualization of transfer entropy

between the BG structures and the cortex for different values of the time delay of information

flow. SD1/2: MSN neurons with d1/2 dopamine receptors respectively, T2: Phasically-active

cortical ensemble.

(GIF)

S3 Fig. Impact of the cortical phase offset to the TE of GPe and STN in different frequency

ranges. Inner circle: Normalized TE of GPe (A) and STN (B) afferents versus efferents across

phase offsets ϕ. Outer circle: Normalized TE of the indirect (A), hyper-direct (B) and direct

(C) pathways as defined in Fig 5.

(EPS)

S4 Fig. Effect of short-term plasticity in synaptic conductances. Ratio between steady-state

conductance G and the initial value G0 for different pre-synaptic spike frequencies, and for all

plastic connections of the BG circuit.

(EPS)
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151. Götz T, Kraushaar U, Geiger J, Lübke J, Berger T, Jonas P. Functional properties of AMPA and

NMDA receptors expressed in identified types of basal ganglia neurons. The Journal of neuroscience.

1997; 17(1):204–215. PMID: 8987749

152. Baufreton J, Atherton JF, Surmeier DJ, Bevan MD. Enhancement of excitatory synaptic integration by

GABAergic inhibition in the subthalamic nucleus. The Journal of neuroscience. 2005; 25(37):8505–

8517. https://doi.org/10.1523/JNEUROSCI.1163-05.2005 PMID: 16162932

153. Miller BR, Walker AG, Shah AS, Barton SJ, Rebec GV. Dysregulated information processing by

medium spiny neurons in striatum of freely behaving mouse models of Huntington’s disease. Journal

of neurophysiology. 2008; 100(4):2205–2216. https://doi.org/10.1152/jn.90606.2008 PMID: 18667541

154. Berke JD, Okatan M, Skurski J, Eichenbaum HB. Oscillatory entrainment of striatal neurons in freely

moving rats. Neuron. 2004; 43(6):883–896. https://doi.org/10.1016/j.neuron.2004.08.035 PMID:

15363398

Cortical oscillations and the basal ganglia

PLOS ONE | https://doi.org/10.1371/journal.pone.0189109 December 13, 2017 39 / 40

https://doi.org/10.1038/nn.2447
http://www.ncbi.nlm.nih.gov/pubmed/19915563
https://doi.org/10.1152/jn.00709.2009
http://www.ncbi.nlm.nih.gov/pubmed/20164400
https://doi.org/10.1007/s00422-008-0257-6
http://www.ncbi.nlm.nih.gov/pubmed/19011918
http://www.sciencedirect.com/science/article/pii/S0924819696800042
http://www.sciencedirect.com/science/article/pii/S0924819696800042
https://doi.org/10.1371/journal.pone.0045421
https://doi.org/10.1371/journal.pone.0045421
http://www.ncbi.nlm.nih.gov/pubmed/23028997
https://doi.org/10.1111/j.1469-7793.2000.t01-1-00291.x
https://doi.org/10.1111/j.1469-7793.2000.t01-1-00291.x
http://www.ncbi.nlm.nih.gov/pubmed/10970430
https://doi.org/10.1152/jn.00162.2011
http://www.ncbi.nlm.nih.gov/pubmed/21697445
https://doi.org/10.1016/S0306-4522(00)00046-4
https://doi.org/10.1016/S0306-4522(00)00046-4
http://www.ncbi.nlm.nih.gov/pubmed/10842015
https://doi.org/10.1523/JNEUROSCI.1475-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16148235
https://doi.org/10.1016/S0306-4522(96)00555-6
http://www.ncbi.nlm.nih.gov/pubmed/9130783
https://doi.org/10.1016/j.neuroscience.2011.07.061
http://www.ncbi.nlm.nih.gov/pubmed/21839148
http://www.ncbi.nlm.nih.gov/pubmed/10460267
https://doi.org/10.1016/j.neuropharm.2008.04.025
https://doi.org/10.1016/j.neuropharm.2008.04.025
http://www.ncbi.nlm.nih.gov/pubmed/18547595
http://www.ncbi.nlm.nih.gov/pubmed/9880580
https://doi.org/10.1152/jn.00335.2007
https://doi.org/10.1152/jn.00335.2007
http://www.ncbi.nlm.nih.gov/pubmed/17913980
http://www.ncbi.nlm.nih.gov/pubmed/8987749
https://doi.org/10.1523/JNEUROSCI.1163-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16162932
https://doi.org/10.1152/jn.90606.2008
http://www.ncbi.nlm.nih.gov/pubmed/18667541
https://doi.org/10.1016/j.neuron.2004.08.035
http://www.ncbi.nlm.nih.gov/pubmed/15363398
https://doi.org/10.1371/journal.pone.0189109


155. Berke JD. Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral

task performance. The Journal of Neuroscience. 2008; 28(40):10075–10080. https://doi.org/10.1523/

JNEUROSCI.2192-08.2008 PMID: 18829965
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