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Abstract

The Cancer Genome Atlas (TCGA) has profiled over 10,000 tumors across 33 different cancer-

types for many genomic features, including gene expression levels. Gene expression 

measurements capture substantial information about the state of each tumor. Certain classes of 

deep neural network models are capable of learning a meaningful latent space. Such a latent space 

could be used to explore and generate hypothetical gene expression profiles under various types of 

molecular and genetic perturbation. For example, one might wish to use such a model to predict a 

tumor’s response to specific therapies or to characterize complex gene expression activations 

existing in differential proportions in different tumors. Variational autoencoders (VAEs) are a deep 

neural network approach capable of generating meaningful latent spaces for image and text data. 

In this work, we sought to determine the extent to which a VAE can be trained to model cancer 

gene expression, and whether or not such a VAE would capture biologically-relevant features. In 

the following report, we introduce a VAE trained on TCGA pan-cancer RNA-seq data, identify 

specific patterns in the VAE encoded features, and discuss potential merits of the approach. We 

name our method “Tybalt” after an instigative, cat-like character who sets a cascading chain of 

events in motion in Shakespeare’s “Romeo and Juliet”. From a systems biology perspective, 

Tybalt could one day aid in cancer stratification or predict specific activated expression patterns 

that would result from genetic changes or treatment effects.
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1. Introduction

Deep learning has improved the state of the art in many domains, including image, speech, 

and text processing, but it has yet to make significant enough strides in biomedicine for it to 

be considered transformative.1 Nevertheless, several studies have revealed promising results. 
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For instance, Esteva et al. used convolutional neural networks (CNNs) to diagnose 

melanoma from skin images and Zhou and Troyanskaya trained deep models to predict the 

impact of non-coding variants.2,3 However, several domain specific limitations remain. In 

contrast to image or text data, validating and visualizing learning in biological datasets is 

particularly challenging. There is also a lack of ground truth labels in biomedical domains, 

which often limits the efficacy of supervised models. New unsupervised deep learning 

approaches such as generative adversarial nets (GANs) and variational autoencoders (VAEs) 

harness the modeling power of deep learning without the need for accurate labels.4–6 Unlike 

traditional CNNs, which model data by minimizing inaccurate class predictions, 

autoencoder models, including VAEs, learn through data reconstruction. Reconstructing 

gene expression input data using autoencoder frameworks has been previously shown to 

reveal novel biological patterns.7–9

VAEs and GANs are generative models, which means they learn to approximate a data 

generating distribution. Through approximation and compression, the models have been 

shown to capture an underlying data manifold — a constrained, lower dimensional space 

where data is distributed — and disentangle sources of variation from different classes of 

data.10,11 For instance, a recent group trained adversarial autoencoders on chemical 

compound structures and their growth inhibiting effects in cancer cell lines to learn manifold 

spaces of effective small molecule drugs.12,13 Additionally, Rampasek et al. trained a VAE 

to learn a gene expression manifold of reactions of cancer cell lines to drug treatment 

perturbation.14 The theoretical basis for modeling cancer using lower dimensional manifolds 

is established, as it has been previously hypothesized that cancer exists in “basins of 

attraction” defined by specific pathway aberrations that drive cells toward cancer states.15 

These states could be revealed by data driven manifold learning approaches.

The Cancer Genome Atlas (TCGA) has captured several genomic measurements for over 

10,000 different tumors across 33 cancer-types.16 TCGA has released this data publicly, 

enabling many secondary analyses, including the training of deep models that predict 

survival.17 One data type amenable to modeling manifold spaces is RNA-seq gene 

expression because it can be used as a proxy to describe tumor states and the downstream 

consequences of specific molecular aberration. Biology is complex, consisting of multiple 

nonlinear and often redundant connections among genes, and when a specific pathway 

aberration occurs, the downstream response to the perturbation is captured in the 

transcriptome. In the following report, we extend the autoencoder framework by training and 

evaluating a VAE on TCGA RNA-seq data. We aim to demonstrate the validity and specific 

latent space benefits of a VAE trained on gene expression data. We do not aim to 

comprehensively profile all learned pan-cancer VAE features nor survey clinical 

implications. We also do not compare our approach to alternate dimensionality reduction 

algorithms, but instead present our model as an additional tool in the toolkit for extracting 

knowledge from gene expression. We shall name this model “Tybalt”.
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2. Methods

2.1. Model Summary

VAEs are data driven, unsupervised models that can learn meaningful latent spaces in many 

contexts. In this work, we aim to build a VAE that compresses gene expression features and 

reveals a biologically relevant latent space. The VAE is based on an autoencoding 

framework, which can discover nonlinear explanatory features through data compression 

and nonlinear activation functions. A traditional autoencoder consists of an encoding phase 

and a decoding phase where input data is projected into lower dimensions and then 

reconstructed.18 An autoencoder is deterministic, and is trained by minimizing 

reconstruction error. In contrast, VAEs are stochastic and learn the distribution of 

explanatory features over samples. VAEs achieve these properties by learning two distinct 

latent representations: a mean and standard deviation vector encoding. The model adds a 

Kullback-Leibler (KL) divergence term to the reconstruction loss, which also regularizes 

weights through constraining the latent vectors to match a Gaussian distribution. In a VAE, 

these two representations are learned concurrently through the use of a reparameterization 

trick that permits a back propagated gradient.4 Importantly, new data can be projected onto 

an existing VAE feature space enabling new data to be assessed.

2.2. Model Implementation

VAEs have been shown to generate “blurry” data compared with other generative models, 

including GANs, but VAEs are also generally more stable to train.19 We trained our VAE 

model, Tybalt, with the following architecture: 5,000 input genes encoded to 100 features 

and reconstructed back to the original 5,000 (Figure 1A). The 5,000 input genes were 

selected based on highest variability by median absolute deviation (MAD) in the TCGA pan-

cancer dataset.

We initially trained Tybalt without batch normalization,20 but observed that when we 

included batch normalization in the encoding step, we trained faster and with heterogeneous 

feature activation. Batch normalization in machine learning is distinct from normalizing 

gene expression batches together in data processing. In machine learning, batch 

normalization adds additional feature regularization by scaling activations to zero mean and 

unit variance, which has been observed to speed up training and reduce batch to batch 

variability thus increasing generalizability. We trained Tybalt with an Adam optimizer,21 

included rectified linear units22 and batch normalization in the encoding stage, and sigmoid 

activation in the decoding stage. We built Tybalt in Keras (version 2.0.6)23 with a 

TensorFlow backend (version 1.0.1).24 For more specific VAE illustrations and 

walkthroughs refer to an extended tutorial25 and these intuitive blog posts.26,27

2.3. Parameter Selection

We performed a parameter sweep over batch size (50, 100, 128, 200), epochs (10, 25, 50, 

100), learning rates (0.005, 0.001, 0.0015, 0.002, 0.0025) and warmups (κ) (0.01, 0.05, 0.1, 

and 1). κ controls how much the KL divergence loss contributes to learning, which 

effectively transitions a deterministic autoencoder to a VAE.28,29 For instance, a κ = 0.1 

would add 0.1 to a weight on the KL loss after each epoch. After 10 epochs, the KL loss will 
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have equal weight as the reconstruction loss. We did not observe κ to influence model 

training (Figure 1B), so we kept κ = 1 for downstream analyses. We evaluated train and test 

set loss at each epoch. The test set was a random 10% partition of the full data. In general, 

training was relatively stable for many parameter combinations, but was consistently worse 

for larger batches, particularly with low learning rates. Ultimately, the best parameter 

combination based on validation loss was batch size 50, learning rate 0.0005, and 100 

epochs (Figure 1C). Because training stabilized after about 50 epochs, we terminated 

training early. Training and testing loss across all 50 epochs is shown in Figure 1D. We 

performed the parameter sweep on a cluster of 8 NVIDIA GeForce GTX 1080 Ti GPUs on 

the PMACS cluster at The University of Pennsylvania.

2.4. Input Data

The input data consisted of level 3 TCGA RNA-seq gene expression data for 9,732 tumors 

and 727 tumor adjacent normal samples (10,459 total samples) measured by the 5,000 most 

variably expressed genes. The full dataset together is referred to as the pan-cancer data. The 

level 3 RNA-seq data consists of a preprocessed and batch-corrected gene abundance by 

sample matrix measured by log2(FPKM + 1) transformed RSEM values. The most variably 

expressed genes were defined by median absolute deviation (MAD). In total, there were 33 

different cancer-types (including glioblastoma, ovarian, breast, lung, bladder cancer, etc.) 

profiled, each with varying number of tumors. We accessed RNA-seq data from the UCSC 

Xena data browser on March 8th, 2016 and archived the data in Zenodo.30 To facilitate 

training, we min-maxed scaled RNA-seq data to the range of 0 – 1. We used corresponding 

clinical data accessed from the Snaptron web server.31

2.5. Interpretation of Gene Weights

Much like the weights of a deterministic autoencoder, Tybalt’s decoder weights captured the 

contribution of specific genes to each learned feature.7,8,32 For most features, the distribution 

of gene weights was similar: Many genes had weights near zero and few genes had high 

weights at each tail. In order to characterize patterns explained by selected encoded features 

of interest, we performed overrepresentation pathway analyses (ORA) separately for both 

positive and negative high weight genes; defined by greater than 2.5 standard deviations 

above or below the mean, respectively. We used WebGestalt,33 with a background of the 

5,000 assayed genes, to perform the analysis over gene ontology (GO) biological process 

terms.34 P values are presented after an Benjamini-Hochberg FDR adjustment.

2.6. The Latent Space of Ovarian Cancer Subtypes

Image processing studies have shown the remarkable ability of generative models to 

mathematically manipulate learned latent dimensions.35,36 For example, subtracting the 

image latent representation of a neutral man from a smiling man and adding it to a neutral 

woman, resulted in a vector associated with a smiling woman. We were interested in the 

extent to which Tybalt learned a manifold representation that could be manipulated 

mathematically to identify state transitions across high grade serous ovarian cancer (HGSC) 

subtypes. The TCGA naming convention of these subtypes is mesenchymal, proliferative, 

immunoreactive, and differentiated.37
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To characterize the largest differences between the mesenchymal/immunoreactive and 

proliferative/differentiated HGSC subtypes, we performed a series of mean HGSC subtype 

vector subtractions in Tybalt latent space:

(1)

(2)

(3)

Where (ik = k) is an indicator function if sample i has membership with subtype k and z is 

the encoded layer. We used tumor subtype assignments provided for TCGA samples in 

Verhaak et al. 2013.38 If Tybalt learned a biological manifold, this subtraction would result 

in the identification of biologically relevant features stratifying tumors of specific subtypes 

with a continuum of expression states.

2.7. Enabling Exploration through Visualization

We provide a Shiny app to interactively visualize activation patterns of encoded Tybalt 

features with covariate information at https://gregway.shinyapps.io/pancan_plotter/.

3. Results

Tybalt compressed tumors into a lower dimensional space, acting as a nonlinear 

dimensionality reduction algorithm. Tybalt learned which genes contributed to each feature, 

potentially capturing aberrant pathway activation and treatment vulnerabilities. Tybalt was 

unsupervised; therefore, it could learn both known and unknown biological patterns. In order 

to determine if the features captured biological signals, we characterized both sample- and 

gene-specific activation patterns.

3.1. Tumors were encoded in a lower dimensional space

The tumors were encoded from original gene expression vectors of 5,000 MAD genes into a 

lower dimensional vector of length 100. To determine if the sample encodings faithfully 

recapitulated large, tissue specific signals in the data, we visualized sample-specific Tybalt 

encoded features (z vector for each sample) by t-distributed stochastic neighbor embedding 

(t-SNE).39 We observed similar patterns for Tybalt encodings (Figure 2A) as compared to 0–

1 normalized RNA-seq data (Figure 2B). Tybalt geometrically preserved well known 

relationships, including similarities between glioblastoma (GBM) and low grade glioma 

(LGG). Importantly, the recapitulation of tissue-specific signal was captured by non-

redundant, highly heterogeneous features (Figure 2C). Based on the hierarchical clustering 

dendrogram, the features appeared to be capturing distinct signals. For instance, tumor 
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versus normal and patient sex are large signals present in cancer gene expression, but they 

were distributed uniformly in the clustering solution indicating non-redundant feature 

activations.

3.2. Features represent biological signal

Our goal was to train and evaluate Tybalt on its ability to learn biological signals in the data 

and not to perform a comprehensive survey of learned features. Therefore, we investigated 

whether or not Tybalt could distinguish patient sex and patterns of metastatic activation. We 

determined that the model extracted patient sex robustly (Figure 3A). Feature encoding 82 

nearly perfectly separated samples by sex. Furthermore, we identified a set of nodes that 

together identified skin cutaneous melanoma (SKCM) tumors of both primary and 

metastatic origin (Figure 3B).

The weights used to decode the hidden layer (z vector) back into a high-fidelity 

reconstruction of the input can capture important and consistent biological patterns 

embedded in the gene expression data.7,8,32 For instance, there were only 17 genes needed to 

identify patient sex (Figure 3C). These genes were mostly located on sex chromosomes. The 

two positive weight genes were X inactivation genes XIST and TSIX, while the negative 

weight genes were mostly Y chromosome genes such as EIF1AY, UTY, and KDM5D. This 

result served as a positive control that the unsupervised model was able to construct a feature 

that described a clearly biological source of variance in the data.

There were several genes contributing to the two encoded features that separated the SKCM 

tumors (Figure 3D). Several genes existed in the high weight tails of each distribution for 

feature encodings 53 and 66. We performed an ORA on the high weight genes. In general, 

several pathways were identified as overrepresented in the set as compared to random. The 

samples had intermediate to high levels of feature encoding 53, which did not correspond to 

any known GO term, potentially indicating an unknown but important biological process. 

The samples also had intermediate to high levels of encoding 66 which implicated GO terms 

related to cholesterol, ethanol, and lipid metabolism including regulation of intestinal 

cholesterol absorption (adj. p = 3.0e−2), ethanol oxidation (adj. p = 4.0e−02), and lipid 

catabolic process (adj. p = 4.0e−02). SKCM samples had consistently high activation of both 

encoded features, which separated them from other tumors. Nevertheless, more research is 

required to determine how VAE features could be best interpreted in this context.

3.3. Interpolating the lower dimensional manifold of HGSC subtypes

We performed an experiment to test whether or not Tybalt learned manifold differences of 

distinct HGSC subtypes. Previously, several groups identified four HGSC subtypes using 

gene expression.37,40,41 However, the four HGSC subtypes were not consistently defined 

across populations; the data suggested the presence of three subtypes or fewer.42 The study 

observed that the immunoreactive/mesenchymal and differentiated/proliferative tumors 

consistently collapsed together when setting clustering algorithms to find 2 subtypes.42 This 

observation may suggest the presence of distinct gene expression programs existing on an 

activation spectrum driving differences in these subtypes. Therefore, we hypothesized that 
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Tybalt would learn the manifold of gene expression spectra existing in differential 

proportions across these subtypes.

The largest feature encoding difference between the mean HGSC mesenchymal and the 

mean immunoreactive subtype ( ) was encoding 87 (Figure 4A). Encoding 77 

and encoding 56 (Figure 4B) also distinguished the mesenchymal and immunoreactive 

subtypes. The largest feature encoding differences between the mean proliferative and the 

mean differentiated subtype ( ) were contributed by encoding 79 (Figure 4C) and 

encoding 38 (Figure 4D). Interestingly, encoding 38 had high mean activation in both the 

immunoreactive and differentiated subtypes.

The mesenchymal subtype had the highest encoding 87 activation. Encoding 87 was 

associated with the expression of genes involved in collagen and extracellular matrix 

processes (Table 1), which has been previously observed to be an important marker of the 

mesenchymal subtype.37,40 Encoding 56 was associated with immune system responses 

(Table 1), and the immunoreactive subtype displayed the highest activation. Encoding 79 is 

mostly expressed in the proliferative subtype and has low activation in differentiated tumors. 

The high weight negative genes of encoding 79 were associated with glucuronidation 

processes (Table 1). The negative genes of encoding 38, which also distinguished 

differentiated from proliferative tumors but in the opposite direction, were also associated 

with glucuronidation. Previously, glucuronidation processes were observed to be associated 

with response to chemotherapy and survival in colon cancer patients.43,44 Our results 

indicate that differential activation of glucuronidation is a strong signal distinguishing 

HGSC subtypes. This observation may also help to explain increased survival in HGSC 

patients with differentiated tumors.41 Lastly, encoding 77 also separated immunoreactive 

from mesenchymal tumors and did not display any significant terms, which may indicate 

novel biology explaining undiscovered subtype differences.

4. Conclusion

Tybalt is a promising model but still requires careful validation and more comprehensive 

evaluation. We observed that the encoded features recapitulated tissue specific patterns. We 

determined that the learned features were generally non-redundant and could disentangle 

large sources of variation in the data, including patient sex and SKCM. It is also likely that 

the features learn tissue specific patterns distinguishing other cancer-types (our shiny app 

enables full exploration of VAE features by cancer-type). While we identified specific 

features separating HGSC subtypes, there are likely several other features that describe other 

important biological differences across cancer-types including differentiation state and 

activation states of specific pathways. Interpretation of the decoding layer weights helped to 

identify the contribution of different genes and pathways promoting disparate biological 

patterns. However, interpretation by pathway analysis must be performed with caution as 

these analyses rely on incomplete pathway databases and may contain many false positive 

results.

VAEs provide similar benefits as autoencoders, but they also have the ability to learn a 

manifold with meaningful relationships between samples. This manifold could represent 
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differing pathway activations, transitions between cancer states, or indicate particular tumors 

vulnerable to specific drugs. We performed initial testing to determine if we could traverse 

the underlying manifold by subtracting out cancer-type specific mean activations. While we 

identified several promising functional relationships existing in a spectrum of activation 

patterns, rigorous experimental testing would be required to draw strong conclusions about 

the biological implications. The specific subtype associations must be confirmed in 

independent datasets and the processes must be confirmed experimentally. It must also be 

assessed if Tybalt features learned from TCGA pan-cancer are generalizable to other, 

potentially more heterogeneous datasets. Further testing is required to confirm that Tybalt 

catalogued an interpretable manifold capable of interpolation between cancer states. In the 

future, we will develop higher capacity models and increased evaluation/interpretation 

efforts to catalog Tybalt encoded RNA-seq expression patterns present in specific cancer-

types. This effort will lead to widespread stratification of expression patterns and enable 

accurate detection of samples who may benefit from specific targeted therapies.

5. Reproducibility

We provide all scripts to reproduce and to build upon this analysis under an open source 

license at https://github.com/greenelab/tybalt.45
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Fig. 1. A variational autoencoder (VAE) applied to model gene expression data
(A) Model wire diagram of Tybalt encoding a gene expression vector (p = 5,000) into mean 

(μ) and standard deviation (σ) vectors (h = 100). A reparameterization trick4,5 enables 

learning z, which is then reconstructed back to input . (B) Training and validation VAE 

loss across training epochs (full pass through all training data). Shown across vertical and 

horizontal facets are values of κ and batch size, respectively. (C) Final validation loss for all 

parameters with κ = 1. (D) VAE loss for training and testing sets through optimized model 

training.
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Fig. 2. Samples encoded by a variational autoencoder retain biological signals
(A) t-distributed stochastic neighbor embedding (t-SNE) of TCGA pan-cancer tumors with 

Tybalt encoded features. (B) t-SNE of 0-1 normalized gene expression features. Tybalt 

retains similar signals as compared to uncompressed gene expression data. (C) Full Tybalt 

encoding features by TCGA pan-cancer sample heatmap. Given on the y axis are the 

patients sex and type of sample.
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Fig. 3. Specific examples of Tybalt features capturing biological signals
(A) Encoding 82 stratified patient sex. (B) Together, encodings 53 and 66 separated 

melanoma tumors. Distributions of gene coefficients contributing to each plot above for (C) 

patient sex and (D) melanoma. The gene coefficients consist of the Tybalt learned weights 

for each feature encoding.
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Fig. 4. Largest mean differences in HGSC subtype vector subtraction for each subtype
Subtracting the mesenchymal subtype by the immunoreactive results in distribution 

differences in (A) feature encoding 87 and (B) encoding 56. Subtracting the proliferative 

subtype by the differentiated subtype results in differences between (C) feature encoding 79 

and (D) encoding 38.
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Table 1

Summary of significantly overrepresented pathways separating HGSC subtypes

Encoding Tail Subtype Enrichment Pathway Adj. p value

87 + Mesenchymal Collagen Catabolic Process 1.8e−09

87 + Mesenchymal Extracellular Matrix Organization 4.2e−06

87 − Immunoreactive Urate Metabolic Process 1.5e−02

56 + Immunoreactive Immune Response 1.3e−12

56 + Immunoreactive Defense Response 2.9e−12

56 + Immunoreactive Regulation of Immune System Process 8.0e−07

56 − Mesenchymal No significant pathways identified

79 + Proliferative Chemical Synaptic Transmission 9.1e−03

79 − Differentiated Xenobiotic Glucuronidation 2.1e−09

38 + Differentiated No significant pathways identified

38 − Proliferative Xenobiotic Glucuronidation 7.2e−06
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