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Abstract

Hypertension is a major risk factor for ischemic cardiovascular disease and cerebrovascular 

disease, which are respectively the primary and secondary most common causes of morbidity and 

mortality across the globe. To alleviate the risks of hypertension, there are a number of effective 

antihypertensive drugs available. However, the optimal treatment blood pressure goal for 

antihypertensive therapy remains an area of controversy. The results of the recent Systolic Blood 

Pressure Intervention Trial (SPRINT) trial, which found benefits for intensive lowering of systolic 

blood pressure, have been debated for several reasons. We aimed to assess the benefits of treating 

to four different blood pressure targets and to compare our results to those of SPRINT using a 

method for causal inference called the parametric g formula. We applied this method to blood 

pressure measurements obtained from the electronic health records of approximately 200,000 

patients who visited the Mount Sinai Hospital in New York, NY. We simulated the effect of four 

clinically relevant dynamic treatment regimes, assessing the effectiveness of treating to four 

different blood pressure targets: 150 mmHg, 140 mmHg, 130 mmHg, and 120 mmHg. In contrast 

to current American Heart Association guidelines and in concordance with SPRINT, we find that 

targeting 120 mmHg systolic blood pressure is significantly associated with decreased incidence 

of major adverse cardiovascular events. Causal inference methods applied to electronic methods 

are a powerful and flexible technique and medicine may benefit from their increased usage.
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1. Introduction

1.1. Global Burden of Hypertension

Ischemic cardiovascular disease and cerebrovascular disease are the primary and secondary 

causes of global disease burden respectively, both in the United States and the rest of the 

world (1). Hypertension (HTN), also known as elevated blood pressure (BP), is a primary 

risk factor for both diseases (2). Additional evidence continues to accumulate for the role of 

HTN as a central risk factor for a wide variety of chronic diseases such as dementia (3) and 

type 2 diabetes mellitus (4). As both developed and developing countries continue to 

experience greater chronic disease burden, treatment and prevention of HTN is one of the 

most important issues in medicine.

1.2. Challenges in Previous Efforts to Discover Optimal Target Blood Pressures

There are up to 69 different drugs from 15 different classes available to manage HTN, 

demonstrating the widely understood importance of managing this condition. Even with this 

plethora of available medications, current estimates indicate that up to 65% of patients with 

HTN have difficulty controlling their blood pressure (5). One issue confounding this matter 

is a lack of consensus on the appropriate target blood pressure. In 2014, the Eighth Joint 

National Committee on Hypertension (JNC 8) released the latest guidelines for hypertension 

treatment which recommend that patients over 60 years old be medicated to a target BP of 

150 mmHg systolic (SBP) and 90 mmHg diastolic (DBP) (6). Additionally, they 

recommended that patients 30–59 years old be medicated to a DBP target of 90 mmHg. 

Notably, the JNC 8 could not establish an evidence-based SBP goal for individuals within 

this age range. In 2015, investigators for the Systolic Blood Pressure Intervention Trial 

(SPRINT) released highly anticipated findings in the New England Journal of Medicine for 

the benefit of intensive HTN treatment measured against the standard hypertension treatment 

regime (7). The SPRINT investigators defined intensive therapy as medical therapy intended 

to reduce BP to 120/80 mmHg or below, instead of the standard goal therapy of 140/90 

mmHg. This large trial recruited 9,361 patients from 102 different clinical sites (from 5 

clinical networks) across the country and followed them for adverse outcomes for a median 

of 3.26 years.

SPRINT was intended to provide a definitive answer for the benefits of intensive 

antihypertensive therapy. The trial results seemed to demonstrate that intensive 

antihypertensive therapy was strongly associated with lowered risk for the study’s primary 

study endpoint of myocardial infarction, acute coronary syndrome, stroke, congestive heart 

failure, or cardiovascular death (HR=0.75, p<0.001) (7). However, this conclusion provoked 

a firestorm of controversy in the cardiovascular medicine community. Blood pressure is a 

difficult phenotype to measure, since readings vary from minute to minute, many patients 

suffer from “white-coat hypertension” in the presence of a physician, and measurements are 

usually taken with a manual sphygmomanometer and stethoscope (8,9). In contrast, the 

SPRINT trial broke with decades of precedence by using an automated electronic BP 

measurement device to capture a series of six measurements (8,9). Three measurements 

were spaced one minute apart in the presence of a researcher and three more were recorded 

outside of the presence of the researcher after a five-minute break (10,11). It has been 
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suggested that this difference in BP measurement technique may make their results 

impossible to apply to the clinic (10). This is because the SPRINT blood pressure 

measurement method is known to produce systematically different blood pressure readings 

when compared to the standard technique used in many hospitals and in previous trials (9). 

Typical systolic blood pressure measurements are 14 mmHg lower using the SPRINT 

method compared to the standard method (9). For example, this implies a SPRINT target of 

120mmHg may be equivalent to a real-world target of 134mmHg. Thus, the external validity 

of the SPRINT findings is unclear–SPRINT targets result from BP measurements that may 

not be comparable to normal BP measurements made outside of the clinical trial’s setting. 

Due to this controversy, we believe that additional complementary evidence supporting 

aggressive antihypertensive treatment could provide insight on treatment decisions and 

outcomes.

1.3. Causal Inference from Electronic Health Records As a Tool to Answer Difficult Clinical 
Questions

Electronic health records (EHR) present an excellent potential data source to analyze and 

determine optimal blood pressure treatment goal. EHR contain longitudinal information 

captured during the routine care process such as visit dates, patient demographics such as 

age; sex; self-declared race/ethnicity; medication prescription orders, disease and procedure 

billing codes, and most importantly, blood pressure measurements. Of note, the BP 

measurements contained within the EHR will reflect what is routinely measured clinically, 

instead of BP as is measured within a contained clinical trial setting such as SPRINT.

One challenge in the use of EHR for BP analysis is the clinical situation in which 

hypertension is managed. Hypertension is a chronic disease in which BP measurements are 

longitudinally manipulated by the administration of a variety of drugs over an extended 

period of time. This is in contrast to a clinical trial, where other exogenous factors are 

explicitly modeled and a drug may be consistently administered throughout the study. 

Confounding post-baseline time-varying dependent relationships such as these cannot be 

modeled using conventional statistical methods such as regression or survival analysis 

without many potentially unrealistic assumptions (11). While observational analyses are 

restricted to a framework where one can only test interventions that have been explicitly 

carried out in the data, the g-formula approach enables us to simulate dynamic treatment 

strategies and estimate their effects, even if those strategies have not been fully carried out in 

the data used to construct the model (12). G methods may be used to estimate the effect of 

different interventions on an outcome in the presence of time-varying confounders. For 

example, an extension of g methods called the parametric G formula has been used to 

measure the effect of different treatment regimes for highly active retroviral therapy 

(HAART) in AIDS (13); to estimate the effect of different governmental policies on radon 

and lung cancer (14); and to decide upon optimal anemia management strategies (15). 

However, these causal inference methods have never been applied to real, hospital-derived 

EHR. Here, we use the parametric g formula to model the effect of different BP treatment 

targets on major adverse cardiovascular outcomes (MACE).

Johnson et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Methods

2.1. Data Acquisition from the Mount Sinai Hospital EHR

The Mount Sinai Hospital (MSH) is a tertiary-care urban hospital located on the Upper East 

Side of Manhattan in New York City. MSH’s EMR contains longitudinal information for 

more than two million patients (800,00 with at least 1 prescription) collected from 2008–

2016. We identified hypertensive patients using a phenotyping algorithm combining 

International Classification of Disease (ICD-9) billing codes, blood pressure measurements, 

natural language processed physician notes, and the prescription of antihypertensive 

medications (Figure 1). Phenotyped patients must have had at least two elevated blood 

pressure measurements (SBP>140 or DBP>90) and two instances (each on different days) of 

one of the following: hypertensive medications, ICD hypertension billing codes, or mentions 

of hypertension in the physician notes. Medications in the EMR were normalized to 

Anatomical Therapeutic Chemical (ATC) Classification System drug classes using RxNorm 

(16). Antihypertensive medications were defined as those belonging to ATC classes C02 

(Antihypertensives), C03 (Diuretics), C04 (Peripheral vasodilators), C07 (Beta blocking 
agents), C08 (Calcium channel blockers), and C09 (Agents acting on the renin-angiotensin 
system) and then further filtered by intersection with JNC 8 recommended antihypertensive 

medications. Essential hypertension billing codes were identified as those starting with 

401.xx. We assessed cardiovascular adverse outcomes with the commonly used major 

adverse cardiovascular event (MACE) composite endpoint, which is often composed of 

myocardial infarction, stroke, and heart failure events. We identified patients with a MACE 

using the corresponding ICD9 codes 410.xx, 411.xx, 428.xx, 433.xx, 434.xx, and 436.xx.

2.2. Problem setup

We evaluated the effect of treating patients to four different SBP targets: 150 mmHg, 140 

mmHg, 130 mmHg, and 120 mmHg. We chose these four targets because they have each 

been suggested as SBP blood pressure targets. We assume the causal pathway demonstrated 

by the directed acyclic graph in Figure 2, where, blood pressure measurements are related to 

drug choice selection as well as MACE outcomes. Additionally, at each time step an 

individual may be censored (i.e., lost from the EHR). Finally, antihypertensive medications 

act to reduce blood pressure measurements subsequent to their administration.

2.3. Parametric g formula

The g formula directly models probabilities for a given outcome conditional upon covariates 

and exposures. For real-world datasets, modeling all conditional probabilities directly is not 

feasible, especially in the presence of continuous covariates such as BP. The parametric g 

formula is an extension of the g formula where parametric models are used to model 

probabilities instead of direct calculations. Parametric methods have the advantage of being 

computationally feasible, able to handle continuous covariates, and more efficient given the 

data. Analysis using the parametric g formula requires a three-step algorithm (Figure 3).

1. Model Conditional Probabilities—First, we model effect sizes and conditional 

probabilities for all person-times for (a) all covariates and (b) outcomes in our dataset using 

Bayesian logistic regression. Bayesian prior regression models are implemented in the R 
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package arm (17). Models are restricted to those who survive and remain uncensored to time 

t = k + 1 and include the effects of baseline covariates as well as time-varying covariates at 

time k.

2. Monte Carlo Simulation—Second, we perform Monte Carlo simulation for 10,000 

individuals for each treatment target using the probabilities from step 1, intervening as 

required with drug treatment if BP exceeds our target BP. Each individual’s baseline 

covariates are sampled from the dataset, and time-varying covariates are simulated using the 

predicted probability as the conditional mean in a random draw from the Bernoulli 

distribution in the case of binary variables. In the case of BP, we used the predicted blood 

pressure as the mean for a normal distribution with standard deviation equal to the mean 

standard deviation for individuals with matched baseline covariates.

3. Risk computation under different treatment goals—We fit Cox proportional 

hazards models to evaluate the relative efficacy to the results from each of the different 

simulated treatment policies and estimate their efficacy.

3. Results

3.1. Electronic Health Records Data

We obtained health records from the Mount Sinai Hospital for 218,221 different 

hypertensive patients. 104,514 individuals were female, 98,048 individuals were male, and 4 

individuals were of indeterminate sex and dropped from the analysis due to insufficient 

power. The remaining individuals did not have sex coded. 81,054 individuals were 

Caucasian, 38,134 were African American; 37,008 listed “Other;” 24,435 were Unknown; 

12,108 were Hispanic/Latino; 7329 were Asian; and the rest were composed of known but 

rare ethnicities (Native American, Pacific Islander, etc., – sample counts not shown to 
preserve patient confidentiality) and subsequently combined into “Other.” These individuals 

were collectively prescribed medications 3,678,597 times (16.9 medication prescriptions per 

person). The EHR contained 31,088,598 measurements of SBP and 31,039,040 

measurements of DBP, although the count of BP measurements per individual was 

significantly right-skewed likely due to frequent measurements of hospitalized critical-care 

unit patients.

3.2. Survival time by goal blood pressure target

We simulated 10,000 patients for each BP target. The 40,000 simulated patients experienced 

a total of 14,501 major adverse cardiovascular events. The number of MACE was highest in 

the 150 mmHg target group (3853 events), followed by 140 mmHg group (3722 events), 

followed by 130 mmHg group (3559 events), followed finally by the 120 mmHg target 

group (3367 events). Median MACE-free survival times were similarly ordered: 150 mmHg, 

31 encounters (95% CI: 29–33); 140 mmHg, 33 encounters (95% CI: 31–34); 130 mmHg, 

34 encounters (95% CI: 33–35); 120 mmHg, 35 encounters (95% CI: 34–37).

Survival was significantly associated with BP target (Figure 4), with survival highest at the 

lowest target goal (120mmHg) and less at 130 mmHg and 140 mmHg. Setting the reference 
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target BP as 150 mmHg, we found hazard ratios of 0.934 (Target goal of 140 mmHg, 

p=0.003); 0.895 (Target goal of 130 mmHg, p=1.94×10−6); and 0.846 (Target goal of 120 

mmHg, p=1.46×10−12). Male sex was significantly associated with elevated hazard 

compared to females (HR=1.27, p<10−15). Compared to Caucasian individuals, those of 

self-declared Hispanic/Latino and Unkown ancestry were more likely to have a MACE 

(HR=1.364, p<2×10−16 and HR=1.134, p=0.0003 respectively). Interestingly, those of 

Native American or African American ancestry actually had a slightly lower hazard ratio for 

MACE outcomes compared to Caucasian individuals (HR=0.932, p=0.023 and HR=0.922, 

p=0.016 respectively). Those of Asian or Other ancestry did not have a significantly 

different hazard ratio than Caucasian ancestry individuals (p=0.33 and p=0.279, 

respectively).

Interestingly, examination of the blood pressures of survivors revealed that the distribution 

of survivors’ blood pressures tended to shrink as time advanced. This can be explained by 

the fact that those with very high or very low blood pressures tended to either have their 

blood pressure managed toward a goal target or else experienced MACE (Figure 5).

4. Conclusion

In this study, we applied an established causal inference technique to a large EHR database 

to simulate the effects of four different antihypertensive treatment regimes on MACE 

outcomes. Our findings are concordant with the recent conclusions from SPRINT, where a 

target systolic blood pressure goal of 120 mmHg was found to dramatically lower the 

incidence of adverse cardiovascular outcomes. Our estimated hazard ratio of 0.85 for 120 

mm target compared to 150 mmHg compares to the SPRINT hazard ratio estimate of 0.75 

for the same comparison, although our estimated hazard ratio is less optimistic than the 

SPRINT hazard ratio.

This contrasts with the current recommendations from the American Heart Association and 

the American Association of Family Physicians, who both do not recommend targeting 120 

mmHg. Interestingly, BP measurements obtained at the Mount Sinai Hospital are generally 

measured using a manual sphygmomanometer and stethoscope, instead of with an 

automated device as in the SPRINT trial. Despite this difference, we arrived at similar 

conclusions for the efficacy of intensive antihypertensive therapy. This may suggest that 

SPRINT BP estimates are not as discordant with past literature as is believed. Certainly, as 

hypertension is a vitally important topic, we believe our finding points out the need for 

additional studies. Future studies for BP goal measurements will likely benefit greatly from 

the inclusion of more personalized drug treatments strategies and a more “precision 

medicine” approach.

There are several limitations to our study. First, the typical definition of major adverse 

cardiovascular events (MACE) often includes death from a cardiovascular etiology. Due to 

the limitations of EHR, we were not able to include death as a MACE outcome in our study. 

This limitation may be partially mitigated by the fact that many of those who die from a 

cardiovascular etiology would have one of the MACE ICD-9 billing codes preceding their 

death. Second, our treatment dynamic algorithm currently does not yet include changes in 
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drug dosages, which is one technique physicians can use to adjust the degree of 

antihypertensive medication efficacy. Similarly, we do not consider patient BMIs when 

modeling drug efficacy per patient, which is related to drug dosages. Finally, as with all 

observational studies, there may be unmeasured confounders which may influence our 

results to some degree. To this end, we are comforted to some extent by the fact that our 

study conclusions more closely resembled those from a randomized clinical trial results than 

those from other observational analyses.

To the best of our knowledge, the e results represent a first application of the parametric g 

formula to a hospital-based electronic health record system, and almost certainly the first 

application of such a model in the context of cardiovascular preventative medicine. Causal 

inference methods allow for the retrospective analysis of treatment regimes which could not 

easily be performed, or in some cases would not even be ethical to be performed in a 

randomized clinical trial setting. Taken altogether, we believe our study (1) demonstrates the 

utility of the parametric g-formula for analysis of treatment interventions in EHR data; and 

(2) presents complementary and concordant evidence to the SPRINT trial in support of 

intensive antihypertensive therapy.
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Figure 1. 
Hypertension phenotyping algorithm patient counts
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Figure 2. 
Directed acyclic graph for relationship between blood pressure measurement, drug 

administration, MACE, censoring, and modeled intervention policy
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Figure 3. 
Explanation of parametric g formula analysis for BP target
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Figure 4. 
Kaplan-Meier survival plot for observed survival times stratified by target blood pressure. 

Survival was greatest at a target blood pressure of 120 mmHg, second best at 130 mmHg, 

third best at 140 mmHg, and worst at a BP target of 150 mmHg. The overall P value for the 

model was <10−16.
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Figure 5. 
Plots of overall conditional predicted blood pressures over time (Beginning time at top of 

plot, final predictive models at the bottom of the plot). Distribution of conditional blood 

pressure predictions tends to shrink as there are a) fewer individuals
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Table 1

Results of Survival Analysis

Covariate Reference Level Hazard Ratio H.R. 95% CI P-Value

140 mmHg Target 150 mmHg Target 0.934 (0.8928, 0.9770) 0.002975

130 mmHg Target 150 mmHg Target 0.895 (0.8553, 0.9370) 1.94×10−6

120 mmHg Target 150 mmHg Target 0.846 (0.8079, 0.8862) 1.46×10−12

Male Female 1.270 (1.2294, 1.3124) <2×10−16

African American Caucasian 0.922 (0.8631, 0.9849) 0.015937

Asian Caucasian 0.970 (0.9101, 1.0326) 0.334363

Hispanic/Latino Caucasian 1.364 (1.2773, 1.4566) <2×10−16

Native American Caucasian 0.932 (0.8775, 0.9904) 0.023023

Other Race Caucasian 0.934 (0.8394, 1.0518) 0.278997

Unknown Race Caucasian 1.134 1.0584 1.2138 0.000341
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