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Abstract

Human activity recognition is important in the study of personal health, wellness and lifestyle. In 

order to acquire human activity information from the personal space, many wearable multi-sensor 

devices have been developed. In this paper, a novel technique for automatic activity recognition 

based on multi-sensor data is presented. In order to utilize these data efficiently and overcome the 

big data problem, an offline adaptive-Hidden Markov Model (HMM) is proposed. A sensor 

selection scheme is implemented based on an improved Viterbi algorithm. A new method is 

proposed that incorporates personal experience into the HMM model as a priori information. 

Experiments are conducted using a personal wearable computer eButton consisting of multiple 

sensors. Our comparative study with the standard HMM and other alternative methods in 
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processing the eButton data have shown that our method is more robust and efficient, providing a 

useful tool to evaluate human activity and lifestyle.
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Introduction

According to the World Health Organization,1 chronic diseases, such as certain heart 

diseases, respiratory conditions, cancer, diabetes, and hypertension, caused 60 % of deaths in 

the world population in 2002. By 2020, this percentage is expected to reach 73 %. Most 

chronic diseases are lifestyle related, resulting from unhealthy habits or practices such as 

smoking, overeating, or insufficient physical activity. Being able to monitor an individual’s 

lifestyle automatically and objectively using advanced technology is thus extremely 

important in preventing and managing chronic diseases [1].

There are many methods to monitor or document an individual’s lifestyle. Most of them 

depend on self-report. However, it is well-known that self-report based methods are 

inaccurate, biased and unreliable. Due to these problems, objective methods have been 

studied using portable electronic devices which are mostly designed to collect physical 

activity data. The accelerometer is one the most widely utilized sensors in these devices [2–

6]. In recent years, cellphones equipped with an accelerometer chip and a camera have been 

used in lifestyle surveillance and physical activity studies [7, 8]. The SenseCam[9], a 

wearable camera with several other sensors, was used to record life experience continuously. 

However, this device is relatively large and heavy, thus, it must be worn using a lanyard 

around the neck, which is inconvenient when vigorous physical activity is performed. 

Although there are many forms of smart wristbands and wristwatches available for activity 

monitoring, they cannot identify many specific activities because of their wearing locations 

on the body and sensor limitations.

In order to monitor lifestyle, we have developed a wearable electronic device, eButton, as 

shown in Fig. 1. This device is small and light but has multiple sensors and a powerful CPU 

to acquire and process data. These sensors include one or two cameras, a gyroscope, an 

accelerometer, a GPS receiver, an electronic compass, a thermometer, a light sensor, a 

proximity sensor and a barometer. The eButton also has wireless channels to communicate 

with a smartphone, a nearby computer, or a “cloud”. Despite these powerful functions, 

eButton is a very convenient and unobtrusive device with an attractive and personalized 

appearance. It is thus a useful tool for the study of lifestyle, including diet, physical activity, 

and sedentary behavior.

The data collected by eButton results in a high demand for data processing. Recently, 

activity recognition has gained dramatic interest. Many types of visual features, including 

1http://www.who.int/chp/about/integrated_cd/en/
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static and dynamic features, have been proposed for image classification. For example, the 

Color and Edge Directivity Descriptor (CEDD) [10] combines color and edge distributions 

for static image indexing. The scale-invariant feature transform (SIFT) [11] is one of the 

most utilized features applied to activity recognition [12–14]. There are also features 

specifically designed for motion sensors (accelerometer or gyroscope) for physical activity 

recognition such as the Signal-Magnitude Area (SMA) [3], Accumulated Height (AH), 

Autoregressive Coefficients (AC), Time Between Peaks (TBP) and Binned Distribution 

(BD) [8]. Besides these features, classification methods based on generative and 

discriminative approaches have been used in activity recognition. Among probabilistic 

methods, the Hidden Markov Model (HMM) [15], a special case of dynamic Bayesian 

networks, is well known. The discriminative methods include the k-Nearest Neighbors [16], 

Support Vector Machine (SVM) [17], Neural networks [18] and Conditional Random Field 

(CRF) [19].

Due to the large volume of continuously collected data by eButton, a “big data” problem 

must be solved to understand these data computationally. As a result, the speed of activity 

recognition is essential since these data are currently processed offline. The traditional 

algorithms for pattern recognition based on multi-sensor data cannot be used effectively, 

mainly due to their high computational cost which grows proportionally with the number of 

data channels [20]. There is a strong need to develop algorithms that make smart choices 

among the types of data features to be processed yet still produce reliable recognition 

results. Our study focuses on solving the big data problem and satisfies this need.

This paper presents the adaptive-HMM in Section 2, experiments and data analysis in 

Section 3, and conclusion in Section 4.

Methods

Concepts

The algorithms presented in this paper are designed based on the following new concepts: 1) 

Since eButton is a personalized device serving a specific individual, there is no need for it to 

recognize all types of human activities since this recognition is an extremely difficult task. 

Instead, we expect our algorithms to recognize only the activities commonly performed by 

an individual, which becomes a much easier task. 2) Although each individual’s lifestyle is 

different, they perform routine activities periodically (e.g., the weekday activities of a person 

with an office job). We take advantage of this important routine information, model it 

mathematically, and use it in our system design. 3) To avoid processing all collected data at a 

high computational cost, we pre-select the types of data that are determined to be relevant to 

the activity being tested. This approach solves the “big data” problem effectively without 

suffering from significant loss of accuracy.

Personal experience knowledge base

Each individual has his/her own lifestyle and is the best person to describe it in terms of 

routines in their daily lives although he/her may not remember all the particular activities 

performed during a specific period of time (e.g., during the last month). In our opinion, 
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personal experience provides the best knowledge base for the computer to recognize 

activities of the individual. With a relatively fixed lifestyle, the individual can roughly 

estimate the likelihood of each of his/her own activities given certain preconditions such as 

location, time or the activity performed prior to the current activity. For example, Table 1 

provides a time table of an individual where column A and row T contain, respectively, m 
types of activities (from a1 to am) and the time periods of the “average day”. Here we divide 

the day into consecutive 30-min intervals for simplicity so there are 48 rows in the table. The 

individual is asked to assign an integer value from 0 to 10 for each cell in the table which 

stands for the weight of activity. For the days with different lifestyles, e.g., workdays and 

holidays, different time tables are used. We utilize the 0–10 scale because it is more intuitive 

for a human to assign values. After this table is acquired, it can be converted to a probability 

table simply by normalization. Besides the time table, a transition table is also acquired from 

the individual specifying the likelihoods of consecutive activity pairs. Table 2 shows an 

example with three likelihood levels including Low (L), Medium (M) and High (H). Each 

level represents the weight of current activity A happening right after its previous activity 

Ap.

These tables could be obtained through machine learning based on real world data. However, 

since a large dataset is required to ensure the tabulated frequencies approach the true 

probabilities, this machine approach would be time-consuming and prone to noise and 

computational errors.

Adaptive hidden Markov model

We chose the HMM because the outputs of the two experience tables (Tables 1 and 2 above) 

provide probabilities of different activities which are relatively easily imported into the 

probability-based model. Besides, for each day, the sequence of activities may be modeled 

as a Markov chain in which each single activity is assumed to be related to its previous 

activity only. Clearly, this model is not strictly accurate because the second and higher order 

relationships are ignored. All data captured by the eButton and the entries in the experience 

tables are considered in the HMM model as observation values. Instead of using the 

traditional HMM, we propose an adaptive scheme described in Fig. 2 where An is assumed 

to be the hidden state which is obtained by segmenting the continuously recorded data based 

on our previous work [21]. In this segmentation, both the motion and image data are utilize 

to identify boundaries of unknown events according to similarities in the data. Each An 

represents a distinct activity different from its adjacent ones.

For each pair of consecutive activities, the details of the activity state transition and the 

observation vector are shown in Fig. 3.

The transition probability P(An|An−1) and time probability  are provided by the 

transition table and time table, respectively. Two other probabilities  and 

 are calculated through two trained Support Vector Machine (SVM) classifiers. 

The first probability  is defined by:
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(1)

With

(2)

where dataw is the wth segment in An produced by dividing the entire data equally, W is the 

number of segments. S(dataw) is a trained SVM classifier by the GPS and motion sensor 

data. The output of S(dataw) is the classification result. The second probability  is 

defined in the same way as  except that the SVM classifier is trained using the 

image data.

Improved Viterbi algorithm

In this model,  and  are adaptive nodes. Since the computation of image features is 

time-consuming, we process the sensor node  before image node . In the case where 

there is enough information to identify an activity, i.e., the probability value after processing 

 is sufficiently high, the  node can be skipped. As a result, the computation of image 

features can be significantly shortened.

In order to select suitable features according to different activities, we improved the Viterbi 

algorithm, which is defined as:

(3)

where i and j are two activities, P( j|i) is transition probability from activity i to activity j, n is 

the activity index, and P( j) is the initial probability of activity j. For q=1 to Q, we compute 

the probability Vn( j) of the most probable activity sequence for the first n activities where j 
is its final activity

(4)
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where T is a predefined threshold reflecting the level of confidence in the [0, 1] interval 

(with 0 and 1 being the least and most confidence; we set T=0.9), q is the number of 

imported nodes, Q is the total number of nodes.

Using this adaptive method, nodes are computed sequentially. If the probability of an 

activity dominates (e.g., at least 90 %) of all possible activities, the rest of the nodes are 

skipped because there is enough statistical confidence to draw a conclusion. In order to 

reach this point rapidly, we place the experience nodes which require little computation first, 

the data nodes where measurements are accurate and easy to evaluate next, and the time-

consuming image nodes last. This adaptive scheme reduces computational cost significantly 

and represents our main strategy to solve the “big data” problem stated in the “Introduction” 

section.

In certain cases, the designated confidence level is never reached even when the most time-

consuming data node is utilized. In this case, the final probabilities of the activities ranked in 

descending order are provided as the output. The result can then be judged by a computing 

system, the person who analyzes data, or the person who performed the activities.

Feature selection

For accelerometer and gyroscope data, we extract the following features for activity 

recognition: mean, standard deviation, correlation, range, root mean square, Signal-

Magnitude Area (SMA) [3], Autoregressive Coefficients (AC) and Binned Distribution (BD) 

[8]. Only two features are extracted from the GPS data, which are the speed and center 

location. For image data, four features are selected from the MPEG-7 standard [22], which 

are the Edge Histogram (EHD), Scalable Color (SCD), Color Layer (CLD) and Color 

Structure (CSD) descriptors. In addition, the Spatial Color Moments (SCM) [15] and Bag of 

Words (BoW) of the SIFT [23] are also included as image features.

We found that, in some cases, combining all these features may produce a poorer 

performance than using only a part of these features due to limited specificity in the data. 

Therefore, a further feature selection method is needed to determine the best subset of 

features. A straightforward method is to calculate all combinations of candidate features. 

However, this method is time-consuming since, if there are d features, 2d experimental trials 

of classification are required. The number of trials grow quickly as d increases. We thus used 

the backward elimination algorithm [24] to solve this problem. In this method, features are 

all utilized at the beginning of the process. Then, each feature is deleted at a time of 

evaluation. If the deletion improves the performance of the model, it is excluded from the 

feature set. The process repeats until deleting any feature further cannot improve the 

performance.

Experiments

Dataset

With an approval from the Institutional Review Board (IRB), ten healthy human subjects 

participated in an experimental study to obtain training data. Each subject wore the eButton 

during daytimes. As the ground truth, the sensor and image data were segmented and labeled 
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manually in terms of the predefined categories shown in Table 3. The collected data 

contained 3-axis orientation signals from the gyroscope, 3-aixs motion data from the 

accelerometer, geographical location data from the GPS and image data from the camera. 35 

segments of the same activity performed were used in each category, and each segment 

consisted of 100 images corresponding to 400 s in real time.

After training, the data from four subjects, between 27 and 35 years of age, who were 

healthy engineers following normal work hours, were evaluated. In order to reflect the 

personal nature of our method, we processed the data for each subject independently using 

the same method. All subjects wore the eButton daily for at least 10 h during the daytime. 

Twenty-one days of raw data were collected from each subject. There were 1,298 segments 

in the recorded data, the distribution of the data are shown at Table. 4. Figure 4 presents 

several typical segments. Only images, 3-axis accelerometer signal and GPS signal are 

displayed in Fig. 4. It can be seen that the accelerometer signal and image data have 

distinctive patterns which can be used for activity classification.

Evaluation method

To evaluate the performance of the proposed method, the F1 measure [25] which is used in 

many pattern recognition problems, is implemented as below:

where TP, FP and FN represent, respectively, true positive, false positive and false negative. 

F1 is also called the harmonic mean of recall and precision.

Performance of proposed algorithm

Table 4 presents the confusion matrix of the proposed algorithm. The F1 value (last row in 

Table 5) of WO, RC, CW (definitions in Table 3) are higher than other activities. We 

analyzed the performances and found that the GPS signal plays an important role in 

detecting RC and WO; activity CW is detected best using images; the performances of HW 

are more dependent on the motion data; and the experience information plays a critical role 

for ET and MT. On the other hand, activity TK has the worst performance since the features 

extracted from the current set of sensors are insufficient as strong indicatives of “talking”. In 

addition, the features extracted from these sensors overlap significantly with features of 

other activities. In this particular case, the experience tables do not provide much prior 

information to assist recognition.

In our experiment, none of the activities reached the threshold T defined in (4) after O1 n 

node were imported into the HMM. Activities meeting the threshold T after On 2 was 

imported are displayed in Table 6. Most WO activities reached the threshold, indicating that 

the prior experience, motion data and GPS data are powerful in detecting the WO activity. 

Almost 40 % of the CW and ET activities were recognized without using image features. 

However, the F1 value of the TK activity is much lower for the reasons described previously.
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The comparison of four subjects with respect to eight activity categories is shown in Fig. 5. 

In general, the results of CW, WO and RC are better than other activities. The result of 

subject 3 is the worst among all subjects in ET. Re-examination of data revealed that the 

eButton was not worn correctly. As a result, food was often missed from the recorded 

images. Again, the result of subject 2 in HW was inferior mainly because the illumination 

was insufficient in the environment where HW took place, which affected image quality and 

consequently the classification accuracy. Interestingly, the result of SP of subject 1 was the 

best because the subject shopped significantly more than others. As a result, experience 

tables played an important role in improving accuracy. These observations indicated that 

both data quality and activity types were key factors influencing activity classification 

results.

Evaluation of experience tables

In order to evaluate whether experience represents an important part of information for 

activity recognition, we tested two subsets of features without using experience tables. The 

first subset was obtained from the motion and GPS sensors while the second was from 

images. The SVM classifier was used in both cases for activity recognition. The F1 values of 

different features with respect to each activity were compared with the F1 values using 

experience tables. It can be observed from Fig. 6 that, in all cases, the proposed method 

performed better than or equivalent to the methods without using experience. The F1 value 

of WO reached or was close to 1 in all three methods. However, the results of MT were poor 

since the features of this activity are similar to that of CW. Most MT activities were 

classified as CW when only motion sensor data were used. Both F1 values of ET and SP 

increased significantly due to the use of experience tables, it is likely that, for the particular 

individual, most eating activities happened at certain times of morning, noon and evening, 

and most shopping activities took place at other times. The time table thus played a key role 

in classifying between ET and SP.

Effects of number of nodes

Since the computational complexity involving images is significantly higher than that 

without images, we performed an experiment comparing cases with and without images. In 

the first case (shown in Fig. 7 as the black line), all three nodes (time table, motion/GPS, and 

image nodes) shown in Fig. 3 were utilized in the adaptive hidden Markov model. While in 

the second case (dashed line in Fig. 7), the image node was eliminated. Although the 3-node 

results are better than the 2-node results, the differences in F1 values are not drastic except 

for MT and TK. Therefore, if these activities are parts of the classification targets, images 

should be utilized despite their high computational cost.

Evaluation on feature selection

Feature selection was implemented to improve the accuracy and speed of activity 

recognition. In Fig. 8, the F1 values of the proposed method with and without feature 

selection are compared. In the first case, many inaccurate and redundant features were 

removed using the method presented previously. Our results demonstrated that, in general, 

the method using feature selection performed better than the one without feature selection.
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Comparison between the proposed method and standard HMM method

The differences between our method and standard HMM method is mainly in the use of the 

adaptive observation nodes. The adaptive method is advantageous in its high computational 

efficiency. Figure 9 presents the accuracy rates of the adaptive-HMM and standard HMM 

methods with respect to 21 days of data recorded from 4 subjects. It can be seen that these 

two cases are similar. In fact, by assigning score 1 to the method with better performance 

and 0 to the other method (if the performance of two method were the same, assigning 1 to 

both), the accumulated score (75) obtained by the standard HMM method was essentially 

the same as the score (74) of the proposed method. It is understandable that the proposed 

method could not overperform the standard HMM because the former method observed less 

amounts of data than the later method in making classification decisions. The slight 

difference in performance indicated that the data ignored by the proposed method were 

mostly redundant or irrelevant. As a result, the proposed method was much more 

computationally efficient than the standard HMM. Figure 10 presents the computational 

time of the two methods for processing all 21 days, 4-subject data using the Matlab code 

running on a laptop computer with a 3.3 GHz Core i3 CPU. The adaptive-HMM took 3.25 h 

to process a full day data on average, which was 25.4 % faster than standard HMM. 

Although over 3 h of computing is still considerably long, we expect it to be reduced 

tremendously by re-written our current un-optimized Matlab code into the optimized C code.

Conclusions

An adaptive Hidden Markov Model has been proposed for activity recognition. This model 

consists of a sequence of states corresponding to the sequence of activities performed. Its 

novel design features with a utilization of personal experience in the HMM model. Our 

experimental results demonstrated that personal experience plays an important role in 

activity recognition with a significant increase in classification accuracy. In addition, the 

algorithm becomes more stable and is capable of handling many real life events effectively 

which are otherwise difficult to recognize using the existing methods.

In order to increase the speed of the algorithm, an adaptive Viterbi algorithm is proposed to 

select features from motion sensor, GPS sensor and image data. Unlike conventional 

methods which include data from all sensors in the computational process, the observation 

node in our HMM model is expanded to multiple nodes corresponding to different sensors. 

In the recognition process, the first node is imported to the proposed model. If data are 

sufficiently strong to recognize the activity, other nodes are skipped. Otherwise, more nodes 

are imported sequentially until the termination condition is reached. With this method, most 

accurate and computationally efficient sensor data are placed in the front of the node list, 

and more computationally expensive nodes, such as those corresponding to image features, 

are placed in the back of the list. This approach speeds up the classification process 

significantly.

Our experimental results demonstrated that the proposed algorithm performs better than 

other methods without personal experience. The adaptive HMM saved 25.4 % of 

computation compared to the standard HMM with essentially the same activity recognition 

accuracy.
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Fig. 1. 
eButton and its functional components
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Fig. 2. 
Adaptive HMM. An is the nth of total N activity states to be identified and On is the 

observation vector. Index q in  represents the specific type of sensor or experience
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Fig. 3. 
Details of activity state transition and observation vectors in Fig. 2. The time, motion/GPS 

sensor, and image elements of the observation vector On are denoted by  and , 

respectively
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Fig. 4. 
Data captured by eButton: (a)–(h): image data and accelerometer signal of eight activities; 

(i) and (j): GPS signals of two outdoor activities
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Fig. 5. 
F1 comparison among subjects
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Fig. 6. 
Performance on methods with experience and without experience
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Fig. 7. 
Performance on methods with different node numbers
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Fig. 8. 
Comparision of F1 values with and without feature selection
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Fig. 9. 
Performance comparision between proposed method and standard HMM
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Fig. 10. 
Computational time consumption of the proposed method and standard HMM
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Table 3

Activities for classification

ID Abbreviation Activities

1 CW Computer Working

2 ET Eating

3 MT Meeting

4 WO Walking Outside

5 TK Talking

6 SP Shopping

7 HW Housework(cooking, food preparing)

8 RC Riding in a Car
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