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Limited regenerative capacity of the mammalian heart was long thought to reflect lack of a 

cellular reservoir for new heart muscle tissue, but over the last decade a substantial body of 

literature has emerged documenting the contribution of stem or progenitor cells to 

cardiogenesis in the postnatal heart (1–22). Numerous cell types have been identified as 

potential sources of de novo cardiomyogenesis in the adult organism, and the significance of 

their role in cardiac repair is the subject of ongoing intense debate. Whether cardiac 

regeneration occurs through proliferation of existing myocytes or differentiation of stem 

cells into cardiac tissue, or both, continues to be intensively studied (23–46). Identification 
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of resident cardiac stem cells coupled with awareness that myocyte turnover is an ongoing 

process throughout life provide a rationale for new stem and regenerative therapies for 

diseased hearts. Clinical trials using bone marrow derived cell therapies have led the way 

and shown modest improvements in clinical endpoints (47–49), while further results from 

Phase I trials using the well characterized cardiac c-Kit+ stem cells and cardiosphere derived 

cells demonstrate promising improvement in cardiac function and/or structure (50, 51). 

Engineering c-Kit+ cardiac progenitors with Pim1 kinase to improve their reparative 

capacity has been validated in animal models and offers a path forward for clinical 

applications (52–56).

As a marker in the cardiac context, c-Kit is expressed by multiple cell types, including 

myocytes (22, 57–59), endothelial cells (60, 61), and cardiac stem cells such as 

mesenchymal and progenitor cells (1, 2, 57, 62). Debate over the contribution of c-Kit+ cells 

to cardiac repair and their utility in cell-based therapy applications is summarized briefly in 

Table 1 (1–3, 5, 8, 22, 50, 52–55, 57–61, 63–74). This overview of key publications 

highlights the diversity of viewpoints in the ongoing discussion among cardiac researchers 

regarding c-Kit+ cells. A more complex and heterogeneous expression pattern for c-Kit is 

emerging, as revealed by studies using various genetic animal models developed to 

determine which cell types participate in cardiac regeneration. Initial fate mapping models 

created to identify which cell types participate in cardiac repair include the αMyHCmER-

Cre-mER/ZEG mouse, in which cardiomyocytes are tagged upon administration of 

tamoxifen, and transgenic c-KitGFP reporter mouse lines, in which GFP expression 

diminishes upon loss of c-Kit promoter activity (25, 31, 35, 57, 70, 72, 75). These animal 

models provide valuable information regarding dynamics of cardiomyocyte turnover and 

replacement, however they do not definitively identify the specific contribution made to 

these processes by the c-Kit+ cell population throughout the life of the organism. More 

recently, direct tagging of c-Kit expressing cells using the endogenous c-Kit promoter 

validated that c-Kit cells contribute to the cardiomyocyte population, albeit at a very low 

level, and more extensively to the endothelial and interstitial cell pools (59–61). Intriguingly, 

studies using a similar lineage-tracing model demonstrated cardiomyogenic capability in c-

Kit+ cardiac neural crest progenitors, positing a non-permissive cardiac environment to 

explain low contribution of these cells to the cardiomyocyte population (22).

Genetic reporter models are imperfect reproductions of endogenous gene expression, 

whether employing an exogenous promoter segment or exploiting the endogenous gene via 

knock-in recombination. Transgenic promoter segments may lack important regulatory 

elements, while knock-in reporters often disable one allele of the gene-of- interest. 

Specifically, applying knock-in technology for c-Kit lineage tracing silences at least one 

allele of the c-Kit gene and has been reported to disrupt known regulatory elements in exon 

1, thereby perturbing endogenous c-Kit biology with potentially significant consequences 

for stem cell function (76). c-Kit signaling has been shown to promote growth, survival and 

proliferation in human CPCs in vitro (77), while W locus mouse mutants (W/Wv) exhibit c-

Kit cell dysfunction (78, 79). W/Wv mice display impaired cardiac recovery after infarction 

(80), diminished cardiac function with advanced age (81), and compromised c-Kit cell 

differentiation into cardiomyocytes (58, 82). Bone marrow c-Kit+ cells from W locus 

mutants or cells in which c-Kit has been molecularly silenced in vitro exhibit blunted 
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reparative responses to myocardial injury (80, 82–84). Given the importance of functional c-

Kit in cardiac maintenance and repair, current c-Kit knock-in mice may harbor similar c-Kit 

cell related defects. Additionally, reporter expression constrained to one allele of the 

endogenous promoter, coupled with decreased c-Kit function, could manifest as decreased 

reporter sensitivity and consequent underrepresentation of the tagged c-Kit cell population 

(85, 86). Recently, levels of c-Kit expression were shown to influence hematopoietic stem 

cell (HSC) function and regenerative capacity such that HSCs with relatively low c-Kit 

surface expression exhibited more stem-like properties of self-renewal and multipotency, 

whereas high c-Kit surface expression corresponded to compromised self-renewal and a 

propensity toward megakaryocyte differentiation (87). Low expressing c-Kit cells that 

constitute a more stem-like population would likely be under-represented in genetic tagging 

systems with an inherent bias toward high expressing cells. Finally, given the potentially 

compromised function of the c-Kit population in hemizygous reporter models, they cannot 

be used to assess the contribution of c-Kit+ cells that have been isolated according to c-Kit 

expression, then expanded and modified by passaging in vitro, as the selection pressures of 

tissue culture likely favor a subpopulation with enhanced survival and proliferative potential 

relative to the initial isolates. As such, knock-in studies do not inform upon the role of c-Kit

+ cells in adoptive transfer therapeutic applications in the clinical context, where 

cardiomyogenic and regenerative potential are undoubtedly much different from endogenous 

repair alone.

C-Kit as a cardiac cell marker. The hematopoetic stem cell marker c-Kit has been used to 

isolate and characterize adult cardiac stem cells in numerous studies. c-Kit expressing cells 

derived from adult cardiac tissue exhibit stem cell properties of self renewal, clonogenicity, 

and ability to differentiate into adult cardiac lineages (1, 2, 26, 88). The SCIPIO trial 

provides compelling clinical evidence that autologous c-Kit expressing adult cardiac stem 

cells function in a cell therapy application to improve cardiac performance in patients 

suffering from severe heart disease (50, 63). Direct comparison between human c-Kit+ 

cardiac progenitors (hCPCs) and bone marrow derived mesenchymal stem cells (hMSCs) 

reveals a 30 fold greater potency in cardiac repair of hCPCs over hMSCs after adoptive 

transfer into infarcted hearts of SCID mice, further illustrating the efficacy of c-Kit+ cells in 

therapeutic applications (89). Distribution of c-Kit expressing cells in the developing heart 

and their response to pathologic cardiac injury in the adult heart have been monitored using 

transgenic reporter lines expressing enhanced green fluorescent protein (EGFP) under 

control of the c-Kit promoter (25, 26, 57, 90). In addition to purported contributions of c-Kit

+ stem cells to myocardial adaptation and repair, cardiomyocyte de-differentiation and 

proliferation may also represent important mechanisms of cardiac regeneration. However, 

interpretations of the role for myocytes as contributors to cardiomyogenesis in the adult vary 

from little or none to substantial (30, 70, 91–93). For example, two separate studies from the 

same laboratory assert that multi-isotope mass spectrometry performed with mice 

demonstrates pre-existing cardiomyocytes are the dominant source of cardiomyocyte 

replacement in the adult mammalian heart following injury (93), while a prior report 

supports the possibility that nonmyocyte cells contribute to cardiac repair (70). Similarly, in 

lower vertebrate species such as zebrafish that exhibit remarkable myocardial regenerative 

potential throughout life, the robust reparative response after injury occurs via de-
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differentiation and proliferation of existing cardiomyocytes (34, 94). Myocardial 

regeneration of this magnitude can also occur in mice, but only during fetal and very early 

neonatal development where c-Kit+ cells predominate (37, 95). Treatments that induce 

cardiomyocyte de-differentiation with c-Kit+ re-expression (72) and proliferation (32, 96, 

97) in adult mice have been described, and expression of c-Kit has been reported in neonatal 

mouse cardiomyocytes undergoing terminal differentiation a few days after birth (58, 66). 

These “noncanonical” expression patterns of c-Kit have profound implications for lineage 

tracing studies employing c-Kit promoters. As traditional lines continue to blur between 

differentiated cardiomyocytes and the resident cardiac stem cell pool, with both populations 

potentially contributing to expansion and deployment of c-Kit+ cells engaging in heart 

growth and repair, more nuanced interpretation of results utilizing genetic models for c-Kit 

cell labeling becomes essential.

Beyond c-Kit+ stem cells and myocytes, cardiac interstitial cells, which comprise vascular 

and perivascular cells of the coronary circulation, and stromal and immune cells, represent 

the majority cell types of the heart within a dynamic and interconnected environment 

supporting cardiomyocyte function, homeostasis and repair. In addition to structural, sensing 

and adaptive functions, these cells are governed by their own stem cell hierarchies, and help 

to configure the niche for all stem cell populations of the heart. The adult epicardium, where 

c-Kit+ cells are known to reside (98, 99), is also emerging as a potentially significant player 

in heart repair. In the injured adult heart the epicardium reactivates its developmental 

transcriptional program (100, 101) and contributes new fibroblasts, perivascular cells and 

potentially cardiomyocytes to the injury site, stimulating angiogenesis and repair processes 

(102–104).

New approaches are needed to identify the distribution and proportion of all adult cardiac 

cell types expressing c-Kit or derived from c-Kit progenitors, establishing a direct readout of 

c-Kit+ cell participation in cardiac homeostasis and repair. An undeniable need exists for a 

better understanding of c-Kit+ as a marker of the regenerative cell population in the adult 

mouse. Although the list of candidate cardiac stem cells continues to grow, there is no clear 

understanding of whether these populations are inter-related functionally, or if a cellular 

stem cell hierarchy exists within the adult mammalian heart. As regenerative medicine 

further expands to embrace novel approaches for treatment of cardiovascular disease, robust, 

reliable, and consensual experimental models to study the cellular basis of tissue repair are 

needed now more than ever. As one of the very first endogenous cardiogenic cell populations 

identified in the adult mammalian heart, c-Kit+ stem cells have been advanced to clinical 

implementation for treatment of heart failure even as their role in myocardial repair 

continues to be contested.

Possession of fate mapping information for c-Kit+ cells in the adult mammalian heart 

represents powerful methodology as well as an important conceptual advance for revealing 

the true basis of endogenous c-Kit+ cell biology in the myocardium. Tagging of c-Kit+ can 

be performed during development, after injury, or in the aged heart to assess the 

incorporation of c-Kit+ cells, and to resolve longstanding debates resulting from indirect 

assessment of c-Kit+-based myocardial biology, or studies performed in models with 

potentially compromised endogenous c-Kit function. Recently, an inducible transgenic 

Gude and Sussman Page 4

Pharmacol Res. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overexpression model has been developed to tag all various c-Kit+ cells including 

cardiomyocytes and stem cells either reversibly or permanently, thereby circumventing 

disruption of the endogenous c-Kit gene and potentially identifying cells within a broader 

range of c-Kit expression. Findings using this model are expected to reveal previously 

unrecognized aspects of c-Kit expression and biology that will contribute to the overall 

understanding of cardiac c-Kit cell function and therefore improve the potential for use of 

these cells in the treatment of heart disease (unpublished observations). Likewise, it is 

possible to envision reporter models targeting the endogenous c-Kit locus without disrupting 

native expression using new gene editing technologies such CRISPR/Cas9 to insert an IRES-

EGFP in the 3’-UTR, or to generate a reporter fused to the endogenous c-Kit protein. 

Studies based on these mouse models will add missing information to the cardiac c-Kit cell 

literature and address important questions regarding the relevance of the c-Kit+ stem cell 

and c-Kit expression in the adult heart.
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Table 1

Summary of c-Kit+ cardiac stem cell debate.

CURRENT CARDIAC c-KIT FINDINGS SPECIES REFERENCES

c-Kit YES

Mammalian hearts possess c-Kit+ adult stem cells that contribute to 
cardiac formation, homeostasis and repair. mouse

Beltrami et al, Cell, 2003

Ellison et al, Cell, 2013

Nadal-Ginard et al, Stem Cell 
Res, 2014

Anversa et al, JCI, 2013

Hatzistergos et al, PNAS 2015

Tallini et al, 2009

(1–3,5,22,57)

Adoptive transfer of autologous cardiac c-Kit+ cells improves cardiac 
function in heart failure patients. human, pig

Bolli et al, Lancet, 2011

Chugh et al, Circulation, 2012

Quevedo et al, PNAS, 2009

Schuleri et al, Eur Heart J, 2009

McCall et al, Nature protocols, 
2012

(50,63,64,8,65)

Cardiac c-Kit+ progenitor cells engineered to overexpress Pim1 engraft, 
differentiate and improve cardiac function better than non-engineered cells 
upon adoptive transfer into infarcted myocardium.

mouse, pig

Fisher et al, Circulation, 2009

Mohsin et al, Circ Res, 2011

Mohsin et al, JACC, 2012

Mohsin et al, Circ Res, 2013

(52–55)

c-Kit+ cell fate mapping models show that c-Kit+ cells contribute to 
cardiogenesis during development and repair. mouse

Hatzistergos et al, PNAS, 2015

van Berlo et al, Nature, 2014

(22,60)

c-Kit is expressed in neonatal myocytes during terminal differentiation mouse

Li et al, Circ Res, 2008

Naqvi et al, Ped cardiol, 2009

(58,66)

c-Kit No

c-Kit+ cells are not adult cardiac stem cells and do not contribute to 
cardiac formation, homeostasis or repair. mouse,

Balsam et al, Nature, 2004

Sultana et al, Nat Comm, 2015

Zaruba et al, Circulation, 2010

(74,61,67)

Exogenous c-Kit+ cells do not repair injured myocardium through de novo 
formation of cardiac tissue. mouse

Murry et al, Nature, 2004

(68)

c-Kit+ cells are irrelevant in human cardiosphere cell therapy applications. human
Cheng et al, JAHA, 2014

(69)

c-Kit MAYBE

Cardiomyocyte fate mapping models suggest that c-Kit+ cells could 
contribute to cardiogenesis following injury. mouse

Hsieh et al, Nat Med, 2007

(70)

c-Kit+ cells contribute to neonatal but not adult cardiac repair in mouse. mouse
Jesty et al, PNAS, 2012

(71)
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CURRENT CARDIAC c-KIT FINDINGS SPECIES REFERENCES

Normal, injured or dedifferentiated cardiomyocytes may express c-Kit. mouse

Liu et al, Cell Res, 2016

Tallini et al, PNAS, 2009

Zhang et al, PloS One, 2010

Kubin et al, Cell Stem Cell, 
2011

(59,57,72,73)
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