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Abstract

Reversible covalent inhibitors have many clinical advantages over noncovalent or covalent drugs. 

However, apart from selecting a warhead, substantial efforts in design and synthesis are needed to 

optimize noncovalent interactions to improve target-selective binding. Computational prediction of 

binding affinity for reversible covalent inhibitors presents a unique challenge since the binding 

process consists of multiple steps, which are not necessarily independent of each other. In this 

study, we lay out the relation between relative binding free energy and the overall reversible 

covalent binding affinity using a two-state binding model. To prove the concept, we employed free 

energy perturbation (FEP) coupled with λ-exchange molecular dynamics method to calculate the 

binding free energy of a series of α-ketoamide analogs relative to a common warhead scaffold, in 

both noncovalent and covalent bond states, and for two highly homologous proteases, calpain-1 

and calpain-2. We conclude that covalent binding affinity alone, in general, can be used to predict 

reversible covalent binding selectivity. However, exceptions may exist. Therefore, we also discuss 

the conditions under which the noncovalent binding step is no longer negligible and propose a 

novel approach that combines the relative FEP calculations with a single QM/MM calculation of 

warhead to predict the binding affinity and binding kinetics for a large number of reversible 

covalent inhibitors. Our FEP calculations also revealed that covalent and noncovalent states of an 

inhibitor do not necessarily exhibit the same selectivity. Thus, investigating both binding states, as 

well as the kinetics will provide extremely useful information for optimizing reversible covalent 

inhibitors.
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Introduction

The advantages of covalent over non-covalent inhibitors include long residence time, higher 

potency, and decreased drug resistance1-2. In the past two years, a number of covalent 

inhibitors such as carfilzomib, telaprevir, abiraterone, and afatinib have been approved by 

the FDA for various clinical indications, ushering in a new era for covalent modifiers3-4. 

From a lead optimization perspective, covalent inhibitor design is not restricted by the 

maximum binding affinity of 1.5 kcal/mol per nonhydrogen atom limitation5, which has 

been hampering noncovalent drug design for decades. The main hurdle for covalent inhibitor 

development is the lack of specificity or selectivity. The risk of toxic events occurring due to 

the use of covalent inhibitors can be lessened through modulation of electrophilic warhead 

reactivity and optimization of noncovalent interactions, which may improve target receptor 

recognition and increase the selectivity of covalent inhibitors. A recent review highlighted 

the progress in quantum mechanics/molecular mechanics (QM/MM) methods for predicting 

warhead reactivity and mechanism in the binding site6. However, once an ideal electrophilic 

warhead is found for a specific target, substantial efforts in design and synthesis are needed 

to optimize the noncovalent interactions to improve the selectivity of covalent inhibitors. 

Computational prediction of covalent inhibitor binding affinity presents a unique challenge 

since the binding process consists of multiple steps, which are not necessarily independent 

of each other. Because of these associated difficulties, computational tools for optimizing 

covalent drugs are far less developed than for noncovalent drugs. The majority of tools that 

exist for use in pursuing a covalent inhibitor design are implemented within various 

molecular docking programs in which the searching algorithms and scoring functions have 

been adjusted from noncovalent docking to suit covalent docking6. A QM-based scoring 

function was also developed and shown improved correlation with IC50 for irreversible 

covalent inhibitors7. Engels and coworkers successfully developed covalent reversible 

inhibitors from irreversible inhibitors using a QM/MM and docking combined protocol8.
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Free energy calculation approaches, such as free energy perturbation (FEP), have been 

considered as most rigorous approach for predicting the binding affinity of noncovalent 

drugs and has became a standard protocol in pharmaceutical industry to rank molecule 

candidates at later stage of lead optimization9-12. However, its application in covalent binder 

is scarce. Kuhn et al. has recently performed a pioneering work of prioritizing covalent 

inhibitors using FEP on covalent binding state13. In the current study, we focus on 

investigating the following fundamental question: for a given reversible covalent inhibitor, is 

the binding affinity determined solely by the noncovalent binding state (Michaelis complex 

analog), the covalent binding state, or from both states? Such question is, foremost, 

important for understanding the fundamental concepts and limitations of applying FEP 

method to covalent binding processes, which is critical for the emerging field of covalent 

inhibitor design.

As a proof of concept, we investigated α-ketoamide analogs, which covalently bind to the 

catalytic site of calcium-dependent cysteine proteases, calpain-1 and calpain-2, in a 

reversible manner (Figure 1) 14-16. Capain-1 and calpain-2 are two members of the calpain 

family, which are ubiquitously present in mammalian brains. Strikingly, despite their 71% 

sequence identity in their proteolytic core, they play opposite functions in both synaptic 

plasticity and neuroprotection/neurodegeneration, with calpain-1 being neuroprotective and 

calpain-2 being predominantly neurodegenerative17-18. The differential functions of two 

calpain isoforms underscore the critical need to design inhibitors that can selectively target 

calpain-2 but not calpain-1, as indicated in a recent review19.

α-ketoamide peptidomimetics are among the reversible covalent inhibitors that have become 

increasingly popular in drug design as they show advantages in cytosolic stability and 

improved selectivity over irreversible compounds6, 8, 20. They bear weak to moderate 

electrophilic warheads, such as ketoamide or acrylamide, which must first be properly 

oriented within the target protein before it can react efficiently with an appropriate 

nucleophilic residue. However, even when a reversible warhead is employed, achieving 

selectivity can still be challenging. This is especially true when the molecule targets a 

catalytic cleft that is highly conserved among protein isoforms. In addition, the S1′ binding 

site of calpains consist of two flexible loops. Such flexible binding site is difficult to model 

using covalent docking algorithms, which further emphasize the need of FEP methodology 

that allows protein, ligand and solvent dynamics. Thus the calpain systems represent an ideal 

benchmark system to investigate whether the FEP methodology could be a reliable 

computational tool for predicting the binding selectivity of reversible covalent inhibitors.

We employed a free energy perturbation (FEP) coupled with λ-exchange molecular 

dynamics method to calculate binding free energies of a series of α-ketoamide analogs 

relative to a common warhead scaffold, in both noncovalent and covalent bond states, for 

calpain-1 and calpain-2, respectively. We obtained a strong correlation between relative 

binding free energy of covalent states and experimental binding selectivity. We discussed the 

relation between the covalent and noncovalent binding states and proved mathematically that 

the noncovalent state becomes negligible in predicting the overall binding selectivity only 

when the covalent binding is at least 5.5 kcal/mol stronger than that noncovalent binding. If 

this condition is not satisfied, we proposed an approach that combines the relative FEP 
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calculations described here with a single QM/MM calculation of the warhead core structure 

to estimate the thermodynamics and kinetics of reversible covalent inhibitors. To our 

knowledge, this is also the only FEP study thus far which revealed that for a reversible 

covalent binder, the covalent step and noncovalent step can have different binding selectivity. 

Furthermore, we speculated that there exists an intrinsic relation between noncovalent 

binding affinity and activation barrier due to the unique kinetics of some reversible covalent 

binders. Thus, investigating both binding states, as well as the kinetics will provide 

extremely useful information for optimizing reversible covalent inhibitors.

Theory

Relation between relative binding free energy and covalent binding affinity

Eq. 1

Eq. 2

Eq. 3

Eq. 1 describes a general mechanism for the binding of a covalent inhibitor consisting of two 

steps (Figure 2). In the first step, an initial noncovalent binding of the inhibitor with the 

target protein positions the warhead close to the nucleophile. This complex is analogous to 

the Michaelis complex in the enzyme-substrate binding process. The subsequent step is the 

formation of a covalent bond, which generates the inhibited complex. The inhibitor binds 

irreversibly if k-2 = 0, whereas the inhibitor binds noncovalently if k2 = 0. Reversible 

covalent inhibitors have finite values for both k-2 and k2·K1 and K2 are the equilibrium 

dissociation constants of step1 and step2, which are thermodynamic quantities that are 

determined by the free energy difference between the two states, as illustrated in a simplified 

free energy profile of two-states binding in Figure 1. Namely, K1 is determined by the free 
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energy difference between the dissociation and Michaelis states, ΔGdm·K2 is determined by 

the free energy difference between the Michaelis and covalent states, ΔGmc (Eq. 2). The 

overall association constant of the reversible covalent inhibitor is defined by both K1 and K2, 

which depends on the binding free energy of both the covalent ΔGdc and noncovalent 

complexes ΔGdm (Eq. 3).

According to Eq 3, binding free energies for both the noncovalent and covalent bound states 

need to be calculated in order to estimate the overall binding free energy. However, direct 

calculation of the binding free energy of the covalent complex ΔGdc requires computing the 

energy for the formation of a covalent bond, along with multiple steps of proton transfer. 

Such computations require QM/MM calculations, which would become too expensive for 

high throughput applications, such as screening a large number of compounds to determine 

potential drug candidates. In this study, we investigate whether relative binding free energy 

calculation could serve as an alternative to computationally intensive QM/MM calculations, 

if modifications of the noncovalent binding interactions can be shown to have a negligible 

effect on the reactivity of the warhead. In this case, the binding free energy of the two states 

could be represented as the sum of the binding free energy of the common core structure, 

ΔGcore, and the relative binding free energy between the full ligand and the core ΔΔG (Eq 4).

Eq. 4

Combining Eq. 4 with Eq. 3 provides the relation between the overall association constant 

1/Kd and the relative binding free energies of the covalent state ΔΔGdc and the noncovalent 

state ΔΔGdm. For two ligands with the same warhead ΔGcore, absolute binding free energy of 

the warhead at covalent and noncovalent states can be simplified as constants A and B, as 

shown in Eq. 5. In the current work, only ΔΔGdc and ΔΔGdm are calculated.

Eq. 5

Methods

System Preparation

The covalent binding complexes of ketoamide compounds in calpain-1 were built based on a 

co-crystal structure (PDB 2R9C) of a ketoamide compound GRD and calpain-1 (Figure 1). 

In the crystal structure, calpain-1 is in a Ca2+-bound active state. The catalytic cysteine 

forms a hemithioketal complex with the ketoamide, which resembles the transition state of a 

peptide substrate cleavage. To prepare covalent complexes in calpain-2, a crystal structure of 

calpain-2 in complex with calpastatin (PDB 3BOW) was used in which calpain-2 is also in a 

Ca2+-bound active state. The hemithioketal ligand is transferred from the calpain-1 catalytic 
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site to the structurally-aligned calpain-2 catalytic site using Molecular Operating 
Environment (MOE)21. To prepare the noncovalent binding complex, the covalent bond was 

cleaved using MOE. The catalytic cysteine was then converted back to anion to form the 

Cys-His ion pair, and the ligand was converted back to ketoamide. The catalytic mechanism 

of cysteine proteases has been previously studied using semiempirical quantum mechanics 

and QM/MM22-23, which supports the existence of the Cys-His ion pair in the active state. 

For both calpain-1 and calpain-2, the entire catalytic domain (domain I-II) and the adjacent 

domain III, which is in contact with P3 site of ligand, were used for simulations. The 

missing domain III of calpain-1 in the crystal structure was modeled based on the crystal 

structure of calpain-2 and equilibrated for 700 ns (Supporting Information Methods and 

Figure S1). Both calpain-1 and calpain-2 structures remained in active conformation 

(catalytic triad in close contact) with two calcium ions remaining bound in the EF-hands of 

domain I and II during all simulations.

Force Field

CHARMM36 force field24 was used for all simulations. CHARMM36 force fields for 

deprotonated cysteine (resname CYM) and protonated histidine (resname HSP) were used. 

Recent pKa calculations using a replica-exchange thermodynamic integration approach have 

shown that the CHARMM36 force field reproduces the pKa of papain cysteine at 4.4, close 

to the experimental pKa value of 3.325. All ligands were parameterized using CHARMM 

General Force Field (CGenFF)26-27. Ketoamide warhead was re-parameterized using Force 

Field Toolkit plugin28 of the VMD 1.9.3 together with Gaussian 09 revision E.01 package29 

(Supporting Information Methods, Figure S2, and Table S1). The covalent-linked ligand was 

parameterized as an artificial cysteine by combining the cysteine backbone parameters from 

protein force field with the ligand parameters from CGenFF.

Simulation Protocol

All the systems for MD simulation in explicit solvent were prepared by using CHARMM-

GUI30-31. Each system was solvated into a rectangular water box composed of CHARMM 

TIP3P water molecules and 150 mM KCl, with an edge distance of 10 Å. All the simulations 

of ligand-receptor complex, including FEP simulations, were performed with NAMD 2.1032 

using periodic boundary conditions at constant temperature and pressure (NPT ensemble) of 

300 K and 1 atm using Langevin thermostat33 and Andersen-Hoover barostat34. Particle 

Mesh Ewald (PME) method was used for long-range electrostatic interactions35. A 

smoothing function was applied to van der Waals forces between 10 Å and 12 Å. The 

dynamics were propagated using Langevin dynamics with Langevin damping coefficient of 

1 ps-1 and a time step of 2 fs. The SHAKE algorithm was applied to all hydrogen atoms36. 

The solvated enzyme-ligand complexes were minimized and equilibrated using a stepwise 

procedure setup by CHARMM-GUI. The homology model of calpain-1 domain III was 

simulated together with the catalytic domain for 700 ns using AMBER1637 GPU version 

with the same force field.

FEP/λ-REMD for noncovalent and covalent binding states

To calculate the relative binding free energy using FEP, we applied free energy perturbation/

λ-exchange molecular dynamics (FEP/λ-REMD) implemented in NAMD program using 
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generalized scalable multiple copy algorithms38. It applies the staging simulation protocol to 

decouple the shifted Weeks-Chandler-Anderson repulsive and dispersive components of the 

Lennard-Jones potential39, electrostatic contribution, and restraining potential40-42. The 

highly scalable lambda-exchange in FEP has achieved good convergence for the calculation 

of absolute binding affinity43-45. Here we adopted this algorithm for relative binding free 

energy calculation, in which only R groups, instead of the whole ligand, are decoupled using 

the same staging protocol. The rest of the ligand structure, which is called the core structure, 

has a neutral charge. As illustrated in Figure 3a, the relative noncovalent binding free energy 

between a ligand and a core is calculated from four separate FEP steps: the solvation free 

energy difference between the core structure and a particular ligand is calculated by 

decoupling the electrostatics and Lennard-Jones interactions between the R group and water 

molecules (ΔG1). To decouple the R group of a bound ligand from its environment, the 

electrostatics and Lennard-Jones interactions between ligand and its solvated protein 

environment are turned off gradually (ΔG2). All systems were first equilibrated prior to FEP/

λ-REMD. The coordinates and velocities of the last equilibration step from NAMD were 

used to start the replica-exchange simulations. A thermodynamic coupling parameter λ was 

used to perturb the R groups from a fully coupled (λ=1) to a fully decoupled state (λ=0). A 

total number of 32 replicas (20 λdispersive, 6 λrepulsive, 6 λelectrostatic) were used to perturb 

the R-groups. The length of each FEP simulation varied between 2.0 to 3.0 ns per replica 

and showed good convergence (Figure S3). The λ-swapping attempts between neighboring 

replicas were performed frequently during each simulation (0.2 ps-1). For noncovalent 

binding state, a harmonic restraint potential was applied between the sulfur of the catalytic 

cysteine and the warhead carbonyl carbon to avoid any possible dissociation. The free 

energy contribution of applying this restraint (ΔG6 and ΔG7) was calculated by using a 

stepwise decrement of the force constant over 13 windows (100 ps per window) to gradually 

reduce it from 20 to 0 kcal/mol/Å2 using the thermodynamic integration framework within 

the colvars module in NAMD. For covalent binding free energy, since there is no extra 

distance restraint required for covalent ligand, the relative free energy between core and 

covalent ligand was calculated from two decoupling steps ΔG1 and ΔG2, using the same 

protocol as the one in noncovalent binding state.

Results and Discussion

Seven ketoamide analogs, which have reported inhibitory constants for calpain-1 and 

calpain-2 were used in this study as examples (Figure 4 top)15. Each compound was 

subjected to the relative free energy calculations in both the noncovalent and covalent states 

(see Methods), for calpain-1 and calpain-2, respectively. The experimental binding 

selectivity data and each calculated values are shown in Table S2. The correlations between 

experimental and computational binding selectivity of calpain-2 over calpain-1 are plotted in 

Figure 4 along with the statistics.

Covalent binding selectivity correlates well with overall binding selectivity, but exceptions 
may exist

Overall, we found fairly strong correlation from covalent binding state, but weak anti-

correlation from the noncovalent binding state. The strong Pearson correlation coefficient 
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0.87 and rank correlation coefficients (Spearman's ϱ 0.85 and Kendall's τ 0.71) indicate that, 

for current system, we can use the relative binding free energy difference between the 

covalently bound core structure and a covalently bound ligand (ΔΔGdc) to predict and rank 

the experimental binding selectivity. Referring back to Eq. 5, such correlation will only exist 

when the second term (Be−ΔΔGdm/RT) is sufficiently smaller than the first term 

(Ae−ΔΔGdc/RT). When this is the case, Eq. 5 may be approximated to a single term form, 

hence the strong correlation between the overall binding affinity and the ΔΔGdc. This 

indicates that good prediction power can be attained using solely covalent binding state FEP, 

confirming what has been reported in previous literature on covalent binder13. However, 

what we learn from Eq. 5 is that such simplification is not always true. Mathematically, 

according to Eq. 6, this correlation only occurs when ; or, more 

intuitively, if , then . Hence, for each 

ligand, the effects of the noncovalent intermediate can be neglected for the purposes of 

computing the overall dissociation constant Kd, only when the binding free energy of 

covalent state is at least 5.5 kcal/mol more favorable then the noncovalent state.

Eq. 6

The binding of the covalent state is generally more stable than the noncovalent state, since 

the former involves the free energy contributions of the formation of a covalent bond. 

However, if the noncovalent binding is strong and the reversible warhead is relative weak, 

the 5.5 kcal/mol rule aforementioned may not hold. In such case, the correlation between 

ΔΔGdc and experimental Kd will not exist because the full Eq. 5 must be used to incorporate 

the non-negligible role of the noncovalent state. The broad usage of Eq 5 is that, even in 

such case, it is not necessary to calculate the absolute covalent binding for each ligand. One 

only needs to calculate  and  once for the core structure to get the constant 

value A and B, then Eq. 5 can be applied for a large number of ligands using the same FEP 

approaches described here, without the need to perform QM/MM calculation for each 

ligand.

Calpain-2 selective at covalent binding step but calpain-1 selective at noncovalent binding 
step

As discussed above, the strong correlation from covalent binding state indicates 

Be−ΔΔGdm/RT is sufficiently smaller than Ae−ΔΔGdc/RT . Therefore, the contribution of the 
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noncovalent binding state is negligible for the overall binding selectivity, thus the correlation 

with overall binding free energy is not necessary. However, the anti-correlation between the 

experimental binding selectivity and the relative binding free energy of the noncovalent 

bound state obtained in this study is quite interesting. Such anti-correlation tells us that the 

compounds tested here that are calpain-2 selective at covalent binding step are more 

calpain-1 selective in noncovalent binding step. This points out an important message that 

improving the selectivity at noncovalent binding step will not necessarily improve the 

overall selectivity of a reversible covalent binder. The anti-correlation observed here could 

possibly be explained by the unique kinetics of α-ketoamide inhibitors. The binding kinetics 

of a series of peptidyl-α-ketoamide inhibitors were reported for the Hepatitis C NS3 

protease46. It was shown that the binding selectivity is solely controlled by the association 

constant kon. The dissociation constant koff was insensitive to the structural changes remote 

from the ketoamide warhead. It was also reported that the formation of noncovalent complex 

is rapid comparing with the covalent bond formation46-47. Thus, it might be reasonable to 

assume that the activation barrier is much higher than the first noncovalent binding free 

energy barrier. kon and koff can thus be approximated to k2 and k-2, which is proportional to 

the activation energy ΔG≠
on and the deactivation energy ΔG≠

off, as illustrated in Figure 5a 

(green curve). As seen from our FEP results, both covalent and noncovalent binding free 

energies are changed simultaneously when there is a structural change located away from the 

warhead. If the structural change remote from the warhead stabilizes the covalent-bound 

state (negative ΔΔGdc), the activation free energy ΔG≠
on may decrease, similar as described 

in Bell-Evans-Polanyi principle48. Likewise, if the same structural change destabilizes the 

noncovalent-bound state (positive ΔΔGdm), the activation free energy ΔG≠
on may decrease 

(Figure 5a orange curve). Therefore, ΔΔGdc and ΔΔGdm have opposite effects on the kinetic 

parameter ΔG≠
on. In fact, as we mentioned in the introduction, for weak to moderate 

electrophilic warheads, the noncovalent binding step is important to properly orient the 

warhead towards the catalytic nucleophilic residue in the target protein. However, if the 

noncovalent binding is too stable, it may slow down the activation process, which requires 

structural reorganization to convert the sp2 hybridization carbon to sp3 hybridization. Our 

FEP calculations of both states pointed out that investigating both covalent and noncovalent 

binding states, as well as the binding kinetics would provide detailed insight for optimizing 

reversible covalent inhibitors.

Eq. 7

Eq. 8

at the point of crossing between the parabolas,
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apply the quadratic formula,

assume a1 < a2

Eq. 9

Relation between ΔGmc and activation energy barrier ΔG≠
on

To estimate the relation between relative binding free energy and kinetics, we assume a two-

state free energy profile represented by two parabolas along a reaction coordinate that 

defines the lowest-energy route (Figure 5b). ΔG≠
on can be approximated as the free energy 

barrier at the crossing point between two parabolas with quadratic function Eq. 7 and Eq. 8. 

To avoid confusion with kinetic rate constant, we indicate the force constants of two 

parabolas as a1 and a2. The binding free energy difference between two states is ΔGmc and 

the distance between the two energy minima is d. Such a simplistic diagram bares similarity 

to Marcus rate theory, but differs in that covalent bond formation is being considered (as 

opposed to an electron transfer event) and that the two parabolas have different shapes, 

which is similar to proton transfer model Koepple and Kresge proposed49-50. Alternatively, 

other functional forms such as cubic function may be used to represent a more realistic two-

state free energy profile. This needs further investigation and the best choice may depend on 

the system. Because only the second parabola involves a covalent bond formation, one can 

assume a1 < a2. Thus, the relation between ΔG≠
on and ΔGmc can be obtained using Eq. 9, 

which depends on the shape of the two parabolas a1 and a2. a1 and a2 can be calculated 

based on the chosen reaction coordinate. For example, if the reaction coordinate is the 

distance between warhead and catalytic sulfur, a1 and a2 can be estimated using umbrella 

sampling simulation at noncovalent bound state and the covalent bound state. Same as Eq. 5, 

the broad usage of Eq. 9 lays in the fact that only one QM/MM calculation needs to be 

performed to obtain ΔG≠
on for the core. The ΔG≠

on for the inhibitors that share the same 

core can be estimated simply by adding ΔΔGmc to ΔGmc in Eq. 9. Since ΔΔGmc = ΔΔGdc - 

ΔΔGdm, it is calculated from our FEP method. A workflow from QM/MM to FEP 

calculations for designing highly selective reversible covalent inhibitors is currently under 

development.
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Conclusions

In conclusion, using a two-state binding model, the relation between relative binding free 

energy and the overall reversible covalent binding affinity is laid out. We evaluated the 

correlation between the calculated and experimental binding selectivity of reversible 

covalent inhibitors and discussed the potential applications and limitations of applying 

relative binding free energy calculations on reversible covalent inhibitors. We proved 

mathematically that when the covalent binding is >5.5 kcal/mol stronger that noncovalent 

binding, relative binding free energy of covalent state can be used to predict the binding 

selectivity. If such condition is not satisfied, we proposed an approach that can utilize 

relative FEP calculations described here to minimize the amount of QM/MM calculation 

needed to estimate the thermodynamics and kinetics of reversible covalent inhibitors. To 

satisfy Eq. 5 and Eq. 9, structural modifications remote from the warhead should not affect 

the electrophilicity of the warhead, both in bulk and in binding site. This precondition can be 

checked using various methods, such as single point QM/MM calculation using snapshots 

from MD trajectories. We also noticed from our calculations that the strong correlation was 

only obtained for binding selectivity, which is ΔΔGcalpain2 – ΔΔGcalpain1, not with individual 

binding affinity ΔΔGdc (Figure S4). It is well known that error cancelation exists between 

different ligands when calculating the relative solvation free energy and binding free 

energies. In our case, error cancelation between calpain-1 and calpain-2 may originate from 

using MM to treat the catalytic triad and bound states or may also originate from 

experimental measurements. Therefore, the method described here is particularly 

advantageous for predicting binding selectivity among protein isoforms, which is the major 

challenge in covalent inhibitors design.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Binding pose of a ketoamide ligand to calpain-1 catalytic site (PDB 2R9C)
Active conformations of calpain-1 and calpain-2 (PDB 3BOW) backbone are aligned. Blue 

color indicates identical residues and red color indicates non-identical residues between 

calpain-1 and calpain-2. Left: protein backbone are shown in new cartoon mode with ligand 

shown in licorice and catalytic triad C105/H262/N286 (calpain2 numbering) shown in CPK 

mode in atom color code: cyan carbon, blue nitrogen, and red oxygen. All hydrogen atoms 

are omitted for clarity. Right: protein backbones are shown in surface mode with the same 

color code. Bottom: the structure and nomenclature of the ketoamide ligand, as well as the 

reversible covalent binding scheme.
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Figure 2. Simplified free energy profile of two-state binding for a reversible covalent binder
Equations 1-3 show the relation between the association constant, 1/Kd, and the binding free 

energy of the covalent (ΔGdc), and noncovalent complexes (ΔGdm).
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Figure 3. Thermodynamics cycle for calculating the relative binding free energy of the 
noncovalent (a) and covalent (b) states
The structure on the right shows the scaffold of the binding complexes used for FEP/λ-

REMD simulations. Protein backbones are shown in silver new cartoon mode. In 

noncovalent complex, the catalytic cysteine is shown in CPK mode with atom color code: 

yellow sulfur, red oxygen, blue nitrogen, and cyan carbon. Ligand 4 is shown in licorice 

mode with the same color code. In covalent complex, the catalytic cysteine is covalently 

linked to the ligand warhead. All hydrogen atoms are omitted for clarity.
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Figure 4. Correlations between experimental and calculated selectivity
Chemical structures of the common core shown in black and the functional groups of the 

seven compounds shown in blue are drawn at the top. All free energy data, MEU and RMSE 

are in kcal/mol unit. Experimental selectivity data were obtained using ΔΔG (exp) = RT 

ln(Ki
Calpain2/ Ki

Calpain1), in which Ki
Calpain2 and Ki

Calpain1 are the inhibitory constants for 

each compound in calpain-2 and calpain-1 from ref 15. Calculated selectivity data were 

obtained using ΔΔGcalpain2 – ΔΔGcalpain1, in which ΔΔGs are the relative binding free energy 

difference between the core structure and each ligand in calpain-1 or calpain-2, attained via 

the FEP calculations. The correlation with noncovalent binding state is shown on the left, 

and that with covalent binding state is shown on the right. The error bars of ΔΔGcapain2 − 

ΔΔGcapain1 are calculated using , in which x is ΔΔGcapain2 

and y is ΔΔGcapain1 from the last three data points. Each data point was calculated from 200 

ps/replica. SD is standard deviation and Cov is covariance (see Table S2 for data table).
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Figure 5. Relationship between the activation energy and the binding free energy
(a) Hypothetical scenarios to reduce ΔG≠

on: destabilizing the noncovalent-bound state and 

stabilizing the covalent-bound state. The green curve represents the free energy profile of a 

common core structure. The orange curve represents the free energy profile of an individual 

ligand. (b) The two-state potential surfaces are represented by two parabolas with different 

shapes.
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