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Machine learning unifies the modeling of materials
and molecules
Albert P. Bartók,1 Sandip De,2,3 Carl Poelking,4 Noam Bernstein,5 James R. Kermode,6

Gábor Csányi,7 Michele Ceriotti2,3*

Determining the stability ofmolecules and condensed phases is the cornerstone of atomistic modeling, underpinning
ourunderstandingof chemical andmaterials properties and transformations.We show that amachine-learningmodel,
based on a local description of chemical environments and Bayesian statistical learning, provides a unified framework
to predict atomic-scale properties. It captures the quantum mechanical effects governing the complex surface re-
constructions of silicon, predicts the stability of different classes of molecules with chemical accuracy, and distinguishes
active and inactive protein ligands with more than 99% reliability. The universality and the systematic nature of our
framework provide new insight into the potential energy surface of materials and molecules.
INTRODUCTION
Calculating the energies of molecules and condensed-phase struc-
tures is fundamental to predicting the behavior of matter at the atomic
scale and a formidable challenge. Reliably assessing the relative stability
of different compounds, and of different phases of the same material,
requires the evaluation of the energy of a given three-dimensional (3D)
assembly of atoms with an accuracy comparable with the thermal energy
(~0.5 kcal/mol at room temperature), which is a small fraction of the
energy of a chemical bond (up to ~230 kcal/mol for the N2 molecule).

Quantum mechanics is a universal framework that can deliver this
level of accuracy. By solving the Schrödinger equation, the electronic
structure of materials and molecules can, in principle, be computed,
and from it all ground-state properties and excitations follow. The pro-
hibitive computational cost of exact solutions at the level of electronic
structure theory leads to the development of many approximate tech-
niques that address different classes of systems. Coupled-cluster (CC)
theory (1) for molecules and density functional theory (DFT) (2–4) for
the condensed phase have been particularly successful and can typically
deliver the levels of accuracy required to address a plethora of important
scientific questions. The computational cost of these electronic structure
models is nevertheless still significant, limiting their routine application
in practice to dozens of atoms in the case of CC and hundreds in the
case of DFT.

To go further, explicit electronic structure calculations have to be
avoided, and we have to predict the energy corresponding to an atomic
configuration directly. Although such empirical potential methods
(force fields) are much less expensive, their predictions to date have
been qualitative at best. Moreover, the number of distinct approaches
has rapidly multiplied; in the struggle for accuracy at low cost, gen-
erality is invariably sacrificed. Recently, machine-learning (ML) ap-
proaches have started to be applied to designing interatomic potentials
that interpolate electronic structure data, as opposed to using para-
metric functional forms tuned to match experimental or calculated
observables. Although there have been several hints that this approach
can achieve the accuracy of DFT at a fraction of the cost (5–11), little
effort has been put into recovering the generality of quantum me-
chanics: atomic and molecular descriptors, as well as learning strategies
have been optimized for different classes of problems, and, in particular,
efforts for materials and chemistry have been rather disconnected. Here,
we show that the combination of Gaussian process regression (GPR)
(12) with a local descriptor of atomic neighbor environments that is
general and systematic can reunite the modeling of hard matter and
molecules, consistently achieving predictive accuracy. This lays the
foundations for a universal reactive force field that can recover the
accuracy of the Schrödinger equation at negligible cost and—because
of the locality of the model—leads to an intuitive understanding of the
stability and the interactions between molecules. By showing that we
can accurately classify active and inactive protein ligands, we provide
evidence that this framework can be extended to capture more com-
plex, nonlocal properties as well.
RESULTS
The reconstructions of silicon surfaces
Because of its early technological relevance to the semiconductor
industry and simple bulk structure, Si has traditionally been one of
the archetypical tests for new computational approaches to materials
modeling (5, 6, 15–18). Even though its bulk properties can be cap-
tured reasonably well by simple empirical potentials, its surfaces dis-
play remarkably complex reconstructions, whose stability is governed
by a subtle balance of elastic properties and quantummechanical effects,
such as the Jahn-Teller distortion that determines a tilt of dimers on
Si(100). The determination of the dimer–adatom–stacking fault (DAS)
7 × 7 reconstruction of Si(111) as the most stable among several similar
structures was the culmination of a concerted effort of experiment and
modeling including early scanning tunneling microscopy (STM) (14)
and was also a triumph for DFT (19).

As shown in Fig. 1, empirical potentials incorrectly predict the un-
reconstructed 1 × 1 to be a lower-energy configuration and fail to
predict the 7 × 7 as the lowest energy structure even from among the
DAS reconstructions. Up to now, the only models that could capture
these effects included electronic structure information, at least on the
tight binding level (or its approximation as a bond-order potential).
We trained a SOAP (smooth overlap of atomic positions)–GAP
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(Gaussian approximation potential) model on a database of configura-
tions from short ab initio molecular dynamics trajectories of small
unit cells (including the 3 × 3 reconstruction, but not those with larger
unit cells; for details, see the Supplementary Materials). This model
correctly describes a broad array of standard bulk and defected
material properties within a wide range of pressures and temperatures,
as well as properties that depend on transition-state energetics such as
the generalized stacking fault surfaces shown in the Supplementary
Materials. A striking illustration of the power of this model is the quan-
titative description of both the tilt of the (100) dimers and the ordering
of the (111) reconstructions, without explicitly considering the quan-
tum mechanical electron density.

Nevertheless, even this model is based on a training data set, which
is a result of ad hoc (if well informed) choices. The Bayesian GPR
framework tells us how to improve the model. The predicted error
s*, shown as the color scale in Fig. 1B, can be used to identify new
configurations that are likely to provide useful information if added
to the training set. The adatoms on the surface have the highest error,
and once we included small surface unit cells with adatoms, the ML
model came much closer to its target.

Coupled-cluster energies for 130k molecules
Molecular properties exhibit distinctly different challenges than bulk
materials from the combinatorial number of stable configurations to
the presence of collective quantum mechanical and electrostatic
phenomena such as aromaticity, charge transfer, and hydrogen bonding.
At the same time, many relevant scientific questions involve predicting
the energetics of stable conformers, which is a less complex problem
than obtaining a reactive potential. After early indication of success on
a small data set (8, 20), here, we start our investigation using the GDB9
data set that contains about 134,000 small organic molecules whose
geometries have been optimized at the level of DFT and that has been
used in many of the pioneering studies of ML for molecules (21, 22).
However, accurate models have been reported only when predicting
DFT energies using geometries that have already been optimized at
the DFT level as inputs, which makes the exercise insightful (23) but
does not constitute an alternative to doing the DFT calculation.
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Figure 2A demonstrates that the GPR framework using the very
same SOAP descriptors can be used to obtain useful predictions of
the chemical energy of a molecule (the atomization energy) on this
heterogeneous chemical data set. DFT methods give very good equi-
librium geometries and are often used as a stepping stone to evaluate
energies at the “gold standard” level of CC theory [CCSD(T)]. They
have also been shown to constitute an excellent baseline reference to-
ward higher levels of theory (22). A SOAP-GAP model can use DFT
inputs and only 500 training points to predict CCSD(T) atomization
energies with an error below the symbolic threshold of 1 kcal/mol. The
error drops to less than 0.2 kcal/mol when training on 15% of the GDB9.

DFT calculations for the largest molecules in GDB9 can now be
performed in a few hours, which is still impractical if one wanted to
perform high-throughput molecular screening on millions of can-
didates. Instead, we can use the inexpensive semiempirical PM7 model
(taking around a second to compute a typical GDB9 molecule) to ob-
tain an approximate relaxed geometry and build a model to bridge the
gap between geometries and energies (22). With a training set of 20,000
structures, the model predicts CCSD(T) energies with 1 kcal/mol ac-
curacy using only the PM7 geometry and energy as input.

To achieve this level of accuracy, it is, however, crucial to use this
information judiciously. The quality of PM7 training points, as quan-
tified by the root mean square difference (RMSD) d between PM7 and
DFT geometries, varies significantly across the GDB9. In keeping with
the Bayesian spirit of the ML framework, we set the diagonal variance
º exp (d2/l2) corresponding to the previous information that struc-
tures with a larger RMSD between the two methods may be affected
by a larger uncertainty. Although we do not use RMSD information on
the test set, the effect of down-weighting information from the training
structures for which PM7 gives inaccurate geometries is to reduce the
prediction error by more than 40%.

The strategy used to select training structures also has a significant
impact on the reliability of the model. Figure 2B shows a sketch map
(24) of the structure of the GDB9 data set based on the kernel-induced
metric, demonstrating the inhomogeneity of the density of configura-
tions. Random selection of reference structures leaves large portions of
the space unrepresented, which results in a very heavy tailed distribution
A C
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Fig. 1. SOAP-GAP predictions for silicon surfaces. (A) The tilt angle of dimers on the reconstructed Si(100) surface [left, STM image (13); right, SOAP-GAP–relaxed structure] is the
result of a Jahn-Teller distortion, predicted tobeabout19° byDFTandSOAP-GAP. Empirical force fields showno tilt. (B) TheSi(111)–7×7 reconstruction is an iconic exampleof the complex
structures that canemerge fromthe interplayofdifferentquantummechanical effects [left, STM image (14); right, SOAP-GAP–relaxedstructure coloredbypredicted local energyerrorwhen
usinga training setwithout adatoms]. (C) Reproducing this delicatebalanceandpredicting that the7×7 is theground-state structure is oneof thehistorical successesofDFT: a SOAP-based
ML model is the only one that can describe this ordering, whereas widely used force fields incorrectly predict the unreconstructed surface (dashed lines) to a lower-energy state.
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of errors (see the Supplementary Materials). We find that selecting the
training set sequentially using a greedy algorithm that picks the next
farthest data point to be included [farthest point sampling (FPS)] gives
more uniform sampling of the database, dramatically reducing the
fraction of large errors, especially in the peripheral regions of the data
set (Fig. 2, C and D), leading to a more resilient ML model. Note that
this comes at the price of a small degradation of the performance as
measured by the commonly used MAE, because of the fact that densely
populated regions do not get any preferential sampling.

To test the “extrapolative power” or transferability of the SOAP-GAP
framework, we then applied the GDB9-trained model for DDFT-CC to
the prediction of the energetics of larger molecules and considered ~850
conformers of the dipeptides obtained from two natural amino acids,
aspartic acid and glutamic acid (25). Although GDB9 does not explicitly
contain information on the relative energies of conformers of the same
molecule, we could predict the CCSD(T) corrections to the DFT atom-
ization energies with an error of 0.45 kcal/mol, a 100-fold reduction
compared to the intrinsic error of DFT.

It is worth stressing that, within the scope of the SOAP-GAP
framework, there is considerable room for improvement of accu-
racy. Using the same SOAP parameters that we adopted for the GDB9
model for the benchmark task of learning DFT energies using DFT
geometries as inputs, we could obtain an MAE of 0.40 kcal/mol in
the smaller QM7b data set (8). As discussed in the Supplementary
Materials, using an “alchemical kernel” (20) to include correlations
between different species allowed us to further reduce that error to
0.33 kcal/mol. A “multiscale” kernel (a sum of SOAP kernels each
with a different radial cutoff parameter) that combines information
from different length scales allows one to reach an accuracy of
0.26 kcal/mol (or, alternatively, to reach 1 kcal/mol accuracy with
fewer than 1000 FPS training points)—both results being considerably
superior to existing methods that have been demonstrated on similar
data sets. The same multiscale kernel also improves significantly the
performance for GDB9, allowing us to reach 1 kcal/mol with just 5000
reference energies and as little as 0.18 kcal/mol with 75,000 structures.
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Given that SOAP-GAP allows naturally to both predict and learn from
derivatives of the potential (that is, forces), the doors are open for
building models that can describe local fluctuations and/or chemical re-
activity by extending the training set to nonequilibrium configurations—
as we demonstrated already for the silicon force field here and previously
for other elemental materials.

The stability of molecular conformers
To even further reduce the prediction error on new molecules, we can
include a larger set of training points from theGDB9. It is clear from the
learning curve in Fig. 2A that theMLmodel is still far from its saturation
point. For the benchmark DFT learning exercise, we attained an er-
ror smaller than 0.28 kcal/mol using 100,000 training points, which is
improved even further by using a more complex multiscale kernel (see
the Supplementary Materials). An alternative is to train a specialized
model that aims to obtain accurate predictions of the relative energies
of a set of similar molecules. As an example of this approach, we con-
sidered a set of 208 conformers of glucose, whose relative stability has
been recently assessed with a large set of electronic structure methods
(26). Figure 3A shows that as few as 20 reference configurations are suf-
ficient to evaluate the corrections to semiempirical energies that are
needed to reach 1 kcal/mol accuracy relative to complete basis set
CCSD(T) energies or to reach 0.2 to 0.4 kcal/mol error when using
different flavors of DFT as a baseline.

Receptor-ligand binding
The accurate prediction of molecular energies opens up the possibility
of computing a vast array of more complex thermodynamic properties,
using the SOAP-GAP model as the underlying energy engine in mo-
lecular dynamics simulation. However, the generality of the SOAP
kernel for describing chemical environments also allows directly at-
tacking different classes of scientific questions—for example, side-
stepping not only the evaluation of electronic structure but also the cost
of demanding free-energy calculations, making instead a direct connec-
tion to experimental observations. As a demonstration of the potential
A B C
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Fig. 2. SOAP-GAP predictions for a molecular database. (A) Learning curves for the CC atomization energy of molecules in the GDB9 data set, using the average-kernel
SOAP with a cutoff of 3 Å. Black lines correspond to using DFT geometries to predict CC energies for the DFT-optimized geometry. Using the DFT energies as a baseline and
learningDDFT − CC = ECC− EDFT lead to a fivefold reduction of the test error compared to learning CC energies directly as the target property (CCDFT). The other curves correspond to
using PM7-optimized geometries as the input to the prediction of CC energies of the DFT geometries. There is little improvement when learning the energy correction (DPM7 − CC)
compared to direct training on the CC energies (CCPM7). However, using information on the structural discrepancy between PM7 andDFT geometries in the training set brings the
prediction error down to1 kcal/molmean absolute error (MAE) (Dl

PM7‐CC). (B) A sketch-map representation of theGDB9 (each gray point corresponding to one structure) highlights
the importance of selecting training configurations to uniformly cover configuration space. The average prediction error for different portions of the map is markedly different
when using a random selection (C) and FPS (D). The latter is much better behaved in the peripheral, poorly populated regions.
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of this approach, we investigated the problem of receptor-ligand bind-
ing. We used data from the DUD-E (Directory of Useful Decoys, En-
hanced) (29), a highly curated set of receptor-ligand pairs taken from
the ChEMBL database, enriched with property-matched decoys (30).
These decoys resemble the individual ligands in terms of atomic com-
position, molecular weight, and physicochemical properties but are
structurally distinct in that they do not bind to the protein receptor.

We trained a kernel support vector machine (SVM) (31, 32) for
each of the 102 receptors listed in the DUD-E to predict whether or
not each candidate molecule binds to the corresponding polypeptide.
We used an equal but varying number ntrain of ligands and decoys
(up to 120) for each receptor, using the SOAP kernel as before to
represent the similarity between atomic environments. Here, however,
we chose the matrix P in Eq. 3 corresponding to an optimal permuta-
tion matching (“MATCH”-SOAP) rather than a uniform average (20).
Predictions are collected over the remaining compounds, and the re-
sults are averaged over different subsets used for training.

The receiver operating characteristic (ROC), shown in Fig. 4, de-
scribes the trade-off between the rate of true positives p(+|+) versus false
positives p(+|–) because the decision threshold of the SVM is varied.
The area under the ROC curve (AUC) is a widely used performance
measure of binary classifiers, in a loose sense giving the fraction of cor-
rectly classified items. A SOAP-based SVM trained on just 20 examples
can predict receptor-ligand binding with a typical accuracy of 95%,
which goes up to 98% when 60 training examples are used and 99%
when using an FPS training set selection strategy—significantly sur-
passing the performance of other methods that have been recently
introduced to perform similar predictions (33–35). The model is so
reliable that its failures are highly suggestive of inconsistencies in the
underlying data. The dashed line in Fig. 4A corresponds to FGFR1 (fibro-
blast growth factor receptor 1) and shows no predictive capability. Fur-
ther investigation uncovered data corruption in the DUD-E data set,
with identical ligands labeled as both active and inactive. Using an earlier
version of the database (36) shows no such anomaly, giving an AUC of
0.99 for FGFR1.
Bartók et al., Sci. Adv. 2017;3 : e1701816 13 December 2017
DISCUSSION
ML is often regarded—and criticized—as the quintessentially naïve in-
ductive approach to science. However, in many cases, one can extract
some intuition and insight from a critical look at the behavior of an
ML model.

Fitting the difference between levels of electronic structure theory
gives an indication of how smooth and localized, and therefore easy
for SOAP-GAP to learn, the corrections that are added by increas-
ingly expensive methods are. For instance, hybrid DFT methods
are considerably more demanding than plain “generalized gradient
approximation” DFT and show a considerably smaller baseline var-
iance to high-end quantum chemistry methods. However, the error of
the corresponding SOAP-GAP model is almost the same for the two
classes of DFT, which indicates that exact-exchange corrections to DFT
are particularly short ranged and therefore easy to learn with local
kernel methods. Because of the additive nature of the average-kernel
SOAP, it is also possible to decompose the energy difference between
methods into atom-centered contributions (Fig. 3B). The discrepancy
between DFT and semiempirical methods appears to involve large
terms with opposite signs (positive for carbon atoms and negative
for aliphatic hydrogens) that partially cancel out. Exact exchange plays
an important role in determining the energetics of the ring and open-
chain forms (26), and the discrepancy between PBE and PBE0 is local-
ized mostly on the aldehyde/hemiacetal group, as well as, to a lesser
extent, on the H-bonded O atoms. The smaller corrections between
CC methods and hybrid functionals show less evident patterns because
one would expect when the corrections involve correlation energy.

Long-range nonadditive components to the energy are expected for
any system with electrostatic interactions and could be treated, for
instance, by machine-learning the local charges and dielectric response
terms (37) and then by feeding them into established models of elec-
trostatics and dispersion. However, for elemental materials and the
small molecules, we consider here that an additive energy model can
be improved simply by increasing the kernel range, rc. Looking at the
dependence of the learning curves on the cutoff for the GDB9 (see
A B

Fig. 3. Predictions of the stability of glucose conformers at different levels of theory. (A) Extensive tests on 208 conformers of glucose (taking only 20 FPS samples for
training) reveal thepotential of anMLapproach tobridgedifferent levels of quantumchemistry; thediagonal of the plot shows theMAEresulting fromdirect trainingoneach level
of theory; the upper half shows the intrinsic difference between each pairs of models; the lower half shows the MAE for learning each correction. (B) The energy difference
between three pairs of electronic structure methods, partitioned in atomic contributions based on a SOAP analysis and represented as a heat map. The molecule on the left
represents the lowest-energy conformer of glucose in the data set, and the one on the right represents the highest-energy conformer.
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Fig. 5. A kernel function to compare solids and molecules can be built based
on density overlap kernels between atom-centered environments. Chemical
variability is accounted for by building separate neighbor densities for each dis-
tinct element [see the study of De et al. (20) and the Supplementary Materials].
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the Supplementary Materials), we can observe the trade-off between the
completeness of the representation and its extrapolative power (38). For
small training set sizes, a very short cutoff of 2 Å and the averaged mo-
lecular kernel give the best performance but then saturates at about
2 kcal/mol. Longer cutoffs give initially worse performance, because
the input space is larger but the learning rate deteriorates more slowly;
at 20,000 training structures, rc = 3 Å yields the best performance.
Given that the SOAP kernel gives a complete description (39) of each
environment up to rc, we can infer from these observations the rela-
tionship between the length and energy scales of physical interactions
(see the Supplementary Materials). For a DFT model, considering in-
teractions up to 2 Å is optimal if one is content to capture physical
interactions with an energy scale of the order of 2.5 kcal/mol. When
learning corrections to electron correlation, DDFT-CC, most of the
Bartók et al., Sci. Adv. 2017;3 : e1701816 13 December 2017
short-range information is already included in the DFT baseline,
and so, length scales up to and above 3 Å become relevant already
for ntrain < 20,000, allowing an accuracy of less than 0.2 kcal/mol to
be reached.

In contrast, the case of ligand-binding predictions poses a sig-
nificant challenge to an additive energy model already at the small-
molecule scale. Ligand binding is typically mediated by electronegative/
electropositive or polarizable groups located in “strategic” locations
within the ligand molecule, which additionally must satisfy a set of
steric constraints to fit into the binding pocket of the receptor. Cap-
turing these spatial correlations of the molecular structure is a pre-
requisite to accurately predict whether or not a given molecule binds
to a receptor. This is demonstrated by the unsatisfactory performance
of a classifier based on an averaged combination of atomic SOAP
kernels (see Fig. 4B). By combining the atomic SOAP kernels using an
“environment matching” procedure, one can introduce a degree of
nonlocality—because now environments in the two molecules must
be matched pairwise rather than in an averaged sense. Thus, the
relative performance of different kernel combination strategies gives
a sense of whether the global property of a molecule can result from
averages over different parts of the system or whether a very particular
spatial distribution of molecular features is at play.

A striking demonstration of inferring structure-property relations
from an ML model is given in Fig. 4 (B and C), where the SOAP clas-
sifier is used to identify binding moieties (“warheads”) for each of the
receptors. To this end, we formally project the SVM decision function
z onto individual atoms of a test compound associated with each
“binding score” (see the Supplementary Materials). Red and yellow
regions of the isosurface plots denote moieties that are expected
to promote binding. For decoys, no consistent patterns are resolved.
The identified warheads are largely conserved across the set of
ligands—by investigating the position of the crystal ligand inside
the binding pocket of the adenosine receptor A2 (Fig. 4B), we can
Fig. 4. Predictions of ligand-receptor binding. (A) ROCs of binary classifiers based on a SOAP kernel, applied to the prediction of the binding behavior of ligands and
decoys taken from the DUD-E, trained on 60 examples. Each ROC corresponds to one specific protein receptor. The red curve is the average over the individual ROCs. The
dashed line corresponds to receptor FGFR1, which contains inconsistent data in the latest version of the DUD-E. Inset: AUC performancemeasure as a function of the number
of ligands used in the training, for the “bestmatch”–SOAP kernel (MATCH) and averagemolecular SOAP kernel (AVG). (B and C) Visualization of bindingmoieties for adenosine
receptor A2, as predicted for the crystal ligand (B), aswell as two known ligands and onedecoy (C). The contribution of an individual atomic environment to the classification is
quantified by the contribution dzi in signed distance z to the SVM decision boundary and visualized as a heat map projected on the SOAP neighbor density [images for all
ligands and all receptors are accessible online (27)]. Regions with dz > 0 contain structural patterns expected to promote binding (see color scale and text). The snapshot in (B)
indicates the position of the crystal ligand in the receptor pocket as obtained by x-ray crystallography (28). PDB, Protein Data Bank.
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confirm that a positive binding field is assigned to those molecular
fragments that localize in the pocket of the receptor. Scanning through
the large set of ligands in the data set (see the Supplementary Materials),
it is also clear that the six-membered ring and its amine group, fused
with the adjacent five-membered ring, are the most prominent among
the actives. Finally, note that regions of the active ligands colored in blue
(as in Fig. 4C) could serve as target locations for lead optimization, for
example, to improve receptor affinity and selectivity.

The consistent success of the SOAP-GAP framework across ma-
terials, molecules, and biological systems shows that it is possible to
sidestep the explicit electronic structure and free energy calculation
and determine the direct relation between molecular geometry and
stability. This already enables useful predictions to be made in many
problems, and there is a lot of scope for further development—for
example, by using a deep-learning approach, developing multiscale
kernels to treat long-range interactions, using active learning strategies
(40), or fine-tuning the assumed correlations between the contribu-
tions of different chemical elements, as discussed in the Supplementary
Materials. We believe that the exceptional performance of the SOAP-
GAP framework we demonstrated stems from its general, mathemat-
ically rigorous approach to the problem of representing local chemical
environments. Building on this local representation allowed us to
capture even more complex, nonlocal properties.
MATERIALS AND METHODS
GPR is a Bayesian ML framework (12), which is also formally equivalent
to another ML method, kernel ridge regression. Both are based on a
kernel function K(x, x′) that acts as a similarity measure between
inputs x and x′. Data points close in the metric space induced by the
kernel are expected to correspond to the values y and y′ of the function
one is trying to approximate. Given a set of training structures xi and
the associated properties yi, the prediction of the property for a new
structure x can be written as

�yðxÞ ¼ ∑
i
wiKðx; xiÞ ð1Þ

which is a linear fit using the kernel function as a basis, evaluated at
the locations of the previous observations. The optimal setting of the
weight vector is w = (K + s2I)− 1y, where s is the Tikhonov regular-
ization parameter. In the framework of GPR, which takes as its prior
probability a multivariate normal distribution with the kernel as its
covariance, Eq. 1 represents the mean, �y, of the posterior distribution

pðy* yÞº pðy* & yÞ ¼ Nð�y; s*2Þ�
� ð2Þ

which now also provides an estimate of the error of the prediction, s*.
The regularization parameter s corresponds to the expected deviation
of the observations from the underlying model due to statistical or
systematic errors. Within GPR, it is also easy to obtain generalizations
for observations that are not of the function values but linear func-
tionals thereof (sums and derivatives). Low-rank (sparse) approxima-
tions of the kernel matrix are straightforward and help reduce the
computational burden of the matrix inversion in computing the weight
vector (41).

The efficacy of ML methods critically depends on developing an
appropriate kernel or, equivalently, on identifying relevant features
Bartók et al., Sci. Adv. 2017;3 : e1701816 13 December 2017
in the input space that are used to compare data items. In the context
of materials modeling, the input space of all possible molecules and
solids is vast. We can drastically reduce the learning task by focusing
on local atomic environments instead and using a kernel between local
environments as a building block, as depicted in Fig. 5.

We used the SOAP kernel, which is the overlap integral of the neigh-
bor density within a finite cutoff rc, smoothed by a Gaussian with a
length scale governed by the interatomic spacing, and finally integrated
over all 3D rotations and normalized. This kernel is equivalent to the
scalar product of the spherical power spectra of the neighbor density
(39), which therefore constitutes a chemical descriptor of the neighbor
environment. Both the kernel and the descriptor respect all physical
symmetries (rotations, translations, and permutations), are smooth
functions of atomic coordinates, and can be refined at will to provide
a complete description of each environment.

To construct a kernel K between two molecules (or periodic
structures) A and B from the SOAP kernel k, we averaged over all
possible pairs of environments

KðA;BÞ ¼ ∑
i∈A;j∈B

Pij kðxi; xjÞ ð3Þ

As shown in the Supplementary Materials, choosing Pij ¼ 1
NANB

for
fitting the energy per atom was equivalent to defining it as a sum of
atomic energy contributions (that is, an interatomic potential), with
the atomic energy function being a GPR fit using the SOAP kernel
as its basis. Given that the available observations were total energies
and their derivatives with respect to atoms (forces), the learning ma-
chine provided us with the optimal decomposition of the quantum
mechanical total energy into atomic contributions. In keeping with
the nomenclature of the recent literature, we call a GPR model of the
atomistic potential energy surface a GAP, and a “SOAP-GAP model”
is one that uses the SOAP kernel.

Other choices of P are possible and will make sense for various
applications. For example, setting P to be the permutation matrix
that maximizes the value of K corresponds to the “best match” assign-
ment between constituent atoms in the two structures that are com-
pared, which can be computed in polynomial time by formulating the
task as an optimal assignment problem (42). It is possible to smoothly
interpolate between the average and best match kernels using an
entropy-regularized Wasserstein distance (43) construction.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/12/e1701816/DC1
section 1. The atom-centered GAP is equivalent to the average molecular kernel
section 2. A SOAP-GAP potential for silicon
section 3. Predicting atomization energies for the GDB9 and QM7b databases
section 4. Ligand classification and visualization
table S1. Summary of the database for the silicon model.
fig. S1. Energetics of configuration paths that correspond to the formation of stacking faults in
the diamond structure.
fig. S2. Fraction of test configurations with an error smaller than a given threshold, for ntrain =
20,000 training structures selected at random (dashed line) or by FPS (full line).
fig. S3. Optimal range of interactions for learning GDB9 DFT energies.
fig. S4. Optimal range of interactions for learning GDB9 CC and DCC-DFT energies.
fig. S5. Training curves for the prediction of DFT energies using DFT geometries as inputs for
the GDB9 data set.
fig. S6. Training curves for the prediction of DFT energies using DFT geometries as inputs for
the QM7b data set.
fig. S7. Training curves for the prediction of DFT energies using DFT geometries as inputs for
the GDB9 data set.
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fig. S8. Training curves for the prediction of DFT energies using DFT geometries as inputs, for a
data set containing a total of 684 configurations of glutamic acid dipeptide (E) and aspartic
acid dipeptide (D).
fig. S9. Correlation plots for the learning of the energetics of dipeptide configurations, based
on GDB9.
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