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Abstract

Intra-fractional motion is a concern during prostate radiation therapy, as it may cause deviations 

between planned and delivered radiation doses. Because accurate motion information during 

treatment delivery is critical to address dose deviation, we developed the Projection Marker 

Matching Method (PM3), a novel method for prostate motion reconstruction in volumetric 

modulated arc therapy. The purpose of this method is to reconstruct in-treatment prostate motion 

trajectory using projected positions of implanted fiducial markers measured in kV x-ray projection 

images acquired during treatment delivery. We formulated this task as a quadratic optimization 

problem. The objective function penalized the distance from the reconstructed 3D position of each 

fiducial marker to the corresponding straight line, defined by the x-ray projection of the marker. 

Rigid translational motion of the prostate and motion smoothness along the temporal dimension 

were assumed and incorporated into the optimization model. We tested the motion reconstruction 

method in both simulation and phantom experimental studies. We quantified the accuracy using 

3D normalized root-mean-square (RMS) error defined as the norm of a vector containing ratios 

between the absolute RMS errors and corresponding motion ranges in three dimensions. In the 

simulation study with realistic prostate motion trajectories, the 3D normalized RMS error was on 

average 0.164 (range from 0.097 to 0.333). In an experimental study, a prostate phantom was 

driven to move along a realistic prostate motion trajectory. The 3D normalized RMS error was 

0.172. We also examined the impact of the model parameters on reconstruction accuracy, and 

found that a single set of parameters can be used for all the tested cases to accurately reconstruct 

the motion trajectories. The motion trajectory derived by PM3 may be incorporated into novel 

strategies, including 4D dose reconstruction and adaptive treatment replanning to address motion-

induced dose deviation.

1. INTRODUCTION

Radiotherapy is a major treatment modality for the management of prostate cancer 

(Denmeade and Isaacs, 2002). The goal of radiotherapy is to precisely deliver a prescribed 

dose to the tumor target while sparing healthy tissue. Intra-fractional motion is a major 

concern in prostate cancer radiotherapy treatment. Langen et al. (2008) reported that prostate 

motion greater than 3 mm from the treatment starting position occurred in 13.6% of the total 

treatment time. Another study using cine-MRI revealed that the mid-posterior point of the 

prostate has a 10% probability of moving more than 3 mm in a time frame of 1 min for 

patients with a full rectum, as compared to 20 min for those with an empty rectum (Ghilezan 

et al., 2005). In conventional 3D conformal therapy, intra-fractional organ motion leads to a 
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blurring of the delivered dose. This problem becomes more severe in intensity-modulated 

radiation therapy (IMRT) (Bortfeld, 2006; Webb, 2006) because of the interplay between the 

multi-leaf collimator (MLC) and target motion (Yang et al., 1997; Yu et al., 1998). Although 

the cumulative error in a treatment course with a number of fractions may be averaged to a 

level similar to that in conventional radiotherapy (Bortfeld et al., 2002; Bortfeld, 2006), the 

motion problem is still concerning in stereotactic body radiation therapy (SBRT), because of 

the substantially reduced number of fractions. Also, the prolonged treatment time per 

fraction increases the chance of motion (Langen et al., 2008).

Over the years, both online and offline approaches have been employed to address intra-

fractional prostate motion. In the online approach, tumor motion is tracked in real-time and 

treatment delivery is adjusted accordingly by modifying the MLC leaf positions (Sawant et 
al., 2008; Sawant et al., 2009; Keall et al., 2014; Colvill et al., 2015) or by using the binary 

MLC leaf open time as in TomoTherapy (Lu, 2008; Lu et al., 2009). In the offline approach, 

the doses delivered under intra-fractional motion are reconstructed after treatment. Motion-

induced dosimetric deviation can be compensated by adaptive replanning of the remaining 

fractions (Wu et al., 2006; Liu and Wu, 2011). In both approaches, prostate motion 

information is required to either guide treatment adjustments or perform dose 

reconstructions.

Current methods for prostate tracking are primarily based on implanted fiducial markers. 

The Calypso system (Varian Medical System, Palo Alto, CA) uses electromagnetic 

transponders to monitor prostate motion in real time with submillimeter accuracy 

(Willoughby et al., 2006; Kupelian et al., 2007). The main drawback of the system is the 

generation of severe image artifacts in MRI, limiting its application in many clinical studies 

(Zhu et al., 2009; Liu et al., 2010; Franz et al., 2014). Although the Cine Electronic Portal 

Imaging Device (EPID) has been employed to track the position of implanted fiducial 

markers (Azcona et al., 2013), the use of MLC for intensity modulation may block this 

tracking. The use of a kilovoltage (kV) x-ray system mounted on a linear accelerator 

(LINAC) has unique advantages as compared with the Calypso system and the EPID 

approach. Significant research efforts have been devoted to this area. In the novel 

Kilovoltage Intrafraction Monitoring (KIM) system (Poulsen et al., 2010; Keall et al., 2015), 

a 3D Gaussian probability density function (PDF) of a marker motion was first estimated 

using a set of pretreatment kV projection images. During treatment, a 3D marker position 

was calculated as the expectation value along the projection line under the estimated 3D 

Gaussian PDF. Another successful approach was based on Bayesian statistics (Li et al., 
2011), in which an optimization problem was solved to derive the maximum a posteriori 

estimator of the marker position for an in-treatment kV image, while incorporating 

information from the setup images.

We present the Projection Marker Matching Method (PM3), a new method that reconstructs 

intra-fractional 3D prostate motion in volumetric modulated arc therapy (VMAT), using kV 

x-ray projection images acquired during treatment delivery. The term “reconstruct” refers to 

the activity in a post-treatment setting, in which the motion trajectory is determined 

retrospectively after delivery. This method has been developed to support an ongoing clinical 

trial at our institution on the use of SBRT for high-risk prostate cancer (NCT 02353819). 
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This trial aims at dose escalation in both prostate and intra-prostatic lesions identified 

through multi-parametric MRI. The relatively small lesion size makes the motion-induced 

dosimetric deviation especially concerning. We will address this issue by employing an 

offline adaptive replanning technique that requires the reconstruction of intra-fractional 

prostate motion. The PM3 method derives the prostate motion trajectory from a geometry 

perspective. It directly estimates the 3D prostate position by matching the projection 

positions of the fiducial markers with the measured ones. This idea is motivated by recent 

advances in 2D-3D image registration problems, where motion in the 3D space can be 

accurately determined by 2D projection images based on projection geometry via 

optimization approaches (Otake et al., 2015; Uneri et al., 2015; De Silva et al., 2016). Since 

a single projection image cannot accurately determine the 3D prostate position because of 

missing geometric information along the direction of the x-ray projection, we assume a 

temporal correlation between prostate positions at different moments. This assumption 

enables the use of kV projections at different angles during VMAT treatment to collectively 

determine the motion trajectory.

2. METHODS AND MATERIALS

2.1 Method

We used a Varian TrueBeam LINAC (Varian Medical System, Palo Alto, CA) equipped with 

an on-board kV imaging system. The kV imaging system consisted of a GS-1542 kV x-ray 

tube and an aSi flat panel imager. The kV detector had a resolution of 1024×768 pixels with 

a pixel size of 0.388 mm in both dimensions. The effective area of detection was 

approximately 40 × 30 cm2. The source-to-axis distance was 100 cm and the source-to-

detector distance was 150 cm. Multiple (typically three) gold fiducial markers were 

implanted into the prostate of each patient. During treatment delivery of a VMAT plan, the 

kV-triggered imaging function available on the TrueBeam LINAC was enabled to acquire 

the 2D kV projection images every 3 sec. After treatment, the acquired kV projections were 

used collectively to determine the prostate motion trajectory during treatment delivery.

2.1.1 Two-dimensional marker position calculation—The 2D coordinates (u,v) on 

the kV imager are defined in figure 1. The v axis was along the patient’s inferior-superior 

direction and the u axis was perpendicular to the v axis. For each kV projection image, we 

used a 2D marker identification method, as previously described (Mao et al., 2008). Briefly, 

a region-of-interest (ROI) was first defined on a projection image for each marker to reduce 

the searching area. The ROI of a marker was a circular region with a radius of 75 pixels 

(29.1 mm), centered at the position that corresponded to the forward projection proposition 

of the 3D marker in the planning CT. Second, the projection of a cylinder type marker may 

have different orientations based on its 3D locations relative to the source/imager setup. To 

perform template matching more accurately in the next step, we calculated the orientation of 

each pixel inside the ROI. Specifically, we generated a segmentation filter with eight 

orientation bins covering a 180° rotation. For each pixel within the ROI, we calculated the 

correlation between the image patch centering at this pixel and the templates. The template 

with the highest correlation value defined the pixel orientation. Finally, template matching 

was performed in the ROI using orientation-specific templates. Correlation coefficients (TC) 
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and intensity scaling factors (TS) were calculated. The marker position was finally 

determined using thresholds on these values (TC = 0.45, TS =0.25).

2.1.2 Three-dimensional target reconstruction—A set of in-treatment kV projections 

were acquired at a sequence of time t =1,2,…, N during VMAT treatment delivery. Using a 

single projection image, we could not calculate the 3D prostate position because of missing 

information along the x-ray projection direction. However, using the motion correlation 

along the temporal dimension, all projection images acquired at different directions could be 

used to collectively reconstruct the intra-fractional motion trajectory (described below).

We assumed the prostate to be under a rigid translational motion. Hence, this motion was 

characterized by a 3D translational vector Tt as a function of t. Our objective was to 

determine the prostate motion trajectory based on the acquired kV projection images. We 

proposed a PM3 method to solve this problem We assumed M markers inside the patient 

indexed by i =1,2, …, M. For a projection image acquired at time t, the projection position 

of the ith marker on the imager was denoted as . The projection positions of the M markers 

defined M straight lines  that connected the x-ray source positions ft and the corresponding 

marker projection positions . The main idea of our PM3 method was that the translational 

vector Tt should satisfy three conditions. The first condition was data fidelity. When a 

projected marker position  was found on the detector, the corresponding 3D marker 

location  should be on the line . Here,  is the marker location on the 

treatment planning CT.  is the translational vector for this marker. The second condition 

was motion consistency between the markers and the prostate. This condition required that 

the translational vectors  for i =1,2,…, M should be the same as for the prostate 

translational vector Tt. Third, the determined motions were correlated along the temporal 

dimension. Hence, we expected the marker locations at subsequent moments to be close.

To model these conditions mathematically, we proposed to solve an optimization problem as 

follows:

(1)

In this optimization problem, the first term in the objective function ensured data fidelity by 

minimizing the distance between the 3D position  of each marker and its projected 

position  onto the line  (figure 1).  is a projection operator that maps the 3D point 

 to a point on the line  that is closest to . The second term enforced motion consistency 

by minimizing the difference between the translational vector of each individual marker and 

that of the prostate. The third term was employed to ensure motion smoothness by 

penalizing the 3D distances between marker positions at subsequent moments. Here, we 
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excluded those boundary terms such as  in the summation. In this model, α and λ 
were parameters controlling relevant importance among the three terms. They were 

manually selected to obtain optimal accuracy. The impacts of parameter selection will be 

described later.

According to the derivation in Appendix II, Eq. (1) is a convex optimization problem when 

α ≧0 and λ ≧0. We performed numerical tests and found that for a large range of α and λ, 

the problem in Eq. (1) is strictly convex. Hence, searching for the minimizer is equivalent to 

solving a linear equation AX = b (Wright and Nocedal, 1999). X is a column vector 

containing all the translational vectors , and Tt. Its explicit form and those of matrix A and 

column vector b are given in Appendix I. The problem has a unique global minimizer X = 

A−1b, which was computed numerically using MATLAB.

2.2 Test cases

2.2.1 Two-dimensional marker position calculation—We first tested the accuracy 

and quantified the uncertainty of the calculated 2D marker positions. The uncertainty in this 

step will be considered in subsequent simulation studies regarding the 3D motion 

reconstruction. As such, x-ray images from seven prostate cancer patients were acquired. A 

total of 1789 images were obtained with three markers in each image. The 2D center 

positions for each marker were estimated and compared with manually identified positions. 

The distance between the calculated and the manually identified positions were calculated as 

the estimation error, and the distribution of this error was studied.

2.2.2 Three-dimensional motion trajectory reconstruction—We performed motion 

trajectory reconstruction tests at three different levels. First, we conducted simulation studies 

using exact 2D marker projection positions computed for known 3D marker positions as 

input to validate the PM3 algorithm. Second, we performed simulation studies with the input 

2D marker positions subjected to a small error. This allowed us to test the algorithm’s 

performance in a realistic setting, considering the uncertainty in the input 2D marker 

positions. Last, phantom experiments were conducted to test the overall system performance 

in a realistic clinical context. The experiment was considered an end-to-end test because it 

also contained different forms of system uncertainties, including inaccurate x-ray projection 

geometry due to gantry wobbling.

Simulation studies: We simulated the 3D positions of three markers that followed a known 

motion trajectory. Every 3 sec, the 2D projection positions of the three markers were 

calculated according to the projection angle at that moment, while the angles were set 

assuming a gantry rotational speed of 1 rotation/min. The calculated 2D marker positions 

were used in our PM3 algorithm as inputs to determine the 3D motion trajectory. The 

calculated prostate translational vector Tt was compared with the known ground truth 

trajectory. We calculated root-mean-square (RMS) errors along the x, y, and z directions and 

the 3D RMS error. We also expected the error to be positively correlated with the motion 

range. Hence, we also report the 3D normalized RMS error, defined as
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(2)

where ex, ey, and ez are errors along x, y, and z directions, and Ax, Ay, and Az are motion 

amplitude, respectively. Note that e3D is dimensionless. Besides, we also reported the 

percentage of time for the 3D errors exceeding certain millimeters.

We considered two types of motion. In the first type, all three markers moved under an 

elliptical trajectory. The motions along the x and y directions followed two sinusoidal 

functions with the same phase, while a third sinusoidal function with a 90° phase shift was 

applied to the z direction. The motion frequency was set to 3 cycles/ min. We tested cases 

with different elliptical motion amplitudes. The second motion type was a real prostate 

motion obtained from the Calypso tracking system. The prostate motion was expected to 

behave differently in IMRT and SBRT treatments. As previously reported, when patients 

were immobilized in the prone position within thermoplastic shells, the prostate moved 

synchronously with respiration (Malone et al., 2000). Motion data sets from seven IMRT 

prostate patients and from one SBRT prostate patient were included in our study. We 

selected motion data in one treatment fraction for each IMRT patient, and motion data in 

five fractions for the SBRT patient. Each data set contained trajectories of three points 

acquired by three Calypso electromagnetic transponders at every 0.3 sec. We singled out the 

transponder positions every 3 sec over a period of 4 min. This time length was selected, 

because it corresponded to the treatment length in our SBRT protocol that delivers each 

fraction using a flattening-filter-free beam in four arcs. The real prostate motion, as 

represented by the three electromagnetic transponders, may not correspond to rigid 

translational motion. Hence, we computed the mean position of the transponders as a 

function of time, regarded as the ground truth to evaluate the accuracy of the prostate motion 

trajectory derived by the PM3 algorithm.

We repeated the study described above with the 2D marker positions perturbed by a noise 

term to incorporate uncertainties in the calculation step of the 2D marker position. Noise 

followed the error distribution identified in Sec. 2.1.1. Based on the perturbed 2D 

projections, we reconstructed the 3D marker positions. For each case, we repeatedly 

performed the calculation one hundred times with a random realization of the 2D errors. We 

then calculated the average of the RMS errors over one hundred runs.

In addition, our simulation studies included the evaluation of the impact of parameters α and 

λ. We calculated the RMS errors of the prostate translational vector under different 

combinations of α and λ with values ranging within a large interval. We also analyzed the 

impact of these parameters on motion reconstruction accuracy.

Phantom studies: In an end-to-end phantom test, we created a tissue equivalent prostate-

like phantom (figure 2(a)). Three gold markers were implanted in this phantom. To drive the 

phantom, a 4D Phantom motion stage (Malinowski et al., 2007) with a dynamic positioning 

mode was used. The reported positioning error of this phantom was within 0.1 mm. 
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Elliptical motion and realistic prostate motion from a patient were generated using this 

stage. The elliptical motion was designed to study the performance of our algorithm under a 

regular motion pattern. For the cases with realistic patient motions, we used motion data 

measured by Calypso from one IMRT prostate cancer patient. During our testing, the 

phantom was set to move around the isocenter (figure 2(b)). The triggered image acquisition 

parameters were 110 kVp and 10.00 mAs. The mAs level was lower than that used in an 

actual patient case to avoid saturated images due to the smaller phantom size.

We also implemented the KIM method for comparison purposes (Poulsen et al., 2008a, 

2009). In this method, the motion covariance matrix for the Gaussian PDF was calculated by 

maximum likelihood estimation (MLE) optimization. This is a non-convex optimization 

problem and its solution depends on the initial condition. In the cases of realistic prostate 

motion, we used a motion covariance matrix calculated as an average of 17 patients as the 

initial input for the MLE optimization, as suggested by Poulsen et al. (2008b). In addition to 

comparing RMS errors, we performed statistical tests to compare 3D error between KIM 

and our method. p values in different cases were reported.

3. RESULTS

3.1 Two-dimensional marker identification

The results of a 2D marker position calculation for one representative case are presented in 

figure 3. A projection image along the patient’s left-right direction, with three markers 

indicated by the arrows, is shown in figure 3(a). The successfully identified marker positions 

are reported in figure 3(b). Among the 1789 images tested, the position errors using the 

visually identified positions as ground truth were within 1 mm in 99.5% of the cases. The 

statistical distribution of the errors along the u and v directions is shown in figure 4. The 

errors along both directions approximately followed a Gaussian distribution. After fitting to 

a Gaussian function, we found that the mean value and standard deviation along the u 
direction were 0.03 mm and 0.3 mm, respectively. The mean value and standard deviation 

along the v direction were −0.05 mm and 0.3 mm, respectively. Because the mean values 

were small, and we did not expect any bias in the estimated marker position toward any 

direction, in subsequent studies we will assume the mean value to be zero. Furthermore, we 

found this error was gantry angle dependent. Specifically, larger error typically occurred, 

when the x-ray tube was at patient lateral direction. This was caused by low contrast and 

high noise of projection images at these directions due to high x-ray attenuation.

3.2 Three-dimensional motion trajectory reconstruction

We report the results of the 3D motion trajectory reconstruction in a series of cases. In these 

results, the x value was along the patient’s left-right (LR) direction, y was along the patient’s 

anterior-posterior (AP) direction, and z was along the cranial-cordial (CC) direction (figure 

1).

3.2.1 Simulation studies—We first performed simulation studies on a group of cases 

with regular ellipsoidal motions of motion ranges 1.0 ~ 4.0 mm. Accurate 2D marker 

positions were used as input. The RMS errors were found all smaller than 0.5×10−3 mm, 
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indicating the capability of the PM3 algorithm in terms of accurately recovering the motion 

trajectory in an ideal scenario.

The RMS errors for the same motion but with noise added to the 2D marker positions are 

summarized in table 1. Noise followed a Gaussian distribution with a mean value and a 

standard deviation of 0 and 0.3 mm, respectively. The 3D RMS error was found to be 

correlated with motion ranges. It increased from 0.483 mm to 1.901 mm, when the motion 

range changed from 1.0 mm to 4.0 mm. The 3D normalized RMS error approximately 

remained at a constant level of 0.48. The percentages of time for 3D errors exceeding 1, 2 

and 3 mm were also found to be correlated with motion ranges. On average, they were 5.3%, 

1.9% and 0.3%, respectively.

The RMS errors in the simulation studies with real prostate motion data in IMRT and SBRT 

are reported in tables 2 and 3, respectively. Noise was not added to the 2D marker positions. 

The 3D RMS error varied from 0.280 mm to 1.040 mm in the IMRT cases and from 0.100 

mm to 0.161 mm in the SBRT cases. The 3D normalized RMS errors were on average 0.181 

(ranging in 0.097 ~ 0.331) and 0.134 (ranging in 0.127 ~ 0.142) in the IMRT and SBRT 

cases, respectively. For the seven IMRT cases simulated, the percentages of time for 3D 

errors exceeding 0.5, 1 and 2 mm were 5.0~36.3%, 0.0~23.1% and 0.0~7.5%, respectively. 

For the SBRT cases, the percentages of time for 3D errors exceeding 0.2, 0.4 and 0.6 mm 

were reported. They range in 6.3~19.4%, 0.0~0.6% and 0.0%, respectively.

We studied cases with realistic motion data and Gaussian noise (mean value and standard 

deviation of 0.0 and 0.3 mm) added to the 2D marker projection positions. The results are 

shown in tables 4 and 5. We also compared the results with those from the KIM method. In 

tables 4 and 5, the first number in each cell reporting the RMS errors refers to the PM3 

method, and the second number refers to the KIM method. The numbers in boldface indicate 

RMS errors smaller than those identified in the KIM method. The averaged 3D normalized 

RMS errors in the PM3 method were smaller than those in the KIM method. By comparing 

tables 2 and 4, and tables 3 and 5, we found that Gaussian noise in the 2D marker positions 

slightly increased the 3D normalized RMS errors. On average, the 3D normalized RMS 

error was increased from 0.181 to 0.186 for the IMRT cases, and from 0.134 to 0.153 for the 

SBRT cases. In terms of average percentage of time for 3D errors exceeding 0.5 mm in the 

IMRT cases, they were 17.5% and 30.0% for the PM3 and the KIM methods, respectively. 

For the SBRT cases, percentages of time for 3D errors exceeding 0.2 mm were 15.9% and 

40.5% for the two methods.

The reconstructed 3D coordinates for representative IMRT and SBRT cases are illustrated in 

figures 5 and 6. Three-dimensional errors are also plotted. In the IMRT case, the percentage 

of projections with 3D errors less than 0.5 mm was 87.5%. For the SBRT case and a more 

stringent criterion of 0.3 mm, the percentage of projections with 3D errors less than this 

criterion was 99.4%. In contrast, the percentages were 74.4% and 75.0% in the IMRT and 

SBRT cases, respectively, for the KIM method.

3.2.2 Phantom experiment—Motion ranges and RMS errors from the phantom 

experiment with elliptical motions are summarized in table 6. The 3D normalized RMS error 

Chi et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2018 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was 0.455 on average. The results for the experimental studies with a real prostate motion 

trajectory in an IMRT case are presented in table 7 and compared with those from the KIM 

method. The two numbers in each cell reporting the RMS errors are for the PM3 method and 

the KIM method. The numbers in boldface indicate RMS errors smaller than those identified 

in the KIM method. The 3D RMS error from the PM3 method was smaller than that from the 

KIM method by ~0.11. The reconstructed prostate motion along the x, y, and z directions is 

shown in figure 7. The reconstruction errors were less than 0.5 mm in 78.8% and 77.5% 

projections in the PM3 method and KIM method, respectively. A large error exceeding 10 

mm along the y direction was also observed in the KIM method. This issue will be 

addressed in the discussion section.

3.3 Parameter selection

We investigated the impact of parameters α and λ on the resulting accuracy of our method 

by conducting simulation studies with ellipsoidal and prostate motion in an SBRT case. The 

motion range was 1 mm for the ellipsoidal motion case and 3.3 mm for the SBRT case. In 

both cases, noise was added to the 2D marker positions. Color plots indicate RMS errors as 

functions of α and λ in the two cases (figures 8 and 9). The difference in absolute RMS 

error values between the two cases reflected the difference in reconstruction accuracy. 

However, the patterns of RMS errors as a function of the two parameters were found to be 

very similar. In particular, α =1 and λ =0.1 (indicated by the white crosses in figures 8 and 

9) seemed ideal for both cases. Hence, we used these empirically determined parameter 

values for all cases. We validated this choice of parameter values in the phantom 

experiments. As reported in Sec. 3.2.2, RMS errors were found to be acceptable under this 

parameter set.

4. DISCUSSION

4.1 Comparison between our method and existing statistics-based motion tracking 
methods

Because kV-projection-based prostate motion reconstruction misses motion information 

along the projection direction, novel approaches are needed to compensate for this 

disadvantage. The approach to overcome this challenge in the PM3 method is different from 

that used in the KIM method (Poulsen et al., 2010; Keall et al., 2015) and the Bayesian-

statistics approach (Li et al., 2011). The PM3 method is geometry-based and assumes motion 

smoothness along the temporal dimension. This allows the recovery of the position 

information along the projection direction at one projection image from the information at 

neighboring projection images. Because of the rotational nature of VMAT, the projection 

direction varies between projection images. Therefore, the missing position information 

along the projection direction at one image is actually partially known in the neighboring 

images. It is because of this fact that the PM3 method is able to restore 3D motion trajectory 

collectively using all projections. In contrast, the KIM method depends on a statistical 

description of the marker motion via the PDF of the marker estimated through the pre-

treatment imaging stage. During treatment, the marker position along the projection line is 

estimated based on the PDF. In the Bayesian approach, a statistical description of the marker 

motion is formulated, and the marker position for one projection image is calculated via a 
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maximum a posteriori estimation that considers both the current projection and all 

previously acquired projections. Interestingly, the actual optimization problem 

corresponding to the Bayesian estimation problem has a geometric meaning. As shown in 

Eq. (6) in (Li et al., 2011), the resulting marker position is on a straight line, as defined by 

the current projection image. The marker position along the projection direction is 

determined by the terms coupling with the projection lines in previous projections.

Another feature that differentiates PM3 and the other two methods is that PM3 

simultaneously estimates all the marker positions at once, as opposed to deriving each maker 

position individually. The assumption regarding motion correlations among the markers, 

such as rigid translation, is employed in the PM3 approach.

The PM3 method achieved similar accuracy to that of the KIM approach. Although the RMS 

error was slightly smaller in most of the cases reported in this paper, the level of 

improvement was probably clinically insignificant. It is also possible that our 

implementation of the KIM method was not as optimized as in the original work performed 

by the authors. We observed that the PM3 method presents some advantages under a specific 

circumstance. Specifically, at the 51st projection in figure 7, the PM3 method was able to 

capture the motion, whereas the KIM method was not accurate, particularly along the y 

direction. The performance of the KIM approach depends on the accuracy of the covariance 

matrix obtained through a training stage. Based on clinical studies, prostate motion in the 

AP direction (y direction) is often correlated with that in the CC direction (z direction). This 

correlation is taken as prior knowledge in the training process (Poulsen et al., 2008a; 

Poulsen et al., 2010). However, accuracy in the motion tracking stage may be reduced when 

the motions in the two directions do not follow the assumed correlation. One example is 

phantom motion driven by the Calypso data (figure 7). In this study, AP and CC motions 

generally followed the strong correlation. This was confirmed by the covariance matrix in 

the KIM method , where columns 1–3 and rows 1–3 are 

for the LR, AP, and CC directions. However, a sudden jump was observed in the CC 

direction at the 51st projection, but not in the AP direction. The correlation assumed by the 

KIM method was therefore violated, leading to a relatively large predication error in the y 

direction. In contrast, the PM3 method does not require this assumption and its performance 

at this projection is not affected by the sudden jump.

4.2 Dependences of RMS error on motion type, direction, and sampling rate

Based on the results reported in tables 1–7, the 3D RMS errors varied among cases and 

strongly depended on the motion type. For real prostate motion, the average 3D normalized 

RMS error was found to be 0.158 (0.097 to 0.331 range) in the simulation study without 

noise added to the 2D marker positions (tables 2 and 3). When 2D Gaussian noise was 

added, the 3D normalized RMS error was increased to 0.170 on average, with a range of 

0.099 to 0.333 (tables 4 and 5). In the experimental study, the normalized RMS error was 

0.172 (table 7). Overall, the 3D normalized RMS error was 0.167±0.061. The result was 

different for the ellipsoidal motions. The 3D normalized RMS error approached zero in the 
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simulation study without adding 2D noise. Aside from this case, the 3D normalized RMS 

error ranged between 0.402 and 0.551. Excluding the non-realistic case with almost zero 

error, the 3D normalized RMS error was 0.468±0.046.

In our studies, the RMS error along the z direction was almost an order of magnitude smaller 

than errors in the other two directions. This is because our method attempted to minimize 

distance between 3D marker position and the corresponding projection x-ray line. This led 

to the 3D error vector, a vector connecting true and reconstructed marker positions, 

primarily along the x-ray line. Since the x-ray line is almost perpendicular to the z axis, 

when projecting this error vector to the z direction, the resulting error along this direction is 

always small.

A relative large error was observed at the spike in Fig. 7. Part of the reason was the relatively 

large time interval between triggered images, and hence sudden motion between images was 

not accurately captured. To investigate this issue, we performed a simulation with two time 

intervals 3 sec and 0.6 sec. The result is shown in Fig. 10. With a smaller time interval, the 

reconstruction accuracy was improved. The RMS error was reduced from 0.204 mm to 

0.180 mm along the LR direction and from 0.080 mm to 0.065 mm along the SI direction, 

respectively.

4.3 Impact of prostate rotation

It was reported in previous studies (Li et al., 2009; Olsen et al., 2012; Tehrani et al., 2013) 

that intra-fractional prostate motion has not only translational, but also rotational 

components. Since our algorithm was developed to handle prostate translational motion, 

prostate rotational motion may be a concern. To quantitatively investigate this issue, we 

performed a simulation study. In this case, the ground truth trajectory was built as follows. 

First, a reconstructed trajectory from one SBRT case was used. A 3D rotation with angles 

following a Gaussian distribution with mean (standard deviation) of 0.1° (± 2.3°), 0.2° 

(± 0.9°), −0.01° (± 0.7°) (Tehrani et al., 2013) on RL, SI and AP directions was sampled to 

generate a rotational matrix Rperturb. The 3D marker positions were then calculated as 

Xperturb = RperturbX + T, where X is the reference marker position vector and T is the 

reconstructed translational vector. Based on 2D projection positions of the 3D maker 

positions, motion trajectory was reconstructed using our algorithm. RMS errors were shown 

in Table 8.

It was found that the 3D normalized RMS error was 0.092, with 6.6% of total time of 3D 

error exceeding 0.2 mm. This small error indicated that our algorithm is insensitive to small 

rotations. In fact, this behavior was also implied by our Calypso data simulation cases shown 

in Tables 2–5, where the ground truth trajectories already contained rotational components. 

However, to handle more complicated cases with larger rotations, an algorithm that can 

reconstruct translational and rotational motion simultaneously would be needed. It is our 

ongoing work to extend the PM3 algorithm to handle rotational motion components.

4.4 Future directions

The PM3 method was developed to support an ongoing clinical trial at our institution on the 

use of SBRT for high-risk prostate cancer (NCT 02353819). This trial is testing dose 
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escalation in both prostate and intra-prostatic lesions identified through multi-parametric 

MRI. The relatively small lesion size is especially concerning for motion-induced dosimetric 

deviation. With the intra-fractional motion information derived by the PM3 method, we will 

perform 4D dose reconstruction of the delivered dose, allowing to adaptively replan the 

treatments in the remaining fractions. We are currently working on the development of this 

dose reconstruction system and will report our developments in the near future.

As discussed in section 4.1, the challenge of the kV-based prostate motion reconstruction 

problem was to restore the missing motion information along the projection direction. We 

and others have attempted to solve this problem from geometrical and statistical angles 

(Poulsen et al., 2008a; Li et al., 2011). Because the two different angles are probably 

complementary, their combination in future studies may further improve result accuracy.

One limitation of our method was the assumption of rigid prostate translational motion. This 

assumption may be acceptable if the clinical interest is focused on the prostate centroid 

motion. As shown in our simulation and experimental studies, the accuracy of the prostate 

shift derived from our method is similar or slightly better than that of the KIM method and is 

clinically acceptable. However, realistic prostate motion also contains a rotational 

component. In principle, it is possible to modify our model by incorporating this component. 

For instance, this modification can be achieved by changing the constraint in Eq. (1) as 

, and solving the optimization problem with respect to both the translational 

vector  and the rotational matrix Rt for time t. Nevertheless, the optimization becomes 

non-convex and complicated. We will investigate the feasibility of incorporating the 

rotational component into the problem.

Although the PM3 method was designed to retrospectively reconstruct the intra-fractional 

prostate motion after a VMAT treatment, it may also be extended to prospective motion 

tracking during treatment delivery. For this purpose, we could take pre-treatment images 

(e.g. in CBCT scanning) and solve the motion trajectory. During treatment delivery, each 

newly acquired projection image can be appended to the existing image sequence, and the 

motion trajectory for the updated imaging sequence can be derived using our method. The 

last position in the motion trajectory is the prostate position corresponding to the newly 

acquired projection. In addition, the simplicity of solving our model (i.e. inverting a linear 

equation) ensures a high computational speed. For a typical case with 3 markers and 80 

projections, the computational time was 0.157 sec. This speed allows online motion 

tracking.

5. CONCLUSION

We reported the development of PM3, a new method for prostate motion reconstruction. The 

purpose of this method was to retrospectively derive intra-fractional prostate motion 

trajectory in VMAT. In the PM3 method, we formulated the task as a quadratic optimization 

problem. Prostate motion was restored by matching the projection of the fiducial markers 

with the measured positions, with constrain of rigid translational motion and motion 

smoothness along the temporal direction. Using both simulation and experimental studies, 

we demonstrated reconstruction accuracy. We also examined the impact of model 
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parameters. The motion trajectory derived by PM3 may be incorporated into novel strategies, 

including 4D dose reconstruction and adaptive treatment replanning to address motion-

induced dose deviation.
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APPENDIX I. Derivation of Matrix A and vector b

Let us denote a solution vector X ∈ ℝ3(M+1)N consisting of two sections. The first 3MN 
elements of X are translational vectors of the M marker at N time points, i.e. 

 with each  for i =1,…, 

N and j =1,…,M containing three elements [tx, ty, tz]T. The last 3N elements are the 

translational vectors of the prostate at the N time points, i.e. 

.

To solve the optimization problem, we need to consider the gradient of the objective 

function with respect to X. Rewrite the optimization function as

(A. 1)

Here Ai(i =1,…,3) ∈ ℝ3(M+1)N×3(M+1)N is a symmetric matrix. Specifically, A1 is a block 

matrix of the form

(A. 2)

with B ∈ R3MN×3MN, and

(A. 3)

eij ∈ ℝ3 is the unit vector along the x-ray projection line for the jth marker at time point i. Is 

denotes an identity matrix of dimension s. A2 is also a block matrix with the form of

(A. 4)
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C12 ∈ ℝ3MN×3N with its element

(A. 5)

where  denotes the integer part of the quotient a/b, and  is the remainder of a/b. 

C21 = (C12)T.

Finally, the matrix A3 can be expressed as

(A. 6)

with E ∈ ℝ3MN×3MN and

(A. 7)

Similar to X, the constant vector b ∈ ℝ3(M+1)N also contains two sections. The first 3MN 

elements have the form of , where 

. The last 3N elements are zero.

Thus, consider the matrix A = A1 + αA2 + λA3, the proposed optimization problem is 

convex, if and only if A is positive semi-definite.

APPENDIX II. Convexity of the optimization problem

A1 and A3 are naturally positive semi-definite according to Eq. (A.2) and (A.6). With non-

negative parameters α and λ, the positive semi-definiteness of A is guaranteed, if A2 is 

positive semi-definite. For any Y ∈ ℝ3(M+1)N,  with Y1 ∈ ℝ3MN and Y2 ∈ ℝ3N. 

From Eqs. (A.4) and (A.5), we have
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(A.8)

Let yi,k denote the (3(i − 1) + k)-th element of Y2, we are able to define 

. Each yl ∈ ℝ3M and yl =[yl,1, yl,2, yl,3, yl,1, yl,2, yl,3, …, yl,1, yl,2, 

yl,3]T. Then Eq. (A.8) can be further simplified to

(A.9)

Thus A2 is a positive semi-definite matrix, which guarantees the positive semi-definiteness 

of A and hence the convexity of the optimization problem.

In addition, we performed numerical test for a large range of α ∈ (10−9, 106) and λ ∈ 
(10−9,106). For the range we tested, A was found to be always positive definite, which 

implies that the proposed optimization problem is strictly convex.
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Figure 1. Coordinate systems in our study
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Figure 2. (a) Prostate phantom used in our phantom experiment. (b) Experimental set up
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Figure 3. (a) Markers (pointed by arrows) in one projection image; (b) Marker position 
calculation result (red cross)
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Figure 4. Error distribution of the calculated 2D marker position along (a) u and (b) v directions, 
respectively
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Figure 5. Reconstruction results of prostate motion in an IMRT case along the (a) x, (b) y, and (c) 
z directions using the PM3 and KIM methods. (d) Absolute 3D errors
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Figure 6. Reconstruction results of prostate motion in an SBRT case along (a) x, (b) y, and (c) z 
directions using the PM3 method and the KIM method. (d) Absolute 3D errors
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Figure 7. Reconstruction results of prostate motion in a phantom experiment with real prostate 
motion along (a) x, (b) y, and (c) z directions using the PM3 method and the KIM method. (d) 
Absolute 3D errors of the reconstruction results compared to the ground truth
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Figure 8. RMS errors (mm) for (a) x, (b) y, (c) z directions, and (d) 3D RMS error in a simulation 
case, with ellipsoidal motion, as functions of parameter α and λ. Gaussian noise was added to 
the 2D marker positions
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Figure 9. RMS errors (mm) for (a) x, (b) y, (c) z directions, and (d) 3D RMS error in a simulation 
case, with real prostate motion, in an SBRT case as functions of parameter α and λ. Gaussian 
noise was added to the 2D marker positions
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Figure 10. 

Reconstructed trajectories along LR and SI directions using the PM3 method.  and 

 are with 80 (3 sec time interval) and 400 (0.6 sec time interval) points, respectively.
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