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Abstract

The universal eating monitor (UEM) is a table-embedded scale used to measure grams consumed 

over time while a person eats. It has been used in laboratory settings to test the effects of anorectic 

drugs and behavior manipulations such as slowing eating, and to study relationships between 

demographics and body weight. However, its use requires restricted conditions on the foods 

consumed and behaviors allowed during eating in order to simplify analysis of the scale data. 

Individual bites can only be measured when the only interaction with the scale is to carefully 

remove a single bite of food, consume it fully, and wait a minimum amount of time before the next 

bite. Other interactions are prohibited such as stirring and manipulating foods, retrieving or 

placing napkins or utensils on the scale, and in general anything that would change the scale 

weight that was not related to the consumption of an individual bite. This paper describes a new 

algorithm that can detect and measure the weight or individual bites consumed during unrestricted 

eating. The algorithm works by identifying time periods when the scale weight is stable and then 

analyzing the surrounding weight changes. The series of preceding and succeeding weight changes 

is compared against patterns for single food bites, food mass bites and drink bites to determine if a 

scale interaction is due to a bite or some other activity. The method was tested on 271 subjects, 

each eating a single meal in a cafeteria setting. A total of 24,101 bites were manually annotated in 

synchronized videos to establish ground truth as to the true, false and missed detections of bites. 

Our algorithm correctly detected and weighed approximately 39% of bites with approximately 1 

false positive per 10 actual bites. The improvement compared to the UEM is approximately three 

times the number of true detections and a 90% reduction in the number of false positives. Finally, 

an analysis of bites that could not be weighed compared to those that could be weighed revealed 

no statistically significant difference in average weight. These results suggest that our algorithm 

could be used to conduct studies using a table scale outside of laboratory or clinical settings and 

with unrestricted eating behaviors.

I. Introduction

The prevalence of obesity has doubled since 1980 and currently afflicts 13% of the world 

population [1]. Obesity is associated with increased risks for cardiovascular disease, 

diabetes, and certain forms of cancer [19], and has become a leading preventable cause of 

death [22]. The study and treatment of obesity is aided by tools that measure phenomena 

associated with the amount and rate of food and beverage consumption during a meal. The 

universal eating monitor (UEM) is a table-embedded scale that measures grams consumed 

per unit time [16]. It has been used in clinical and laboratory settings to test the effects of 

anorectic drugs [17], behavior modifications on eating rate and total consumption [13], [18], 

[31], [32]. It has also been used to measure variations in eating rate between the beginning 
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and end of a meal to categorize subjects as typical (slowing down as a meal progresses), 

linear, or binging (speeding up as a meal progresses) [8]. However, the UEM requires 

carefully restricted eating conditions in order to detect and measure individual bites, and the 

generalization of laboratory results to natural eating during free-living have been questioned 

[5], [26]. This paper describes a new algorithm that improves on the UEM by allowing a 

table-embedded scale to be used to measure individual bites during unrestricted eating.

Research in tools for measuring eating behavior can be broadly categorized into wearables, 

cameras and dining tables. Wearables include sensors on the head or neck to detect chewing 

or swallowing [3], [24], [25], [28]–[30] and sensors worn on the wrist to detect hand-to-

mouth gestures (i.e. bites) [6], [7], [14]. These have the advantage of being carried by the 

user and thus present at any location where the user may eat, but require continual 

compliance from the user to wear them and keep batteries charged. Camera based 

approaches [11], [21], [27], [36] can identify the types of foods consumed and thus provide 

nutrition measurements, but require pictures to be taken of each meal and similar to 

wearables require the user to carry and operate a camera. Dining tables can be instrumented 

with scales to continuously weigh food consumed [9], [10], [16], [34]. Of the three types of 

tools, instrumented tables place the least burden upon the user as they do not require the user 

to wear or carry anything, but they have the disadvantage that they can only measure eating 

behaviors occurring at the instrumented location. The three types of tools can also be 

combined in various ways. One study integrated a multi-touch tabletop computer, infrared 

camera, Kinect camera, Myo armband, green wristband and tags. These sensors were used to 

track plate location, detect bites, and identify the plate from which the bite was taken [20]. 

Another study correlated bite weight as measured by a scale with acoustical signals recorded 

at the ear [2].

The challenge to using a scale to monitor unrestricted eating is to detect the consumption of 

bites amidst the presence of other activities. Behaviors are commonly restricted to simplify 

interactions with the scale and thus simplify data analysis. Restrictions include requiring a 

specific utensil, disallowing drinks and limiting food choices. For example, food masses 

such as a sandwich or piece of pizza are typically avoided because they are picked up and 

consumed in multiple bites without being returned to the scale, preventing the weight 

measurement of each bite individually. Drinks cause a similar problem. Other limitations 

include disallowing manipulation of dishes on the scale, requiring the utensil to be left off of 

the scale, leaving the participant alone in the room, and disallowing mixing of foods. These 

activities can cause interaction with the scale without consumption occurring, triggering 

false positives. Some studies report that multiple participants were excluded from analysis 

due to manipulation of dishes on the scale [13], [32]. While such controlled conditions may 

be necessary for experiments involving administration of drugs, other experiments involving 

the manipulation of behaviors would benefit from less restricted conditions. A commercial 

product, the Mandometer, reports scale weight at a regular rate, providing feedback to users 

regarding their rate of eating (grams/min), but does not identify individual bites [9]. Given 

the difficulty of detecting individual bites in scale data, one approach to analysis is to 

calculate a cumulative intake curve that blurs bites over time by fitting a linear or curvilinear 

function [8]. However, analysis of individual bites provides more information about the 

microstructure of ingestive behavior such as time between bites (eating rate), total bites and 
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average bite size [4], [15]. Some UEM studies rely upon review of synchronized videos to 

manually mark when bites were consumed [16], [17]. Other studies use direct observation to 

manually count bites [31]. For studies using automation to count bites, details can be lacking 

[18] (in this case a footnote in an earlier study from the same group states that every 

decrease in weight is counted as a bite [13]). The original UEM [16] sampled weight at 3 sec 

intervals providing an inherent type of smoothing that supports the detection of weight 

decreases as individual bites. Another study reports automatically detecting scale stability at 

a 2 sec interval but the software was outsourced and is not described [33]. The novelty of 

this work is that it extends the UEM approach to automatically detect individual bites during 

unrestricted eating.

II. Methods

This section first describes the challenges in using a scale to measure unrestricted eating. It 

is important to note that these challenges do not prevent the calculation of smoothed 

cumulative intake curves (grams/min), but they do make it difficult to detect and measure 

individual bites. The section then describes our algorithm, the data collected, and our 

evaluation metrics.

A. Challenges in Unrestricted Eating

Figure 1a shows an example of scale data from restricted eating where the x-axis is time and 

the y-axis is grams. When a bite is taken, there is a temporary spike in weight as the person 

presses down on the plate to pick up a bite of food. The change in weight from before to 

after the spike yields the bite weight. The stable periods between these spikes correspond to 

the time when food is being consumed and the plate is not being touched. Figure 1b shows 

unrestricted eating in a naturalistic environment. In addition to having multiple spikes as 

participants cut, stir, or otherwise prepare food, not every stable period corresponds to a bite. 

In fact, only labels A, C, and D correspond to a bite. During labels B and E, the participant 

is talking with friends after preparing food, rather than consuming the food. These activities 

are common and expected in a naturalistic eating environment, causing difficulty in 

identifying bite times and bite weights.

A second challenge is the accurate measurement of weight. The UEM measures 

consumption by down-sampling the scale data in order to minimize noise caused when the 

scale is interacted with as shown in Figure 2. By down-sampling at .33 Hz, each weight 

decrease corresponds to a bite. However, there are three problems with this method when 

applied to unrestricted eating. First, any scale interaction lasting longer than 3 seconds will 

likely produce false positives, as multiple weight decreases may be associated with a single 

bite. Second, any bites taken within 3 seconds of each other would produce at least one false 

negative. Finally, only two of the bites in Figure 2 would yield correct weights (labels A and 

D). Labels B, C, and E would be incorrect weights, as the change in weight recorded would 

be the result of a sample being taken during a spike as the participant presses down on the 

scale to pick up food.

A third challenge is the existence of food mass bites and drink bites. Under laboratory 

conditions, foods are typically limited to those which can be consumed in individual bites 
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without returning food to the scale. In naturalistic eating, food mass bites can occur when a 

participant picks up a food mass (such as a sandwich or a piece of pizza), takes a bite, and 

returns the remainder of the food mass to the scale. Drink bites can occur when a 

participants picks up their drink, consumes some liquid, and returns the remainder of their 

drink to the scale. These two activities appear very different from single bites and must be 

treated differently when considering bite weight. Figure 3 shows an example of two 

consecutive food mass bites. Between labels A and B, the sandwich is picked up, during the 

stable period at label B, a bite is taken, and between labels B and C, the sandwich is returned 

to the tray. In order to calculate the weight of the food consumed, the difference between the 

weight shown in labels A and C is required. Similarly, for the second food mass bite shown, 

between labels C and D, the sandwich is picked up, during the stable period at label D, a bite 

is taken, and between labels D and E, the sandwich is returned to the tray. The weight of 

food consumed is found as the difference between labels C and E. When the UEM algorithm 

is applied to this data, the first weight decrease seen is the change from label A and label B. 

If this change in weight were considered to be the weight of a bite, then the algorithm would 

mistakenly indicate that the entire sandwich was consumed in a single bite.

B. Data

The data used in this study were recorded in the Harcombe Dining Hall of Clemson 

University. The facility seats up to 800 guests and provides hundreds of different foods and 

beverages, allowing people to customize their own meal. A total of 271 subjects (130 male, 

141 female; age 18–75; BMI 17–46 kg/m2; ethnicity 189 Caucasian, 27 African-American, 

2 American Indian or Alaska Native, 29 Asian or Pacific Islander, 11 Hispanic, and 13 

Other) participated in the study. Each subject provided informed consent. The study was 

approved by the Clemson University Institutional Review Board for the protection of human 

subjects.

An instrumented table was prepared to record data from up to four participants 

simultaneously. The scale used in our experiments was an OHAUS Scout Pro SP4001. The 

SP4001 is readable to 0.1 grams. It supports a maximum capacity of 4 kg. A tray was rigidly 

adhered to the scale to present a natural cafeteria setting. To determine the scale 

measurement noise, different amounts of weight were placed on the scale and repeated 

measurements were taken to experimentally determine σnoise = 0.29 g. Figure 4 shows the 

instrumented table. Digital cameras in the ceiling were positioned to record each participant, 

including the tray, upper torso and head. Participants wore wrist motion trackers, which were 

tethered to external computers for use in additional wrist-motion tracking consumption-

related studies. A scale was located under the tray of each subject to continuously record 

food weight during eating, as shown in Figure 5. The scale and video data for each meal 

were synchronized at 15 Hz during recording.

Reviewers watched the synchronized video of the participants eating and marked the times 

at which a bite of food or drink was consumed (identified as the time when placed into the 

mouth). For each bite, the reviewer annotated the container used, hand used, type of food/

beverage consumed, and utensil used. Food and drink bites were differentiated by the 

container used; drinks were consumed from either mugs or cups, while food was consumed 
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from either plates or bowls. Across all 271 subjects, a total of 24,101 bites were annotated as 

ground truth. Across all bites, 380 different types of food were consumed using 4 different 

utensils from 4 different containers [12].

C. Algorithm

Our method works by segmenting periods of time in which the scale weight is stable or 

unstable. The weight of a bite is determined by the difference in scale weight during stable 

periods surrounding the bite. Further contextual analysis is required based upon the type of 

bite and is discussed more below.

Scale stability is determined using a 1 second sliding window. If all data within that window 

are within ±3σnoise of the mean, where σnoise is the measurement error of the scale, then the 

window of data is considered stable. The total extent of a stable period is the contiguous 

sequence of data points passing this test. All remaining data are considered unstable.

Once stability has been established, the algorithm examines each stable period to determine 

if it fits one of three patterns: a single food bite, a food mass bite, or a drink bite. A single 

food bite is a bite during which the participant picks up food and consumes it fully, returning 

nothing to the scale. A food mass bite is a bite in which the participant picks up a mass of 

food, consumes some, then returns the remainder of the food mass to the scale. A drink bite 

is a bite in which the participant consumes liquid. Drink bites and food mass bites require 

different thresholds because drinks include the weight of the drink as well as the container 

holding the drink, while food mass bite weight decreases result from only the food mass 

being removed from the tray. In addition, drink bites tend to be significantly larger than food 

mass bites, so the expected bite size threshold must be adjusted. Finally, drinks bites are 

handled separately because drink bites and food bites differ with regard to kilocalories per 

gram, and thus the ability to differentiate between these two bite types could be valuable 

when estimating energy intake in further studies. The algorithm parameters include wa, wb, 

and wc which are stable weight measurements from the data, W1 - W6 are weight thresholds 

used to detect bites, and ta, tb, tc, and td, which indicate times at which the scale transitions 

between stability and instability.

Figure 6 shows the variables of interest for a single food bite. The stable period being 

analyzed spans time tb to tc. Equations 1–2 define the expected weight changes. There must 

be a decrease in weight during the preceding unstable period, as the food to be consumed is 

picked up. In order to eliminate scale noise from being identified as a bite, a minimum 

weight change equal to 3σnoise is required. The bounds on the bite size are controlled by the 

range 3σnoise – W1. Actual values for all parameters used in our experiments are provided in 

section II-E. Following the bite, there must not be an increase in scale weight beyond scale 

noise (Equation 2). If weight is returned to the scale during the next unstable period, it 

increases the likelihood that the weight decrease observed is due to a utensil or napkin being 

removed from the tray, rather than a single bite being captured. This restriction does 

decrease the number of true positives, but also decreases the number of false positives by a 

larger percentage, as is discussed in more detail in the results section.
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(1)

(2)

If the requirements for a single bite are not met, the requirements for a food mass bite are 

tested. Figure 7 shows the variables of interest. There must be a decrease in weight during 

the preceding unstable period and an increase in weight during the following unstable period 

as food is returned to the scale. Equations 3 defines the range of weight W2 – W3 for a food 

mass to be picked up from the scale, and equation 4 defines the bounds 3σnoise – W1 on the 

amount consumed.

(3)

(4)

Lastly, if the previous patterns did not match then the pattern for a drink bite is tested. Figure 

8 shows the variables of interest. There must be a decrease in weight during the preceding 

unstable period as the liquid container is removed from the scale, and an increase in weight 

during the following unstable period as the liquid container is returned to the scale.

Equation 5 defines the expected weight range W4 – W5 of the weight of a container plus the 

maximum amount of liquid it can hold. Equation 6 defines the bounds 3σnoise – W6 on the 

expected range of consumption of liquid.

(5)

(6)

D. Examples

The following two examples demonstrate the preceding algorithm and the difficulties that 

can be encountered in measuring bite weights. Figure 9 shows scale data collected during a 

meal that includes several individually detectable bites. Unstable scale periods are identified 

by labels A through M. In the example shown, label A indicates the time when the 

participant picks up a glass. Between labels A and B, the participant takes a drink from their 

beverage, and at label B, the participant returns the glass to the tray. The stable weight 

before label A and after label B indicate the weight of drink consumed. At label C, the 
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participant picks up a piece of pizza. Between labels C and D, she takes a bite of pizza, and 

at label D, she returns it to the tray. Weights before C and after D indicate the weight of the 

food consumed. The same pattern as shown for labels C and D is shown again at labels E 

and F. At labels G, L, and M, the participant picks up a piece of salad and consumes it. In 

these scenarios, the bite weight can be found by taking the difference between the weights 

before and after the label. At labels H, I, J, and K, the participant is eating salad, but the 

scale does not have time to stabilize and allow the bite weights to be individually 

determined.

Figure 10 shows an example containing more challenging data. In this example, label A is an 

unstable region in which the participant picks up a French fry from their tray. This is the 

only individually detectable bite in the example. At label B, a large piece of pita bread is 

picked up but not immediately consumed. At labels C and D, bread is dipped in hummus and 

consumed in multiple bites while never being returned to the scale. Labels C and D only 

correspond to the amount of hummus added to the bread when it is dipped, not the weight of 

the bite including bread and hummus. At label E, the participant picks up a sandwich and 

takes multiple bites before returning the sandwich to the tray at label F. None of the 

individual bites from the sandwich can be measured because the sandwich does not make 

contact with the scale during this time. A drink is picked up at label G, some is consumed, 

and the glass is returned at label H. This bite weight is not detectable because the scale is not 

able to stabilize between labels F and G.

E. Parameters

For the algorithm parameters W1 – W6, previous work provides some guidance. One study 

[16] found that an average spoonful of a yogurt blend was 13.3 ± 4.1 g when participants 

were deprived of food for 6 hours before eating, suggesting a 99.7% confidence range of 1.0 

– 25.6 g. Another study [23] found a range of bite size for boiled rice of 4 to 23 g and a 

range of bite weights for apples of 2 to 18 g. These sources were based upon a limited 

selection of foods. To investigate further, we selected 20 meals randomly from our data set 

and looked at the distribution of bite weights. Approximately 97% of bites were less than 30 

g, with the remaining 3% residing in a long tail of the distribution. Based on this evidence, 

we selected W1 = 30 g.

Using the same analysis of 20 meals, we found that the range of weight decrease for picking 

up a food mass bite ranged between 100 g and 300 g. The distribution did not exhibit long 

tails; thus, we selected W2 = 100 g and W3 = 300 g. Similarly, we found that the range of 

weight decrease for picking up a liquid container was between 80 g and 550 g, and that the 

maximum consumption during a single liquid bite was 79 g. We therefore selected W4 = 80 

g, W5 = 550 g and W6 = 80 g. Note that the parameters W4 and W5 are tuned to the 

characteristics of liquid containers within our experimental environment (their weight plus 

the maximum weight of liquid they can hold), and would need to be adjusted if different 

containers were used. Since the distribution of W2 and W3 did not exhibit long tails and 

represent a wide weight threshold, these values are fairly robust. In addition, no drink bites 

larger than W6 occurred across our 24,101 bites, so this threshold is considered robust as 

well. The value of W1 is most likely to have the largest sensitivity with regard to 
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performance, since the distribution for the data determining this threshold had a long tail. 

This threshold is varied and results discussed.

F. UEM Algorithm

As mentioned in the introduction, studies using the UEM either manually detected bites 

through video or direct observation or treated each weight decrease as a bite. To represent 

this class of methods, we downsampled our data to .33 Hz, as described in the original UEM 

[16], and counted every weight decrease as a bite as described in [13].

G. Evaluation metrics

Figure 11 illustrates our evaluation process. Our algorithm produces two times used to 

determine a bite weight, between which the bite must occur. This span of time is depicted by 

thick horizontal bars under the scale data, and thin vertical bars indicate ground truth marked 

times of actual bites. The algorithm detections cover a time span from the beginning of an 

unstable period to the end of the following stable period for a single food bite or the 

beginning of an unstable period to the end of the following unstable period for a food mass 

or drink bite. The figure depicts five scenarios for evaluation. An actual bite that occurred 

within an algorithm detection of consumption was considered a true positive (TP). A TP is 

shown for a single food bite and for a food mass bite. Multiple bites occurring within a 

single algorithm detection are not considered TPs because they cannot be measured 

independently. Instead, these are labeled as multi bites. If an actual bite occurs outside any 

algorithm detections of consumption, it is considered a false negative (FN). If an algorithm 

detection of consumption occurs but there is no actual bite, it is considered a false positive 

(FP).

To evaluate the UEM method, we searched a span equal to the sample rate used for each bite 

detected. At the .33 Hz sample rate used, each weight decrease detected would trigger a 

search for ground truth bites across a span of one and one half seconds before and after the 

weight decrease detection. These time spans are evaluated in the same way as the time spans 

identified by our algorithm.

Finally, for both algorithms, any time spans which begin or end in unstable scale data were 

labeled as invalid weights. This metric was applied because any weight measurement taken 

during instability in scale data cannot be relied upon for an accurate weight.

III. Results

A. Algorithm performance

Table I shows a comparison between the results of our proposed algorithm and the UEM 

algorithm. Of the 24,101 ground truth bites, our algorithm correctly detected and measured 

39% of bites and missed 47%. An additional 14% of bites were multi-bites, in which our 

algorithm detected that at least one bite occurred, but cannot provide accurate weights 

because multiple bites were taken without scale interaction. Compared to the UEM method, 

our algorithm provided roughly three times the number of true detections and a 90% 

reduction in the number of false positives.
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The portion of the algorithm relating to single food bites requires that there be no weight 

increase after a single bite occurs. Removing this requirement increases the true positive and 

multi-bite detection rates by 8% and 2% respectively, at the cost of increasing the false 

positives by 35% (false positives increase from 2,840 to 3,850). The increased specificity 

resulting from the inclusion of this requirement helps ensure that algorithm detections are 

actual bites. In addition, because threshold W1 is the most sensitive threshold to algorithm 

performance, we tested varying W1 from 25 grams to 35 grams and found that the true 

positives varied ±1% and false positives varied ±3%, indicating that the performance of the 

algorithm is not strongly sensitive to the value of W1.

Table II shows our algorithm’s performance on food vs drink bites. Both types of bites were 

equally detected (39%). The mean drink bite weight was larger than the mean food bite 

weight, with the average food bite being 8.9 grams with a 3.3 gram standard deviation and 

the average drink bite being 30.7 grams with a 13.7 gram standard deviation.

B. Analysis of unmeasurable bites

In this section we evaluate if the bites that were individually detected and measured differed 

statistically from the bites that were undetected and thus unmeasurable. The average 

unmeasurable bite weight was found through the following steps. First, the starting and 

ending weights for each meal were found by identifying the stable scale weight immediately 

before the first actual bite and immediately following the last actual bite. The measurable 

bite weights were subtracted from this total, giving the total weight of the unmeasurable 

bites. The following formula was then applied:

(7)

where Wunmeasurable is the total weight of unmeasurable bites, Nud and Nuf are the number of 

unmeasurable drink and food bites, and Wmd and Wmf are the average weights of the 

measurable drink and food bites. Recall that all bites were manually annotated using 

synchronized video so their count could be identified. As shown in Table II, drink bites were 

found to be heavier than food bites, so that their relative contribution must be weighted 

differently. The value x calculated in equation 7 is the average weight of an unmeasurable 

food bite, and the value  is the average weight of an unmeasurable drink bite. To apply 

this formula, a subject must have at least 1 of each type of bite (measurable and 

unmeasurable, food and drink). Of 271 participants, 37 did not meet this criteria. An 

additional 5 participants removed entire containers from the scale preventing the calculation 

of total weight consumed. For the remaining 229 participants, the mean weight of the 

measured food bites (8.9 +/− 0.22 gms) did not differ significantly from the mean weight of 

the unmeasured food bites (8.6 +/− 0.31 gms) (t[229] = 0.967, p = 0.34), and the weights of 

the measured drink bites (30.7 +/−0.91 gms) did not differ significantly from the weights of 

the unmeasured drink bites (30.6 +/− 1.37 gms) (t[229] = 0.153, p = 0.879). This suggests 

that while our method is only capable of measuring 39% of bites, on average, they are 

representative of the whole distribution of bites taken.
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IV. Discussion

Up to now, scale methods for analyzing eating behaviors have been limited to clinical and 

laboratory settings. We envision a table capable of discreetly and unobtrusively monitoring 

eating behaviors. Such behaviors could include eating rate, bite size, ratio of food to drink 

bites, and distribution of bite weights. These measurements could be used to help implement 

behavior change paradigms. While this system places no burden on the user, it requires an 

algorithm which can be applied to unrestricted eating, which we seek to provide.

During restricted eating, the UEM method can approach 100% bite detection accuracy. 

When applied to unrestricted eating, as in our dataset, the UEM method provides true 

positives for only 2,991 bites (12.4%) and triggered 26,630 false positives which is more 

than the number of actual bites. Our new algorithm provided three times the number of true 

detections with a 90% reduction in the number of false positives. Major factors preventing 

our method from achieving higher accuracy include multiple bites taken without scale 

interaction, actions taken too quickly for the scale to stabilize, and interactions with non-

food items (such as a utensil, napkin, or dish). Given these limitations, however, the bites 

detected by our algorithm were found to be representative of all bites taken by each subject.

Our study has some limitations. The meals were all consumed in a cafeteria setting and 

subjects always ate in groups. There were a large variety of foods and beverages, so W1, W2, 

W3, and W6 are fairly generic, but containers of liquid were limited to two types of plastic 

container available in the cafeteria, causing W4 and W5 to be specific to the containers used 

in the study.

Future work could extend this approach to a table that uses more complex embedded 

sensors. A previous study used a cloth equipped with a fine grained pressure textile matrix 

and a weight sensitive tablet to recognize food intake actions such as cutting, scooping and 

stirring, and identify the plate on which an action is executed [34], [35]. Another study used 

a tabletop surface with embedded scales under nine distinct sections and RFID tags attached 

to dishes to determine the weight of food moved between dishes and consumed [10]. 

However, these experiments restricted food types, required objects to be placed in specific 

areas of the table, and limited participant interaction with the table. It would be interesting to 

extend our algorithm to work on 2D matrices (images) of weight measurements as provided 

by these sensors as opposed to the 1D measurements obtained from a single scale.

The algorithm presented in this paper extends the body of work on using a table embedded 

scale to monitor food and drink consumption. It allows for automatically detecting and 

weighing individual drink, food mass, and single food bites. It presents new opportunities to 

conduct studies using a table embedded scale with unrestricted eating behaviors.
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Fig. 1. 
Restricted eating compared to unrestricted eating. All labels in (a) correspond to bites while 

in (b) only labels A, C, and D are bites.
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Fig. 2. 
The effect of down-sampling at .33 Hz to measure bite weights. Labels A – E indicate 

weight decreases that may be measured when down-sampling to .33Hz (as in the original 

UEM) is applied to scale measurements. Labels A and D provide correct weights, but labels 

B, C, and E would yield incorrect weights.
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Fig. 3. 
Scale data generated while a sandwich is consumed. The sandwich is picked up between 

labels A and B, a bite is taken during label B, and the sandwich is returned between labels B 

and C. The sandwich is also picked up between labels C and D, a bite taken, and the 

remainder returned between D and E. The weight of food consumed can be found based on 

the change in weight values identified in the figure.
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Fig. 4. 
The instrumented table used for data collection.
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Fig. 5. 
A scale was mounted beneath each participant’s tray.
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Fig. 6. 
A hand drawn depiction of a typical single bite. Labels ta and tb indicate start and end of the 

period of scale instability associated with the bite of food being picked up from the tray. 

Labels tc and td indicate the start and end of the period of scale instability following the bite 

being taken. wa, wb, and wc represent scale weights found during stable scale periods.
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Fig. 7. 
A hand drawn depiction of a typical food mass bite. Labels ta and tb indicate start and end of 

the period of scale instability associated with a food mass being picked up from the tray (eg: 

a sandwich or piece of pizza). Labels tc and td indicate the start and end of the period of 

scale instability as the remainder of the food mass is returned to the tray. wa, wb, and wc 

represent scale weights found during stable scale periods.
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Fig. 8. 
A hand drawn depiction of a typical drink bite. Labels ta and tb indicate start and end of the 

period of scale instability associated with a drink being picked up from the tray. Labels tc 

and td indicate the start and end of the period of scale instability as the drink is returned to 

the tray. wa, wb, and wc represent scale weights found during stable scale periods.
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Fig. 9. 
Example of scale data showing individually detectable bites of each of the three types. A–B 

is a drink bite; C–D and E–F are food mass bites; G, L, and M are single food bites.
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Fig. 10. 
Example of scale data in which the only individually detectable bite occurs at label A.
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Fig. 11. 
Examples of classification results. Thick horizontal bars are algorithm detections, thin 

vertical lines are ground truth times of bites.
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TABLE II

Food vs drink bites.

Total Individually Detected Average weight

Food 20542 7940 (39%) 8.9 ± 3.3 g

Drink 3559 1378 (39%) 30.7 ± 13.7 g
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