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Abstract

Glioblastoma Multiforme (GBM), a malignant brain tumor, is among the most lethal of all 

cancers. Temozolomide is the primary chemotherapy treatment for patients diagnosed with GBM. 

The methylation status of the promoter or the enhancer regions of the O6− methylguanine 

methyltransferase (MGMT) gene may impact the efficacy and sensitivity of temozolomide, and 

hence may affect overall patient survival. Microscopic genetic changes may manifest as 

macroscopic morphological changes in the brain tumors that can be detected using magnetic 

resonance imaging (MRI), which can serve as noninvasive biomarkers for determining methylation 

of MGMT regulatory regions. In this research, we use a compendium of brain MRI scans of GBM 

patients collected from The Cancer Imaging Archive (TCIA) combined with methylation data 

from The Cancer Genome Atlas (TCGA) to predict the methylation state of the MGMT regulatory 

regions in these patients. Our approach relies on a bi-directional convolutional recurrent neural 

network architecture (CRNN) that leverages the spatial aspects of these 3-dimensional MRI scans. 

Our CRNN obtains an accuracy of 67% on the validation data and 62% on the test data, with 

precision and recall both at 67%, suggesting the existence of MRI features that may complement 

existing markers for GBM patient stratification and prognosis. We have additionally presented our 

model via a novel neural network visualization platform, which we have developed to improve 

interpretability of deep learning MRI-based classification models.
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1. Introduction

Glioblastoma multiforme (GBM) is an aggressive brain cancer, with a median survival of 

only 15 months.1 The efficacy of the first-line chemotherapy treatment, temozolomide, is in 

part dependent on the methylation status of the O6-methylguanine methyltransferase 

(MGMT) regulatory regions (promoter and/or enhancer). MGMT removes alkyl groups from 

compounds and is one of the few known proteins in the DNA Direct Reversal Repair 
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pathway.2 Loss of the MGMT gene, or silencing of the gene through DNA methylation, may 

increase the carcinogenic risk after exposure to alkylating agents. Similarly, high levels of 

MGMT activity in cancer cells create a resistant phenotype by blunting the therapeutic effect 

of alkylating agents and may be an important determinant of treatment failure.3 Thus, 

methylation of MGMT increases efficacy of alkylating agents such as temozolomide.1

As such, methylation status of MGMT regulatory regions has important prognostic 

implications and can affect therapy selection in GBM. Currently, determining the 

methylation status is done using samples obtained from fine needle aspiration biopsies, 

which is an invasive procedure. However, several studies have demonstrated that some 

genetic changes can manifest as macroscopic changes, which can be detected using 

magnetic resonance imaging (MRI).4,5 Previous approaches have constructed models to 

predict MGMT status from imaging and clinical data.6,7 However, these models typically 

rely on hand curated features with classifiers such as SVM and random forests, and using 

neural networks may enable the discovery of novel biological features and increase the ease 

of implementation of such models.

Recently, convolutional neural networks (CNNs), a class of deep, feed-forward artificial 

neural networks, have emerged to be effective for autonomous feature extraction and have 

excelled at many image classification tasks.8 A CNN consists of one or more convolutional 

layers, each layer composed of multiple filters. The architecture of a CNN captures different 

features (edges, shapes, texture, etc.) by leveraging the 2-dimensional spatial structure of an 

image using these filters. On the other hand, recurrent neural networks have shown a lot of 

promise to analyze ordered sequences of words or image frames, such as sentences or 

videos, for tasks such as machine translation, named entity recognition and classification.9 

Using fixed weight matrices (often termed, memory units) and vectorial representations for 

each sequence item (e.g. a word or a frame), an RNN can capture the temporal context in a 

dataset. While developing and implementing these neural network models may be inherently 

difficult, they can directly work on atomic features (e.g. pixels of an image, words in a 

sentence), and do not require exhaustive feature curation, as required in conventional 

machine learning methods.

Since MRI scans are 3-dimensional reconstruction of the human brain, they can be treated as 

volumetric objects or videos. Volumetric objects and sequences of image frames can be 

analyzed effectively by combining convolutional and recurrent neural networks.10,11 

However, few methods that combine CNNs with RNNs using end-to-end learning have been 

applied to radio-genomic analyses. Constructing an architecture that combines CNN and 

RNN for powerful image analysis while maintaining information transfer between image 

slices may reveal novel features that are associated with MGMT methylation.

In this work, we present an approach using a bi-directional convolutional recurrent 
neural network (CRNN) architecture on brain MRI scans to predict the methylation 
status of MGMT. We use a dataset of 5,235 brain MRI scans of 262 patients diagnosed 

with glioblastoma multiforme from The Cancer Imaging Archive (TCIA).12,13 Genomics 

data corresponding to these patients is retrieved from The Cancer Genome Atlas (TCGA).14 

The CNN and RNN modules in the architecture are jointly trained in an end-to-end fashion. 
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We evaluate our model using accuracy, precision, and recall. We also develop an interactive 

visualization platform to visualize the output of the convolutional layers in the trained 

CRNN network. The results of our study, as well as the visualizations of the MRI scans and 

the CRNN pipeline can be accessed at http://onto-apps.stanford.edu/m3crnn/.

1.1. Deep learning methods over biomedical data

Recently, several variations of deep learning architectures (neural networks, CNNs, RNNs, 

etc.) have been introduced for the analysis of imaging data, -omics data and biomedical 

literature.15,16 A recent study by Akkus et al. has used CNNs to extract features from MRI 

images and predict chromosomal aberrations.17 2-dimensional and 3-dimensional CNN 

architectures have been used to determine the most discriminative clinical features and 

predict Alzheimer’s disease using brain MRI scans.10,18 Poudel et al. have developed a 

novel recurrent fully-connected CNN to learn image representations from cardiac MRI scans 

and leverage inter-slice spatial dependences through RNN memory units. The architecture 

combines anatomical detection and segmentation, and is trained end-to-end to reduce 

computational time.11 For tumor segmentation, Stollenga et al. developed a novel 

architecture, PyramidL-STM, to parallelize multi-dimensional RNN memory units, and 

leverage the spatial-temporal context in brain MRI scans that is lost by conventional 

CNNs.19 Chen et al. developed a transferred-RNN, which incorporates convolutional feature 

extractors and a temporal sequence learning model, to detect fetal standard plane from 

ultrasound videos. They implement end-to-end training and knowledge transfer between 

layers to deal with limited training data.20 Kong et al. combined an RNN with a CNN, and 

designed a new loss function, to detect the end-diastole and end-systole frames in cardiac 

MRI scans.21

2. Methods

2.1. Dataset and Features

We used the brain MRI scans of glioblastoma multiforme (GBM) patients from The Cancer 

Imaging Archive (TCIA) and the methylation data, for those corresponding patients, from 

The Cancer Genome Atlas (TCGA).

2.1.1. Preprocessing of Methylation Data—We downloaded all methylation data files 

from GBM patients available via TCGA. The methylation consisted of 423 unique patients, 

with 16 patients having duplicate samples. We extracted methylation sites that are located in 

the minimal promoter and enhancer regions shown to have maximal methylation activity and 

affect MGMT expression.22–24 Specifically, these methylation sites are cg02941816, 

cg12434587, and cg12981137. These are the same sites used in previous MGMT 

methylation studies that use TCGA data.25 Similar to Alonso et al., we considered a 

methylation beta value of at least 0.2 to be a positive methylation site. As methylation of 

either the minimal promoter or the enhancer were shown to decrease transcription, we 

considered a patient to have a positive methylation status if any of the three sites were 

positive.
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2.1.2. Preprocessing of the MRI scans—We downloaded 5,235 MRI scans for 262 

patients diagnosed with GBM from TCIA. Each brain MRI scan can be envisioned as a 3-

dimensional reconstruction of the brain (Figure 1). Each MRI scan consists of a set of image 

frames captured at a specific slice thickness and pixel spacing (based on the MRI machine 

specifications). The raw dataset contained a total of 458,951 image frames. From these, we 

selected ‘labeled’ T1/T2/Flair axial MRI scans for those patients for whom we had 

corresponding methylation data.

These image frames are made available in a DICOM format (Digital Imaging and 

Communications in Medicine), a non-proprietary data interchange protocol, digital image 

format, and file structure for biomedical images and image-related information.26 The image 

frames are grayscale (1-channel) and the DICOM format allows storage of other patient-

related meta-data (sex, age, weight, etc.) as well as image-related metadata (slice thickness, 

pixel spacing etc.). As these image frames may be generated by different MRI machines 

with varying slice thickness (range: 1 to 10) and pixel spacing, we normalize these attributes 

across different MRI scans by resampling to a uniform slice thickness of 1.0 and pixel 

spacing of [1, 1].

MRI image frames are grayscale, and instead of RGB channel values, each pixel is assigned 

a numerical value termed the Hounsfield Unit (HU), which is a measure of radiodensity. We 

filter out those image frames that are “noisy” by looking at the distribution of Hounsfield 

Units in the pixels. When removing noisy images, we used mean and standard deviation 

thresholds of 20 HU to determine image validity. An example of the distributions and the 

images are shown in Figure 2. We further limit our MRI scans to only those slices that 

contain the tumor to the nearest 10th slice. This was achieved by annotating the MRI scans 

through our visualization platformb. Finally, we resize all images to 128 × 128 dimensions.

2.2. Data Augmentation

For our CRNN, we used data augmentation to increase the size of our dataset and to help 

combat overfitting. Specifically, we applied image rotation and MRI scan reversal, so that 

the methylation status and location of the tumor is preserved. Images were rotated every 4 

degrees from -90 to +90 degrees, and were flipped such that in the RNN, the MRI scans 

were represented from superior to inferior and vice versa. This resulted in a 90 fold increase 

in the number of MRI scans.

2.3. Training and Evaluation

Given that our MRI scans are similar to video objects with a variable number of frames, we 

implemented a bi-directional convolutional recurrent neural network (CRNN) architecture 

(Figure 3). Each image frame of the MRI scan is first input into a CNN. Multiple 

convolutional layers extract essential features (e.g. shape, edges, etc.) from the image. The 

image is then processed through two fully connected neural network layers, so that the 

output from each image is a vector of length 512. All frames from one MRI scan are then 

represented by a series of vectors, which are input into a many-to-one bi-directional RNN. 

bhttp://onto-apps.stanford.edu/m3crnn/
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The bi-directional RNN is dynamic and can adjust for variable-length sequences, an 

advantage over using 3-dimensional CNN, which requires uniform volumes. Padding and 

bucketing of MRI scans of similar length was carried out for efficient computation. The 

RNN analyzes the sequence of MRI image frames and outputs a binary classification of 

methylation status per MRI scan. The entire architecture was developed using the 

Tensorflow Python libraryc.

We split our the MRI scans into a 70% training set, 15% validation set, and 15% test set. As 

MRI scans of the same patient are highly correlated, we split our data such that all MRI 

scans pertaining to each patient are in the same set. We randomized the order of the training 

data based on the number of frames, bucketing MRI scans with similar frame numbers. We 

padded MRI scans within each bucket so all MRI scans in each batch had the same number 

of frames, while the number of frames differed across batches. We trained using softmax 

cross entropy as our loss function using the Adam optimizer with learning rates ranging 

from 5e-6 to 5e-1. We applied L2 regularization, with coefficients from 0.001 to 0.1 and 

dropout with keep probabilities ranging from 0.5 to 1. We varied the number of filters 

between 8 and 16, and trained our model until it converged, for ten epochs.

For comparison, we also implemented a random forest classifier, to evaluate how our CRNN 

performs in comparison to alternative, more conventional machine learning algorithms that 

do not capture spatial information. For our random forest classifier, each frame was 

considered one sample, where each pixel was one feature. Each MRI scan was treated as an 

ensemble of individual frames, where we averaged the prediction across all frames for each 

scan.

When assessing our results, we calculated the area under the receiver operator characteristic 

curve (AUC), accuracy, precision, and recall at the patient and MRI scan levels. We 

calculated methylation status probability as the proportion of positive individual MRIs. Out 

of these metrics, we used patient level accuracy in the validation set to tune our architecture 

and hyperparameters. The CRNN was then evaluated using the independent test set.

3. Results

3.1. Data Statistics

Our training dataset consisted of 344 positive MRI scans and 351 negative scans, which 

corresponded to 117 patients. Our validation dataset consisted of 21 patients, with 73 

positive scans and 62 negative scans. Our test set also had 21 patients, with 62 positive and 

62 negative scans. After data augmentation, this resulted in 62,550 examples in the training 

set, and 12,150 in the validation set, and 11,160 in the test set. After preprocessing, we had 

an average of 45.9 frames per scan in the training set, 52.7 frames per scan in the validation 

set, and 43.2 frames per scan in the test set.

chttps://www.tensorflow.org/
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3.2. Architecture and Hyperparameters

The specific architecture of our CRNN is detailed in Table 1. Our architecture consisted 

mainly of alternating convolutional and pooling layers, using the rectified linear unit (ReLU) 

as our activation function. We used batch normalization, and we implemented L2 

regularization and drop out layers to limit overfitting. We then followed these layers with 

fully connected (FC) layers to create the output for the RNN, which contained 512 neurons. 

We implemented a bi-directional RNN with gated recurrent units (GRU), with a state size of 

256. We then followed the RNN with an additional FC layer before using the softmax 

classifier to predict methylation status. We used the Adam optimizer, with a learning rate of 

1e-5.

3.3. Evaluation

For CRNN, our test set results are shown in Table 2. At the patient level, the test data yielded 

an accuracy of 0.61, with a precision of 0.67 and recall of 0.67. ROC curves are shown at the 

MRI scan and the patient level in Figure 4a. The training data obtained accuracies of 0.97 

for MRI scans and at the patient level. Though we observe overfitting, increasing the 

dropout probability, increasing the L2 regularization coefficient, and decreasing model 

complexity did not result in significant gains in validation accuracy during model tuning. In 

comparison, our random forest classifier achieved an AUC of 0.56 on the validation set and 

0.44 on the test set at the patient level.

We examined our classifier predictions in the test set, and show examples of true and false 

positives and negatives in Figure 4b. In particular, it appears that our classifier tends to 

classify lesions with ring enhancement as having a negative methylation status, and tumors 

with less clearly defined borders as positive. Predicted positive tumors also tended to have a 

more heterogeneous texture in appearance. Tumor location varied, and did not appear to be 

correlated with methylation status prediction.

3.4. Visualization

Deep learning methods, especially convolutional and recurrent neural networks, are thought 

to be less interpretable and clinically reliable, as compared to standard machine learning 

models. To provide a more visual perspective on how our model perceives the input MRI 

scan, we have developed an interactive, online visualization interface deployed at http://

onto-apps.stanford.edu/m3crnn/. The domain user (e.g. a radiologist or a biomedical 

researcher) can select an MRI scan from a list and load it through the pre-trained CRNN 

pipeline (Figure 5a). Once the pipeline completes the computation, the user can visualize the 

original MRI scan, click on each filter in each CRNN layer to see the output from each filter 

in each convolutional layer (Figure 5b). The user can also visualize the output after applying 

the ReLU activation function. Each visualization (either MRI scan, filter output or ReLU 

output) opens up in its own separate dialog window that can be dragged around the browser. 

Hence, multiple visualizations can be compared with each other (Figure 5c–e). Finally, the 

predicted output, the probability score as well as the actual methylation status, are also 

presented for the domain user to determine features and flaws of our model.
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The output from two filters in the first convolutional layer are visualized (Figure 5d,e). As 

with many CNN architectures, the first layer places a heavy emphasis on edge detection, and 

we can clearly see the outline of the cranium and the tumor in each of these filters. Each 

filter also appears to show the brain slice at different contrasts. As specific tissues attenuate 

signal differently, in some sense these filters may be attempting to highlight different tissue 

types by varying the contrast. To the best of our knowledge, this is the first example of an 

online, interactive interface that can execute a deep learning pipeline over any selected MRI 

scan and can visualize intermediate layer outputs. It is very flexible, in the sense that the 

interface can easily be configured for variable number of convolutional layers and filters.

4. Discussion

In this work, we constructed a jointly trained, bi-directional convolutional recurrent neural 

network in order to predict the methylation status of MGMT from brain MRI scans. We 

explore macroscopic MRI features that may be correlated with MGMT methylation status to 

gain insight into GBM pathology. We use the publicly available data in TCGA and TCIA, 

where few studies, if any, have combined imaging data with -omics data using a deep 

learning framework. In addition, we present a generalizable platform for visualizing the 

different filters and layers of deep learning architectures for brain MRI scans to aid model 

interpretability for clinicians and biomedical researchers.

Our CRNN obtains modest patient level accuracies of 0.67 and 0.62 on the validation and 

test data, respectively, and on the test data, the precision and recall were both 0.67. Our data 

contained approximately equal proportions of positive and negative patients, indicating that 

our classifier is making predictions to balance precision and recall, and not relying on label 

distributions. Though the patient level performance does decrease from the validation to the 

test data set, the general similarity in performance indicates there are likely a subset of 

features that are correlated with MGMT methylation, as has been found in previous 

studies.27,28 In comparison, the random forest model had an AUC of 0.57 in the validation 

set and 0.44 in the test set (versus CRNN with a validation AUC of 0.66 and test AUC of 

0.61). This suggests that there is some useful information encoded in the individual pixels, 

but that reproducibility and performance are likely improved by using a method that can 

better capture spatial information.

We focused primarily on patient level results, leveraging multiple MRI scans per patient to 

obtain a prediction in an ensemble style. We secondarily assessed MRI scan results, as being 

able to predict methylation status from a single MRI scan would be highly relevant to 

clinicians and patients. The results at the MRI scan level were comparable to the patient 

level in the test set, but we see a decrease in performance in the validation set. This is likely 

due to our classifier being less confident at the MRI scan level, resulting in greater 

variability in results and prediction probabilities further from 0 or 1.

The difference in confidence between the patient level and MRI scan results suggests that 

combining information from multiple MRI scans is beneficial for MGMT methylation 

prediction. Deep learning models have been able to successfully learn multiple 

representations of the same object in other classification tasks.8,9 However, we believe that 
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combining different representations of the same tumor to reach a prediction per patient is 

more robust and clinically relevant. We accomplish this using majority voting. Incorporating 

additional layers into our model to combine MRI scans may also lead to further 

improvement in performance.

With a training set accuracy of nearly 1.0, our classifier is overfitted to the training set. To 

combat overfitting, we implemented L2 regularization, dropout layers, and data 

augmentation. Regularization had only a modest effect at curtailing overfitting and 

improving performance, and further increases in regularization resulted in decreasing 

validation set performance. Even though data augmentation was able to greatly decrease the 

speed of model overfitting, we still reach nearly perfect classification given enough training 

epochs. Data augmentation also substantially increased the number and variability of images 

for training, improving the robustness and performance of our model. However, due to the 

limited availability of publicly accessable patient data with both imaging and -omics 
measurements, our overall dataset of 159 patients can still be considered to be very small. 

The incorporation of additional patient data holds potential for further reduction of model 

variance and overfitting.

Currently, methylation status is not readily discernible by a human radiologist from MRI 

scans, even though multiple previous studies have attempted to correlate features to discover 

imaging-based biomarkers.6,27–29 These studies typically require extensive manual feature 

curation, and may incorporate clinical data along with imaging features for classification. In 

comparison, our work is primarily focused on using raw MRI frames, which combines 

feature extraction and classification as one problem. Though we do manually annotate 

subsections of each MRI, we note that our method can work on full MRIs, and thus has the 

potential to be completely automated. While the validation accuracy of full MRI scans is 

simiar to the results in Table 2, training the CRNN on full scans requires additional 

computational time and resources. Additionally, though we have formulated our prediction 

task as binary classification, it is possible to use regression with CRNNs to predict 

methylation activity, which may be more informative. As we are interested in discovering 

MRI features independent of demographic or patient characteristics, we chose not to 

incorporate additional clinical data (e.g. age of onset or sex). However, these clinical data 

may provide additional signal from a classification standpoint.

When assessing our classifier predictions, our model had a tendency to assign positive 

methylation status to heterogeneous, larger tumors with poorly defined margins (Figure 4b). 

Furthermore, many of our classification predictions are in concordance with previous results 

from Drabeyz et al.30 and Eoli et al..31 These studies discovered that ring-enhanced lesions 

were associated with negative MGMT promoter methylation. Hence, our model is able to 

autonomously determine some clinically relevant features correlated to MGMT methylation, 

without manual curation or predefined feature engineering as required in previous methods.

Deep learning methods have become powerful tools in image analysis and in the biomedical 

domain.15,16 However, these methods typically are not easily interpretable, and it can be 

challenging for a clinician or researcher to understand the model’s reasoning. Hence, these 

methods are often infamously termed “black-box models”. To address this challenge, we 
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have developed a visualization platform that allows the domain user to select each MRI scan, 

load it through the CRNN computational pipeline, and interactively view and compare 

different filters and layers of our model. Our platform is generalizable, and can be easily 

extended for use with additional MRI prediction tasks and with different model architectures 

(e.g. variational number of filters and convolutional layers). For example, though we are 

primarily focused on the GBM tumor and its MGMT methylation status in this work, one 

may visualize whole brain MRI scans, in different orientations (e.g. saggital), for tasks such 

as risk stratification or lesion diagnosis. Moreover, any similar deep learning pipeline, that 

may use other type of MRI scans (e.g. cardiac) or other volumetric biomedical data (e.g. 

ultrasound), can be deployed with ease. Through the platform, we also visualize all the 

classifier predictions for our test set, and group them into four distinct sets — true and false 

positives and negatives. The domain users can browse and capture additional clinical 

features used by our model for prediction, or flaws in our model, that we may have not 

discussed here. We envision the visualization platform to be used in other relevant research 

and hence, we have released the source code.d

5. Conclusions

In this work, we implemented a convolutional recurrent neural network (CRNN) architecture 

to predict MGMT regulator methylation status using axial brain MRI scans from 

glioblastoma multiforme patients. Based on this model, we constructed a generalizable 

visualization platform for exploring the filtered outputs of different layers of our model 

architecture. Our CRNN achieved a test set accuracy of 0.62, with a precision of 0.67 and 

recall of 0.67. Using our predictions, we highlight macroscopic features of tumor 

morphology which may provide additional insight into the effects of MGMT methylation in 

glioblastoma multiforme. Though modest, our results support the existence of an association 

between MGMT methylation status and tumor characteristics, which merits further 

investigation using a larger cohort.
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Fig. 1. MRI scan
A visualization of different MRI image frames in one MRI scan, with the GBM tumor 

highlighted in red on slice 70.
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Fig. 2. Removing noisy images
We use the distributions of Hounsfield units (which vary drastically) to determine if an 

image is a valid MRI scan (a), or has only noisy pixels (b).
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Fig. 3. CRNN Architecture Overview
Combining CNN and RNN to predict the methylation state from MRI scan images.
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Fig. 4. Evaluation of the CRNN method
a) ROC curves depicting results at the patient and MRI scan levels in the validation and 

held-out test set, and b) Classifier prediction examples. True positive, true negative, and 

misclassified false positive and false negative examples from our test set. The tumors are 

highlighted in the red boxes.

Han and Kamdar Page 14

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. CRNN Visualization Interface
(a) The domain user can select any MRI scan to load into the Tensorflow CRNN pipeline. 

(b) After the pipeline completes the computation to predict the MGMT methylation status, 

the user can visualize the original MRI Scan (c), the output from any filter, in each 

convolutional layer (d, e), as well as the output after ReLU activation.
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Table 1
Bi-directional CRNN Architecture

Convolutional layers followed by fully connected layers and a many-to-one bi-directional RNN.

Layers Hyperparmaeters

[5×5 Conv-ReLU-BatchNorm-Dropout-2×2 Max Pool] × 2
[5×5 Conv-ReLU-BatchNorm-Dropout] × 1
[5×5 Conv-ReLU-BatchNorm-Dropout-2×2 Max Pool] × 1

L2 Regularization: 0.05
Dropout Keep Probability: 0.9
Number of Filters: 8

FC-ReLU-BatchNorm-Dropout
Number of Neurons: 1024
L2 Regularization: 0.05
Dropout Keep Probability: 0.9

FC-ReLU-BatchNorm-Dropout
Number of Neurons: 512
L2 Regularization: 0.05
Dropout Keep Probability: 0.9

Bi-directional GRU with ReLU-Dropout
State Size: 256
L2 Regularization: 0.05
Dropout Keep Probability: 0.9

FC-ReLU
Number of Neurons: 256
L2 Regularization: 0.05
Dropout Keep Probability: 0.9

Softmax
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