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Morphological Constraints on Cerebellar Granule Cell
Combinatorial Diversity
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Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control
and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for
pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture
contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity
increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense
sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was
extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redun-
dancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding
in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial
expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing
mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results
complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatom-
ical features to afferent mixing.
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Introduction
Expansion recoding is a leading hypothesis for the role of the
dense cerebellar granule cell layer (GCL) (Marr, 1969; Albus, 1971).

This network consists of vast numbers of small granule cells
(GrCs) that possess on average just four dendrites (Eccles et al.,
1967; Herculano-Houzel, 2010). Inputs to this layer are domi-
nated by mossy fiber rosettes (MFRs), which are large presynaptic
terminals that branch off of mossy fiber axons (MFs) and convey
sensorimotor information from numerous structures into the
cerebellum. MFRs form the core of synaptic glomeruli where they
are contacted by numerous GrC dendrites, such that each GrC
samples �4 MFRs and sparsely represents convergent afferent
input in higher dimensional space, which is thought to be critical
for sensorimotor integration in service of motor learning (see Fig.
1A) (Marr, 1969; Blomfield and Marr, 1970; Albus, 1971). Many
studies support these ideas, and similar anatomical organization
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Significance Statement

Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These character-
istics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial
expander, where each granule cell represents a unique combination of inputs. Despite the centrality of these theories to cerebellar
physiology, the degree of expansion supported by anatomically realistic patterns of inputs is unknown. Using modeling and
anatomy, we show that realistic input patterns constrain combinatorial diversity by producing redundant combinations, which
nevertheless could support temporal diversification of like combinations, suitable for learned timing. Our study suggests a neural
substrate for producing high levels of both combinatorial and temporal diversity in the granule cell layer.

The Journal of Neuroscience, December 13, 2017 • 37(50):12153–12166 • 12153



has been observed in brain areas as diverse as electric fish electro-
sensory lateral line lobe, fruit fly mushroom bodies, mammalian
olfactory cortex, and dorsal cochlear nucleus, suggesting a con-
served computational function (Sawtell, 2010; Caron et al., 2013;
Kennedy et al., 2014).

A central tenet of the recoding hypothesis is that GrC activity
is very sparse because of the extensive combinatorial diversity of
GrC inputs, where the likelihood of two GrCs sharing the same
combination of MFR inputs is low. Yet recent studies using Ca 2�

imaging to monitor GrC population activity have called into
question the sparseness of GrC activity. These studies have noted
higher densities of active GrCs than predicted by classic theory
(Giovannucci et al., 2017; Knogler et al., 2017; Wagner et al.,
2017). How dense activation of GrCs would be supported by
highly diverse combinations of inputs onto GrCs is unclear. Fur-
thermore, these dense activity patterns would seem to suggest
degradation of the high dimensionality produced by sparse GrC
activity, raising the question of the computational utility of re-
dundant GrCs.

While the original study by Marr (1969) assumed relatively
uniform access of GrCs to MF afferents, precerebellar sources
encoding diverse signals often ramify in dense patches, suggest-
ing nonuniform mixing of inputs. Such anatomical features have
contributed to refinement of cerebellar cortical theory (Billings et
al., 2014; Spanne and Jorntell, 2013, 2015; D’Angelo, 2017;
Cayco-Gajic et al., 2017). For instance, spatial correlations of
MFR inputs can enhance information transmission in models of
the GCL (Billings et al., 2014). Furthermore, studies of delay
eyelid conditioning reveal that well-timed learning occurs even
with dense electrical activation of MFs (Steinmetz et al., 1986;
Freeman and Rabinak, 2004, Halverson et al., 2009). These ob-
servations have led to theories proposing temporal expansion of
GrC population activity, where GrCs receiving similar inputs
nevertheless sparsely fire throughout the conditioning window
(Mauk and Donegan, 1997; Medina et al., 2000).

We propose that dense GrC activity patterns could be ex-
plained by MF ramification patterns, and that this density could
support temporal expansion processes in the GCL. We used an
anatomically realistic model to test the hypothesis that dense
ramification patterns of MFRs would produce redundant MFR
combinations on GrCs, potentially contributing to denser activa-
tions than originally proposed. We also examined how other
morphological and organizational features of the GCL (i.e., MF
diversity, GrC dendrite length, and a morphological specializa-
tion of MFRs composed of long, thin synaptic extensions that
contact GrCs, called filopodia) contribute to and constrain GrC
combinatorial diversity. Anatomical details in the model were
validated in empirical observations of the nucleocortical and
pontine MF systems, described here. Together, our findings illu-
minate both the capacity of the layer to confer mixed selectivity to
GrCs in service of pattern separation (Rigotti et al., 2013; Litwin-
Kumar et al., 2017), and the level of redundancy (i.e., the number
of identical MFR combinations) likely to emerge within the layer
in support of temporal expansion encoding.

Materials and Methods
The goal of this study was to address how anatomical features of the
cerebellar GCL influence GrC combinatorial diversity (i.e., the unique-
ness of MFR combinations made by GrCs). To address these questions,
we combined anatomical observations with a model that mimics the
geometric organization of the GCL. We varied model parameters to test
the role of specific anatomical features to GrC combinatorial diversity.
Anatomical and modeling methods are described below.

Anatomy: subjects. Adult C57/B6 mice (Charles River; n � 9 mice) of
either sex were used in accordance with the National Institutes of Health
Guidelines and the Institutional Animal Care and Use Committee at the
University of Colorado Anschutz Medical Campus. Animals were housed in
an environmentally controlled room, kept on a 12:12 light/dark cycle,
and had ad libitum access to food and water. A total of 9 mice were used
in the entire study.

Virus injections. For all surgical procedures, mice were anesthetized
with intraperitoneal injections of a ketamine hydrochloride (100 mg/kg)
and xylazine (10 mg/kg) mixture, placed in a stereotaxic apparatus, and
prepared for surgery with a scalp incision. Craniotomies were made
above the cerebellar nuclei (1 injection from lambda: 2.0 mm posterior,
1.0 mm lateral, 2.5 ventral; n � 9/9 mice); and the basilar pontine nuclei
(from bregma) 4.0 – 4.5 mm posterior, 0.4 mm lateral, and 5.5 mm ven-
tral (n � 4/9 mice). Pressure injections of 0.15– 0.25 �l AAV1.hSyn1.
mCherry (University of North Carolina Vector Core) and AAV1.hSyn1.
eYFP were made using a 1 �l Hamilton Neuros syringe attached to the
stereotaxic apparatus (Stoelting). Virus use was approved by and in ac-
cordance with the University of Colorado Anschutz Institutional Bio-
safety Committee. All surgeries included postoperative analgesia with
intraperitoneal injections of carprofen (5 mg/kg) once per 24 h for 48 h.
Mice were housed postoperatively for 3– 6 weeks before perfusion to
allow for reporter expression throughout the entirety of the axonal arbor.

Tissue preparation for light microscopy. Mice were deeply anesthetized
with an intraperitoneal injection of sodium pentobarbital (Fatal Plus,
Vortech Pharmaceuticals) and perfused transcardially with 0.9% saline
followed by 4% PFA in 0.1 M phosphate buffer. Brains were removed and
postfixed for at least 24 h and then cryoprotected in 30% sucrose. Brains
were sliced in 40 �m serial coronal sections using a freezing microtome,
stored in phosphate buffer, and coverslipped in Fluoromount-G (South-
ernBiotech) mounting medium.

Anatomical measurements. A total of 1658 MFRs in 9 mice were ana-
lyzed, spanning cerebellar lobules, including Crus I, Crus II, Paramedian,
Simple, and vermal lobules 3, 4, 5, and 6. MFRs were labeled from cere-
bellar nuclear and/or pontine injections. Rosettes were imaged on a
Marianas spinning disc confocal microscope with a 63� objective. To
quantify nearest neighbors, montages of Lobules 6 and Crus 1 were pro-
duced from high-resolution images, and the location of each MFR was
mapped (n � 874 boutons; n � 4 dual injected mice, Lobules 6 and Crus
1). We noted the presence or absence of filopodia on these MFRs and an
additional 784 MFRs from 5 additional mice located throughout the
cerebellum for a total of 1658 MFRs. Euclidean distance from each ro-
sette to its 4 nearest neighbors was then computed and analyzed in
MATLAB (RRID:SCR_001622). To quantify the number and distance of
the filopodia from the MFR, 84 rosettes were analyzed, with 70 fully recon-
structed in 3D using Neurolucida 360 software (RRID:SCR_001775) (see Fig.
6). Filopodial boutons were defined as swellings at least 1 �m wide on
processes that extended from the main rosette but did not leave the
section (Gao et al., 2016).

Experimental design and statistical analyses. Anatomical observations
were made in 4 –9 mice. Nearest neighbor measurements were made with
custom scripts in MATLAB and computed the Euclidean distances of the
4 nearest neighbors of each MFR in 2 dimensions in the coronal plane.
Summary data of nearest neighbors are visualized in cumulative distri-
bution functions and populations compared with the two-sample Kol-
mogorov–Smirnov test in MATLAB, with p values and n values reported
in the text. Simulations were validated by performing multiple instanti-
ations of modeled systems described in each section below.

Modeling: model-free calculations. Theoretical numbers of MFR com-
binations, given the number of synapses per GrC, were computed using n
choose k with replacement, where n is the number of MFRs and k is the
number of inputs per GrC (see Fig. 1).

Simulations. We modeled groups of MFs and GrCs in MATLAB with
density and spatial relationships based on anatomical and physiological
data (Palkovits et al., 1971; Sultan, 2001; Solinas et al., 2010). Specifically,
the model incorporated physiological density and distribution of GrCs
and MFRs, the length of GrC dendrites, and the divergence and conver-
gence of MFRs onto GrCs (Table 1).
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MFRs and GrCs were programmed to represent their 3D position in
space and associated radii. Model systems were generated by first popu-
lating a defined space with MFRs. System dimensions were 100 � 100 �
250 �m and contained 3458 GrCs and 247 MFRs, except where noted.
Each MFR was checked against every other existing MFR to ensure spatial
nonoverlap, rejecting a placement if the distance between the centers was
less than the sum of the radii. MFR tiling obeyed a flexible spacing con-
straint such that each MFR had three neighbors with a mean distance of
18.4 �m between them from center to center, consistent with anatomical
measurements of glomerular spacing (Palkovits et al., 1971). To do this,
we chose randomly from existing MFRs and placed a new rosette at
16.4 –20.4 �m intervals. Perfectly even spacing of MFRs generated tetra-
hedrons, which do not tile in 3D space, so up to 2 �m of jitter about the
mean spacing allowed for generation of nearly evenly spaced MFRs. MFR
tiling approximated a tetrahedral matrix.

GrC placement followed a series of steps. First, seed locations were
selected from either existing MFRs or GrCs; then a new GrC was placed a
random distance away, excluding locations overlapping within the sum
of the radii of existing elements. Second, GrCs made four random syn-
aptic connections with nearby MFRs, limited to distances less than or
equal to the sum of the dendrite length and MFR radii (28 �m, unless
where noted). If the random location was not within reach of 4 MFRs, it
was discarded. Third, GrCs synapsed preferentially onto MFRs that had
�56 synapses with other GrCs, but MFR connectivity was capped at 80
GrCs. Overall, there was a range of 53–77 GrC synaptic connections per
MFR, with a mean of 56 (SEM � 0.82, n � 151 systems). The final result
was a modeled population with closely packed elements resembling the
dense packing of GrCs within the GCL (see Fig. 2A).

MFR diversity and spatial distribution modeling. One goal of the present
study was to understand how MFR diversity influences GrC combinato-
rial diversity. Because we were interested in identifying specific combi-
nations of MFRs onto GrCs, we assigned an identity (ID) to each MFR.
The ID terminology is a proxy for the source and/or uniqueness of the
MFR, such that we can think of modeled MFRs as originating from different
cells or different nuclei if they do not share an ID number. Throughout the
text, we refer to MFRs as a general term that assumes each MFR has an ID,
such that groups of MFRs imply the specific combination of ID numbers
of MFRs converging on a GrC.

To examine the relationship between MFR diversity and GrC combi-
natorial diversity, we varied the number of different ID numbers as-
signed to a fixed number of MFRs. We refer to the number of different ID
numbers in a system as n. In low-diversity systems, many MFRs had the
same ID number, whereas in high-diversity systems, few to no MFRs
shared an ID. We analyzed the combinations of MFR ID numbers
formed by GrCs within the simulation, tracking the number of shared ID
number combinations between different GrCs. The combinatorial diver-
sity of GrCs refers to the number of different MFR combinations pro-
duced by the population of GrCs within the simulation. In some analyses,
groups of MFRs converging on a GrC were subdivided into the quartet
(the combination of 4 MFRs), triplets (any 3 of the 4 convergent MFRs),
etc., noting that these MFR combination sizes are equivalent to the
“codon” terminology used in Marr (1969). We also investigated the rel-
ative change in GrC combinatorial diversity produced by adding one
additional ID number to the MFRs in the system, defined as follows:

Marginal addition to diversity � unique GrCs �
total MFRs

n
(1)

where unique GrCs refers to the number of unique MFR ID number
combinations produced by the system GrCs, total MFRs is the number of
MFRs in the system, and n is the number of ID numbers assigned to the
MFRs.

Another feature of MF patterning that we simulated was clustering of
similar MFRs. To examine the effect of MFR clustering on the diversity of
MFR combinations produced by GrCs, we populated the simulation with
MFRs assigned ID numbers drawn from a Gaussian-like probability dis-
tribution generated using the randn function in MATLAB. In effect, this
method led to nonuniform representation of specific ID numbers within
the system, with many MFRs assigned highly probable ID numbers,
mimicking clustering. These systems were compared with nonclustered
models, in which ID numbers were selected from a flat ID probability
distribution, producing a space in which each ID number was equally
likely. These systems were analyzed for diversity, redundancy, and frac-
tion of theoretically possible combinations produced, with analyses
repeated in 100 trials across 100 systems (120 � 120 � 100 �m in size,
containing 142 MFRs and 1988 GrCs). Redundancy of a particular com-
bination of MFRs on modeled GrCs was defined as the number of GrCs
in that system possessing identical combinations of MFRs (i.e., the same
quartet). The system redundancy was the mean number of repeats of
MFR combinations formed by GrCs in that system. Diversity was defined
as the total number of unique combinations of MFR inputs of a given size
in the GrC population. We refer to redundancy changes as a function of
MFR diversity as redundancy(n) where n is the number of different ID
numbers.

A related spatial pattern of MFR termination that we modeled was
sparsity. Here, a random MFR was chosen from a standard model and
was given a new, unique ID number. This analysis was repeated across a
range of ID diversity levels in 150 different system instantiations with 5
trials each. To analyze the diversity and redundancy of MFR combina-
tions with sparse fibers included, three different types of systems were
compared: (1) systems with n inputs, called baseline systems, where n is
the number of different ID numbers; (2) systems with n inputs, in which
a single rosette is changed to a unique input, called sparse systems; and
(3) systems with n � 1 inputs distributed uniformly, termed expanded
systems. The expanded system was essential to the comparisons because
it allowed us to compute whether the effect of sparseness on GrC com-
binatorial diversity was solely a consequence of adding an additional
input. Using these systems, we first calculated differences in diversity and
redundancy in the sparse and expanded systems relative to baseline. We
then compared changes in diversity and redundancy between these con-
ditions, expressed as a percentage difference in the effect of the sparse or
uniformly expanded inputs, defined by the following:

Sparse performance �
redundancy�‘sparse’�

redundancy�‘expanded’�
� 100 (2)

The diversity measurements were identical, substituting redundancy for
diversity.

We postulated that dense afferents serve a computational purpose that
could be disrupted by adding another uniformly distributed input. We
therefore asked whether a sparse input, when added to a preexisting
system, preserves GrC combinatorial patterns differently than adding
another uniform input.

We analyzed the retention of existing GrC combinations in the base-
line system upon addition of a sparse or expanded input type by com-
puting a retention index: First, each MFR quartet in the baseline system
was given a value of 1, with redundant MFR combinations summed, such
that the value reflected the number of repeats of a given combination.
Next, each combination in the sparse or expanded systems was scored
similarly. Finally, each combination in the baseline system was then com-
pared with each combination in the new system, receiving a retention
score given by baseline value divided by new system value. If a combina-
tion was lost in the new system, it was scored as a 0. The mean score for all
combinations was computed for comparisons between baseline and

Table 1. Anatomical data used in simulations

Value Used in simulation Reference

GrC density 2.6 � 10 6/1 mm 3 2.6 � 10 6/1 mm 3 Palkovits et al., 1971
GrC synapses/MFR 52–112 56 –77, 10 systems Palkovits et al., 1971;

Jakab and Hámori, 1988
MFRs/GrC 4 4 Palkovits et al., 1971
GrC radius 3 �m 3 �m Palay and Chan-Palay, 1974
GrC dendrite length 14 �m 20 �m maximum Palkovits et al., 1971
MFR radius 5.5 	 1.8 �m 5 �m Sultan, 2001
MFR density 9.88 � 10 4/1 mm 3 9.88 � 10 4/1 mm 3 Palkovits et al., 1971
Glomerular spacing 18.4 �m 18.4 	 2 �m Palkovits et al., 1971
GCL thickness 254 �m 250 �m Palkovits et al., 1971

Measurements and citations for values used in simulations.
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sparse and baseline and expanded. Finally, to compare how different
types of systems retained combinations, we computed a metric that took
the ratio of retention scores between the systems, defined as follows:

Percent Combinations Retained

�
� redundancy ‘sparse’ �

� redundancy ‘expanded’ �
� 100 (3)

Dimensionality calculations. The GCL is hypothesized to act as a com-
binatorial expander, increasing the dimensionality of inputs (Marr, 1969;
Albus, 1971). Because dimensionality is a function of the independence
of neuronal activity, coincident neural activity produced by redundant
MFR combinations would be expected to reduce the dimensionality.
Therefore, to explore the dimensionality of systems as a function of
MFR diversity, we generated 150 different systems of GrCs and MFRs as
described above. Within each system, we simulated a range of MFR di-
versity levels where between 1 and 100 different MFR ID numbers were
assigned to the MFR population. We established a proxy for neuronal
activity where GrCs were considered active when three of their four
MFRs were synchronously active (Jörntell and Ekerot, 2006; Billings et
al., 2014). The MFR activity level was set such that, on average, 10% of
MFRs in the simulation were active at a given time (Litwin-Kumar et al.,
2017), over 1000 epochs. The activity of a given MFR ID number was
determined by assigning it a value from a random number generator
every epoch. When the random number exceeded a predetermined
threshold, the ID number was active. In low-diversity systems, many
MFRs share the same ID number, rendering many MFRs coincidently
active. The threshold for determining an active ID number from the
random number generator was therefore varied to ensure that, even in
low-diversity systems, with many MFRs possessing the same ID, the
mean total active population was maintained at 10%. A total of 1000
epochs were generated in each simulation, and all pairwise GrC correla-
tions and variance of correlations were measured over all the epochs. Five
trials of each simulation were performed, and the average correlation and
variance measured and used in Equation 4 (below). In total, 500,000
epochs for each diversity level were analyzed.

To assay the dimensionality produced by combinatorial expansion
(CE) of the model GCL as a function of diversity level, n, we used the
following equation:

CE�n�

�
1

1

M
� �corr�GrCi, GrCj�� 2 � �var�corr�GrCi, GrCj���

(4)

where n is the number of unique MFR ID numbers in the model, M is the
number of GrCs, �corr(GrCi,GrCj)
2 is the squared mean correlation
coefficient of the activities of GrCi and GrCj over all pairwise GrC com-
parisons, i and j, across all epochs, and �var(corr(GrCi,GrCj))
 is the
mean variance of all pairwise correlations across all epochs as described
by Litwin-Kumar et al. (2017). This calculation was repeated for each
system and averaged for each value of n.

A prominent hypothesis in cerebellar literature proposes that GrCs
receiving correlated inputs become temporally diversified (i.e., fire at
different times despite receiving the same input), leading to increased
dimensionality supporting learned timing (see Fig. 3 A, C) (Mauk and
Donegan, 1997; Medina et al., 2000), which is not captured in Equation 4.
Behavioral measurements of intervals over which an animal can learn a
conditioned response suggest that information can be diversified up to
500 ms, with physiological measurements showing individual GrCs
bursting for �20 ms (Schneiderman and Gormezano, 1964; Smith et al.,
1969; Ishikawa et al., 2015). At the limit, every GrC could be decorrelated
from every other GrC, producing maximal dimensionality even if each
GrC received identical inputs. However, based on GrC burst times, this
would predict unrealistically long temporal expansion windows. We
therefore used physiological estimates of temporal learning windows to

constrain a metric for temporal expandability (TE) where we penal-
ized over- or under-representation of dimensions produced by CE,
for a given time window. We defined over-representation (Ro) and
under-representation (Ru) as follows:

Ro�n� � M �
trespmax

GrCresponse
� CE�n� (5)

Ru�n� � � trespmax

GrCresponse
�

M

CE�n�� � �M �
GrCresponse

trespmax
� (6)

where n is the number of different MFR ID numbers, M is the number of
GrCs, and CE(n) is the dimensionality of the system computed using
Equation 4. The Ro formula returns the number of “extra” GrCs over all
dimensions that are unnecessary for complete temporal expansion over
the trespmax interval (500 ms), assuming a given GrCresponse burst dura-
tion (20 ms). The Ru formula returns the difference between the number
of GrCs that would be needed to completely represent the time window
and the number of GrCs per dimension, scaled by the optimal number of
GrCs needed per dimension to represent the time interval. When either
Ro or Ru returned a negative value, we set the metric to 0.

We then used these penalties to compute a function that captures both
the temporal expansion (TE) and CE (TECE) as follows:

TECE�n� � M � Ro�n� � Ru�n� (7)

Where M is the number of GrCs (and maximum dimensionality), from
which the lost dimensionality that occurs due to the Ro and Ru terms is
subtracted.

Finally, we tested differences in the TECE(n) calculated for models in
which spatial relationships were included (physiological) and models in
which there were no spatial constraints considered (nonspatial). The
nonspatial model used here was simulated by assigning 4 MFR IDs at
random to each GrC in a model system of the same size as the physiolog-
ical system, regardless of space.

Filopodia modeling. Statistics of MFR filopodia gathered from the an-
atomical experiments were used in the spatial GCL model to mimic
fiolopodia. We simulated filopodia by adding between 1 and 5 (median,
2) synaptic connections with GrCs within 22 �m of the MFR. We added
simulated filopodia to between 8% and 20% of MFRs. This was simulated
in 450 different systems, with 5 trials each.

Results
Theoretical limits on combinatorics imposed by
GrC-to-MF ratios
Expansion recoding is a leading hypothesis for the role of the
dense cerebellar granule layer network formed with MFRs. First
proposed by Marr (1969) and elaborated by Albus (1971), the
idea that GrCs sample �4 MFRs and represent convergent affer-
ent input in higher dimensional space is central to ideas of cere-
bellar sensorimotor integration (Fig. 1A). Before analyzing how
GCL organizational features influence the number of different
combinations of MFRs represented by the GrCs (i.e., combina-
torial diversity), we made a series of simple calculations defining
the maximum number of MFR permutations possible, given
MFR diversity. These calculations highlight the fact that complete
permutation of cerebellar inputs is not physiologically realistic,
and motivate the spatially constrained modeling. The theoretical
number of permutations of MFRs can be computed using the
binomial coefficient, n choose k, with replacement, where n is the
number of unique MFRs and k is the number of inputs per GrC.
We compared these values with the number of GrCs that exist per
MFR (14:1), based on numerical ratios derived from anatomical
estimates (Jakab and Hámori, 1988). The rapid increase in the
binomial coefficient as a function of MFR numbers quickly ex-
ceeds the number of GrCs that exist (Fig. 1B,C) such that, when
there are 
5 or 6 MFRs in a system of 84 GrCs, some MFR
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quartets go unrepresented in the GrC population (Fig. 1B). Even
when considering divergence, where each MF forms between 20
and 200 MFRs (McCrea et al., 1977; Shinoda et al., 1992; Wu et
al., 1999; Quy et al., 2011), theoretical complete mixing is limited
to between 18 and 31 unique sources in the GrC population of
�6000 – 46,000, depending on the level of divergence (Fig. 1C,
intersection of shaded regions and black curve). These calcula-
tions indicate that the cat granule layer, containing 2– 4 billion
GrCs and 77 million MFRs (Palkovits et al., 1971), could fully
permute just 470 –560 unique MFR sources, depending on the
level of MF divergence. Therefore, the cerebellum would not rep-
resent all quartets unless each input is duplicated between 2700 –
4600 times, a highly unlikely scenario (Fig. 1D, blue shading).

Spatial constraints on granule layer combinatorics
The previous calculations do not take into account any spatial
features of GCL organization, which would be expected to influ-
ence the diversity of convergence of MFRs onto GrCs. As an
extreme example, two MFs that terminate in different lobules
would obviously not converge on a common GrC. We speculated
that the morphological features of the GCL might extend these
spatial restrictions at local levels, where combinations of MFs
ramifying even in a relatively local area might not be combined if

GrC dendrites are too short to reach them (schematized in Fig.
2B). We therefore examined how the anatomy of the GCL influ-
ences the performance of the layer as a combinatorial expander.
To address this, we developed a model that mimics the geometric
organization of the GCL and manipulated spatial features to de-
termine the role of specific anatomical features to GrC combina-
torial diversity (Fig. 2A; see Modeling).

We first investigated the role of GrC dendrite length on access
to local MFRs. We measured the effect of GrC dendrite length on
the access to diverse MFRs in modeled systems with varying MFR
diversity. We found that dendrite lengths falling within a physi-
ological range (8 –20 �m; shaded region) strongly limit access to
MFRs. As the MFR diversity increases, GrCs cannot access that
diversity because of the shortness of their dendrites (Fig. 2C).
Therefore, locally, the number of MFRs accessible to GrCs is
capped at �10, regardless of MFR heterogeneity. As expected,
lengthening dendrites permitted GrCs to access a greater diver-
sity of MFRs. Increasing the dendrite length from 20 to 60 �m
allows a GrC to access 5- to 10-fold more unique MFRs, depend-
ing on the diversity of the local MF population (Fig. 2C).

We next computed the number of unique combinations of 4
MFRs produced by a modeled population of �3500 GrCs and
�240 MFRs, taking into account spatial relationships of GrCs

Figure 1. Theoretical limitations of GrC input combinations based on MFR-to-GrC ratios. A, Schematic diagram illustrating the MFR-GrC-Purkinje circuit and terminology. MFRs with IDs w-z
converge onto a specific GrC. This combination of MFRs to this GrC represents the quartet for the illustrated GrC. Throughout the study, we examined how the diversity of MFR combinations onto GrCs
relates to patterns of MFR inputs. B, The number of theoretical permutations of MFRs is given by the binomial coefficient, defined by n choose k with replacement, where n is the number of MFRs and
k is the number of inputs combined per GrC. The binomial coefficient, for n choose 4 with replacement (black), is overlaid with the linear function (red) showing the ratio of GrCs to MFRs. The
intersections of the curves indicate that, based on the linear relationship of MFRs to GrCs, GrCs could fully permute a maximum of 5 unique MFRs. C, Similar to B, but with the linear function relating
GrCs to MFs, taking into account multiple MFRs per MF axon. D, The binomial coefficient (black trace; n choose 4 with replacement) is plotted against the number of unique MF IDs that could
theoretically be permuted (equivalent to n). The cat cerebellum contains an estimated 2– 4 billion GrCs (red lines), indicating that the cat GCL could fully permute 470 –560 different MFRs. To
distribute those MFR identities over the 77 million MFRs estimated to occupy the cat cerebellum, these unique sources would have to be duplicated between 2735 and 4595 times. PKJ, Purkinje.
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and MFRs. We assigned ID numbers to MFRs in the model and
varied the diversity of the population of MFRs from being en-
tirely homogeneous (where each MFR has the same ID) to en-
tirely heterogeneous (where each MFR has a unique ID; Fig. 2D).
Focusing here first on quartets (combinations of 4 inputs), the
relationship between MFR diversity and number of different
combinations formed on GrCs showed two striking features.
First, GrCs are quickly saturated with unique MFR combinations
as MFR diversity increases, illustrated by the asymptote in the
number of unique GrC combinations (Fig. 2D, red curve). This
cap on unique MFR combinations suggests that, with just mod-
erate MFR diversity, most GrC input combinations are unique.
As the MFR population continues to diversify, new unique MFR
combinations replace other unique MFR combinations, illustrat-
ing the effectiveness of the GCL as a combinatorial expander. The
apparent cap on diversification of quartets at �30 MFR IDs in
this system indicates that quartets quickly approach the combi-
natorial limit imposed by GrC population sizes.

A second feature of GrC combinatorial diversity as a function
of MFR diversity was that GrC combinatorial diversity is never
maximal, asymptoting near 80% of GrCs bearing unique MFR
combinations. That is, the number of unique combinations re-
mains below the number of GrCs in the system, even when the
MFR population is completely diverse. This phenomenon reflects
local resampling of MFRs and indicates that multiple representa-

tions of specific combinations, while not dominant in the popula-
tion, are a byproduct of short dendrites and glomerular presynaptic
structures.

We next examined how the number of GrCs with different
MFR combinations changes if we considered just a subset of the
combination of 4 convergent MFRs (3, 2, or 1 MFR) because a
subset of MFR afferents could produce redundant GrC activity
(Jörntell and Ekerot, 2006; Billings et al., 2014). We found that, as
the diversity of MFRs increases, the number of combinations of 3
MFRs produced by GrCs continues to increase beyond the point
where quartets are saturated (Fig. 2D, green curve).

Regardless of combination size, we noticed a roll-off in the
number of unique MFR combinations produced as the system
diversifies. We explicitly computed the relationship between GrC
combinatorial diversity and the addition of each new MFR, plot-
ted in Figure 2E, by weighing each additional GrC-MFR combi-
nation against the ratio of total MFRs to unique MFRs (Eq. 1).
The peaks in these curves indicate the point at which each addi-
tional MFR ID adds relatively less to overall GrC combinatorial
diversity.

These analyses assume equal strength of MFR inputs to GrCs
and spiking thresholds requiring coincident activity of quartets,
triplets, or doublets. Interestingly, LTP at the MFR-
GrC syn-
apse has been observed, which might be predicted to change the
effective subset of convergent MFRs onto a GrC. To test this idea,

Figure 2. The spatial organization of the GCL restricts combinatorial expansion. A, We constructed spatially realistic models of the GCL, shown here in a simplified rendering. Large spheres
represent simulated MFRs, with colors representing ID numbers. Gray spheres represent GrCs. Gray lines indicate GrC dendrites. A 247 MFR system is depicted here, with all synaptically connected
GrCs per MFR rendered. Scale bar, �25 �m. B, Diagrams illustrating low- and high-diversity systems. Bottom rows, MFRs with ID indicated by color. GrCs (middle) combine local MFR inputs to
assume a unique combinatorial identity (blended colors). Throughout the remainder of the study, we examine how MFR diversification and clustering in a spatial model of the GCL influence GrC
combinatorial diversity, testing, for example, how spatial segregation of inputs favors particular combinations (e.g., the purple GrC, indicating that a theoretical combination of red and blue MFRs
cannot exist because red and blue MFRs are too far apart). C, Effect of GrC dendrite length on access to unique MFRs (mean 	 SEM; n � 10 systems with 10 trials each, for each MFR diversity level).
An anatomically realistic dendritic range between 12 and 20 �m restricts access to �6 unique inputs, regardless of the diversity of the system. D, Populations of combinatorially unique GrCs as
defined by their k-input combinations (quartets, triplets, etc.) as a function of increasing numbers of unique MFR identities uniformly distributed across the population. Dashed line indicates the total
number of GrCs in the system. E, A function plotting the relative contribution of each additional MFR ID to the total number of MFR combinations made by GrCs (Eq. 1). As the model diversifies with
increasing numbers of unique MFRs, fewer new combinations are produced per additional MFR ID number, peaking at 5%–20% diversity (i.e., between 5 and 20 MFRs/100 share the same ID) for
quartet and triplet systems. This peak indicates the point beyond which increasing diversity contributes relatively less to the number of unique MFR combinations made by GrCs. F, The effect of MF
LTP on combinatorial representation. With a GrC firing threshold of 4 active inputs, a full quartet of active MFRs is required to drive activity. As the strengths of inputs increase, the mean number of
potential combinations that can drive a given GrC increase.
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we established a thresholding rule on a GrC, but then increased
the contribution of each MFR, simulating LTP at this synapse
(Mapelli and D’Angelo, 2007). When inputs were allowed to
strengthen, we found an increase in the number of combinations
that could drive this population of GrCs (Fig. 2F). This diversity
in driving inputs might be exploited by an adaptive filter via the
Golgi cell (Billings et al., 2014). Furthermore, it would be pre-
dicted to produce denser recruitment of GrCs than in an unpo-
tentiated state (Diwakar et al., 2011).

Spatial constraints enhance the capacity for temporal
diversification of GrCs
These data show that the spatial organization of the granule layer
limits the number of MFR permutations possible and produces
redundant MFR combinations. The presence of redundant com-
binations of MFRs on GrCs in the spatially constrained model
raised the question of whether there may be utility to redundancy
that is not well captured by the dimensionality produced by CE.
Theories of the expansion of specific information in the temporal
domain (Mauk and Donegan, 1997; Medina et al., 2000) could
explain the utility of redundant combinations because identical
information sources could activate GrCs, which could be further
diversified in time, in support of learned timing. For instance, if
many GrCs share a dimension produced by combinatorial iden-
tity (Fig. 3A, “Low ID system” indicated by color), that dimen-
sion could be temporally expanded (TE). Alternatively, if GrCs
are already extremely combinatorially diverse, and few GrCs are
shared per dimension, the combinatorially defined dimension
cannot be temporally expanded as extensively (Fig. 3A, bottom).

These features would predict reduced dimensionality of infor-
mation represented by the system. We used a simplified model of
GrC activity based on MFR activity and analyzed dimensionally
as a function of MFR diversity (see Eq. 4). We calculated the
dimensionality of the system with and without spatial constraints
and found that, consistent with recent findings, the anatomically
constrained “physiological” system showed a decrease in dimen-
sionality relative to a nonspatial, randomly connected network
(Fig. 3B) (Litwin-Kumar et al., 2017). We therefore considered
the idea that GrCs with redundant combinations of MFRs could
fire at different times because of either GCL circuitry or synaptic
diversity (Medina et al., 2000; Chabrol et al., 2015). This scenario
would both recover dimensionality lost by redundancy and sup-
port specific information being represented over extended time
windows. Based on the temporal dynamics of GrCs and the limit

of learned timing in delay eyelid conditioning, we modeled GrC
activity such that each GrC was active for a 20 ms epoch (GrCresponse)
over a 500 ms window (trespmax) (Schneiderman and Gormezano,
1964; Smith et al., 1969; Ishikawa et al., 2015). We assumed a cost
to over- and under-representing a given combination over time
(Eq. 5, 6) and measured the dimensionality of the time expanded
simulation (TECE) over a range of MFR diversity levels (Eq. 7).
Figure 3C shows the results of this simulation and analysis when
added to the calculation of dimensionality produced by CE. In-
tuitively, the more redundant the combinations, the greater the
capacity of the specific combinations to diversify over time. This
intuition is supported by a peak in the temporal expansion
(TECE) curve at low-diversity levels, which then dropped off
with increasing MFR diversity. As the diversity of inputs in-
creases, the layer falls short of providing enough GrCs to expand
this information in time.

Importantly, the model with physiological spatial constraints
showed improved performance over the nonspatial connectivity
model, achieving both high combinatorial dimensionality and
temporal expandability (Fig. 3C). The peaks of these curves oc-
cur when the number of GrCs per dimension is equal to the
minimal number of GrCs required to completely fill the time
interval (see Materials and Methods) and is therefore dependent
on the temporal assumptions (GrCresponse and trespmax; Eqs. 5,6).
The physiological model has higher TECE than the nonspatial
model with temporal expansion windows 
200 ms, within the
range that rabbits readily learn conditioned stimuli (Schneider-
man and Gormezano, 1964). At shorter trespmax (i.e., �200 ms),
the nonspatial model has higher TECE. These calculations sug-
gest that the granule layer may balance requirements to expand
information temporally as well as diversify inputs as a result of
CE.

Impact of MF heterogeneity on spatial organization of GrCs
sharing inputs
Receptive fields of GrCs tend to be somatotopically patchy, sug-
gesting redundant MF input to GrCs (Welker et al., 1984; Voogd
and Glickstein, 1998; Jörntell and Ekerot, 2006; Garwicz et al.,
1998). Because MFRs are sampled by many neighboring GrCs,
local sharing of a given MFR is expected, and we therefore exam-
ined the spacing of GrCs that share a given number of MFRs in
our model. We measured the spatial relationship between GrCs
that shared one or more common inputs (i.e., inputs had com-
mon MFR ID numbers). As MFR diversity increased, the distance

Figure 3. Spatial patterning enhances temporal expansion of GrC representation. A, Diagram illustrating the hypothesized tradeoff between CE and TE, which requires redundant MFR
combinations (shared colors) by multiple GrCs. B, CE dimensionality plotted as a function of MFR diversity for the spatially constrained model “physiological” and nonspatial model. C, The composite
of TECE for physiologically constrained (red) and nonspatial (black models) for a time window of 500 ms. At higher MFR diversity levels, the spatially realistic model possesses greater TECE
dimensionality than the nonspatial model because it both expands combinations and produces redundancy required for temporal expansion of dimensions.
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between GrCs sharing inputs diminished rapidly (Fig. 4A,B). We
analyzed this phenomenon by measuring the Euclidian distance
between all GrCs and classified them into groups determined by
the similarity of their combinations. For example, with only five
MFR ID numbers assigned to the MFR population, the spatial
distribution of GrCs that share four specific MFR inputs or share
no inputs are equally spaced, illustrated in a cumulative distribu-
tion of the distances between GrCs sharing inputs (Fig. 4A). By
contrast, when the MFR population is diversified to the point that
it is �25% diverse (1 in 4 MFRs shares an ID), GrCs that share the
same 4 input ID numbers cluster within �20 �m of one another
and GrCs that share no inputs remain homogeneously spaced
within the volume (Fig. 4B,C). This can be seen comparing the
red and black curves in Figure 4B, which plots distances of GrCs
that share all or no inputs, respectively. These analyses were ex-
tended for modeled systems in which we varied MFR diversity
systematically, ranging from all identical to all dissimilar. Dis-
tances between GrCs with shared input combinations drop with
increased MFR diversity (Fig. 4C).

While redundant quartets become highly restricted in space,
GrCs that share 3, 2, or 1 MFR ID can remain fairly distant from
one another, as shown in Figure 4B, C (green and blue curves).
We visualized the space of shared MFR IDs in a modeled system
with 20 MFR ID numbers (Fig. 4D). GrCs are plotted as gray
points, and colored boxes surround GrCs that share MFR ID

numbers. The volume occupied by GrCs with identical quartets
(red box) is extremely circumscribed. The volume of the bound-
ing box for identical quartets drops rapidly as MFR diversity
increases (Fig. 4E, red curve), asymptoting �36 �m 3, the volume
occupied by the reach of a single MF. Similarly, bounding vol-
umes of GrCs sharing MFR triplets or doublets also decrease as
diversity increases (Fig. 4E, green and blue curves), implying that,
although specific GrC MFR quartet combinations saturate
quickly, the number of shared MFRs in the population continues
to drop as MFR diversity increases, reducing the space over which
GrCs share MFRs.

In summary, by increasing diversity of MFs, patchy represen-
tations emerge because of the spatial restrictions of the GrC den-
drites and MFRs. Grouping also occurs as a consequence of MFR
combination probabilities dropping off sharply in space, al-
though subsets of inputs are shared by more widely spaced GrCs.
This phenomenon suggests that local inhibition could regulate
the size of the MFR combination relayed to Purkinje neurons,
without sacrificing the subsets of the combinations completely, as
would occur with maximal local diversity.

Impact of MF spacing on combinatorial diversity
MF afferents frequently appear to terminate within clusters in
the GCL. For example, both the nucleocortical pathway and
the basilar pontine nuclei pathway terminate in patches of

Figure 4. Spatial clustering of GrCs with similar combinations emerges as a consequence of MFR access and diversity. A, Cumulative distributions plotting the distance between a GrC and every
other GrC in the model that shares a given number of its MFR inputs (i.e., GrCs that share quartets, GrCs that share triplets) in a system with 5 different MFs (5 ID). B, Same as in A, but in a system with
20 different MFs (20 ID). Colors as in A. C, Summary of clustering effect as a function of MFR diversity, illustrating that dense spatial restriction of like combinations is most pronounced with high MFR
diversity. Colors as in A. D, Illustration of spatial extent of GrCs sharing 4 inputs “quartets” (red), triplets (green), and doublets (blue). E, Summary of volumes occupied by like quartets, triplets, and
doublets as a function of the diversity of MF IDs in the system.
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cortex (Fig. 5A–C) (Huang et al., 2013; Houck and Person, 2015).
Such clustering is common, with MFs from diverse sources ter-
minating densely along zebrin stripes or in similarly spaced
stripes within the layer (Sillitoe et al., 2010; Quy et al., 2011;
Gebre et al., 2012; Gao et al., 2016; Valera et al., 2016). While MFs
originating from the same nucleus do not necessarily carry the
same information, single-cell label supports the idea that rosettes
from the same fiber terminate densely (Sultan, 2001; Quy et al.,
2011), and physiological data support the notion that GrCs can
receive information from like fibers (Jörntell and Ekerot, 2006).
Before including spatial clustering in our model, we measured the
patchiness of two MF pathways, analyzing the distribution of
MFRs. We labeled the nucleocortical and pontocerebellar path-
ways using AAVs expressing fluorescent proteins and analyzed

MFRs in Crus 1 and Lobule 6, used as representative locations
(see Materials and Methods). Nearest neighbor analyses from 874
rosettes revealed that most MFRs are clustered, existing within
100 �m of another MFR from the same source (Fig. 5C).

We therefore explored the effect of these spatial characteristics
on GrC combinatorial diversity in our model. We compared the
GrC combinatorial diversity produced with unclustered versus
clustered MFRs. To do this, we computed the number of unique
GrC MFR combinations produced by the model as a function of
MFR diversity relative to the number of theoretically possible
combinations, based on n choose k with replacement, where k �
4, 3, or 2 for quartet, triplet, and doublet combinations, respec-
tively (Fig. 5D,E, color coded by combination size). In unclus-
tered models, MFR ID numbers were drawn at random from a

Figure 5. Clustered MFs enhance redundancy at the expense of diversity. A, Representative example of patches of nucleocortical (green) and pontine (magenta) MFRs in mouse Lobule 7 (n �
4 mice, 8 injections). Scale bar, 200 �m. B, Representative example of both clustered (pontine, magenta) and sparse (nucleocortical, green) MFRs at the apex of Crus 1. Scale, 10 �m. C, Histogram
of the mean distance of MFRs to their 4 closest neighbors labeled from the same injection (n � 874 rosettes, 4 mice). D, Percentage of the total theoretical combinations (n choose k with
replacement) produced by the modeled system, as a function of the number of different MFRs in the system. Rosettes were positioned following a uniform probability distribution (i.e., no explicit
rosette clustering). E, Percentage of maximal GrC combinatorial diversity produced as a function of MFR diversity when MFR IDs were clustered. F, The difference in the diversity of MFR combinations
produced with clustered versus unclustered inputs, computed by subtracting curves in D, E. Unclustered MF distributions support more combinatorial diversity compared with clustered MF
distributions. G, Percentage change in the redundancy of represented combinations in clustered systems versus uniform systems as a function of the number of unique MFRs in the system. At modest
MFR diversity (�20 IDs), clustering nearly doubles redundancy of combinations relative to unclustered fibers. H, The effect of sparseness on redundancy and diversity compared with a system with
n � 1 uniformly distributed MFRs, plotted as a function of MFR diversity. A sparse rosette enhances redundancy but decrements diversity. I, Mean sparse retention index plotted as a function of MFR
diversity. Sparse inputs retain more of the existing combinations than adding a uniform input.

Gilmer and Person • Cerebellar Granule Cell Combinatorial Diversity J. Neurosci., December 13, 2017 • 37(50):12153–12166 • 12161



uniform probability distribution. In clus-
tered models, MFR ID numbers were
drawn at random from a Gaussian-like
probability distribution function, lead-
ing to over- and under-representation of
specific ID numbers in the population.
Clustering MFR ID numbers attenuated
the fraction of theoretical diversity pro-
duced by the model compared with unclus-
tered inputs (Fig. 5D–F) and enhanced the
redundancy of MFR combinations (Fig.
5G).

The trade-off between diversity and re-
dundancy observed with clustering raised
related questions of whether other fea-
tures of MF organization affect these pa-
rameters. In addition to clustered inputs
(Fig. 5A,C), we noted that, although
rarer, MFRs can appear hundreds of mi-
crons away from rosettes from the same
source (Fig. 5B,C). We therefore asked
how these sparse, numerically limited,
MFRs contribute to GrC combinatorial
diversity. We analyzed diversity and re-
dundancy of GrC combinations produced
in model systems mimicking these ana-
tomical features. We modeled three sys-
tems to facilitate comparisons. The
baseline system contained MFRs with n
ID numbers uniformly distributed within
the system; the sparse system contained
MFRs with n ID numbers but addition-
ally, a single MFR was assigned an ID
number unique to the system; and the ex-
panded condition, in which a new ID was
uniformly added to the baseline system
(n � 1 ID numbers). Compared with the
baseline system, sparse rosettes decreased
redundancy and increased the diversity of
combinations, similar to the effect of adding
an additional input (Fig. 5H). However,
compared with the expanded system, the
sparse input better preserved the redun-
dancy of combinations that were present in
the baseline system, suggesting that sparse
fibers increase diversity with less detriment
to redundancy compared with adding an-
other input uniformly to the space (Fig. 5I;
for details, see Materials and Methods).

Impact of MF filopodia on GrC
combinatorial diversity
MF filopodia are long, thin, bouton-
bearing processes that extend from MFRs
(Fig. 6A–C). They have recently been shown
to form synapses on GrCs (Gao et al.,
2016), raising the question of their poten-
tial role in GrC combinatorial diversity. We
reconstructed and analyzed pontine and
nucleocortical MFRs from throughout the
cerebellar cortex (Fig. 6B–D), quantifying
the fraction of MFRs possessing filopodia
(n � 1658 boutons), the number of bou-

Figure 6. MF filopodia enhance both combinatorial diversity and redundancy produced by GCL. A, Representative image of an
MFR bearing filopodia. B, A reconstruction of MFR in A that illustrates the MFR in green and putative filopodial boutons in red.
C, Reconstructions of 70 MFRs from 9 mice that bore filopodia, illustrating morphological diversity. D, Box plots of median and
interquartile ranges of distances of filopodial boutons to the MFR and the number of boutons/MFR for pontine fibers, nucleocortical
fibers, and both sources (n �84 MFRs, 9 mice). E, Cumulative distribution plot of nearest neighbors between filopodia bearing and
nonfilopodia bearing MFR, showing that filopodia-bearing rosettes are more sparsely positioned (n � 874 boutons, 4 mice, 8
injections). F, Total number of unique combinations of inputs plotted as a function of MFR diversity when 20% MFRs bore between
1 and 5 filopodial boutons, contacting GrCs within 22 �m in the spatially constrained model. Filopodia enhance the total number
of all sizes of combinations, such that the total unique quartets outnumber GrCs. G, Percentage increase in MFR combination
redundancy seen when filopodia are added to 20% of MFRs (see Materials and Methods).
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tons per filopodium (n � 84 boutons), and the distance between
these boutons and the MFR (n � 84 boutons). Filopodial bou-
tons were typically within 22 �m of the rosette, and there were
between 1 and 4 filopodial boutons per rosette (Fig. 6D; median,
2). We found that nearly 32.2% of nucleocortical MFRs possessed
filopodia, whereas pontine MFRs possessed filopodia at a lower
rate, 11.3%, such that the likelihood of bearing filopodia for the
entire population we observed was 16.3%.

We used these measurements in our GCL model, adding 1–5
synapses to GrCs located within 22 �m of a randomly selected
8%–20% of MFRs, simulating filopodia. We analyzed the effect
of these filopodia-like synapses on GrC combinatorial diversity
and redundancy. In the model, filopodia-like extensions en-
hanced the diversity of GrC combination (Fig. 6E), increasing the
number of unique combinations of 4 MFR inputs beyond the
number of GrCs present. This effect was a consequence of in-
creasing the number of MFRs contacting many GrCs, which was
previously limited to 4 (Fig. 6F). As the diversity of MFRs increased
differences between systems with and without filopodia became
more pronounced (Fig. 6F). MFR filopodia also enhanced re-
dundancy of quartets in low-to-modest diversity systems, ex-
panding the representation of individual inputs, particularly of
rarer MFRs (Fig. 6G).

These modeling results indicate that filopodia mainly en-
hanced combinatorial diversity when MFR diversity was high
(i.e., in instances when individual MFR identities are sparser).
We tested whether sparseness of MFRs was related to the presence
or absence of filopodia in our anatomical samples, measuring the
nearest neighbors of filopodia-bearing and nonbearing MFRs. In
keeping with predictions from the model, MFRs bearing filopo-
dia were more sparsely spaced from like neighbors. Median near-
est neighbors for MFRs that did not bear rosettes was 23.1 �m,
whereas those bearing filopodia were 30 �m apart. Differences in
the distributions were highly significant (Fig. 6E; K-S goodness-
of-fit test, p � 1.5 � 10�21). Together, filopodia could serve an
important role in the function of the GCL to enhance represen-
tation of sparse fibers, increasing combinatorial diversity and
redundancy.

Discussion
Here we explored the effects of GCL morphological features on
combination of afferents and diversification of GrCs. Our studies
reveal a surprising theme of anatomical features favoring re-
dundancy of afferent mixing rather than simply maximizing
diversity. These findings raised the question of whether the spa-
tial restrictions confer any advantage to information processing
by the layer. We found that redundancy produced by spatially
clustered afferents not surprisingly reduces dimensionality but
enhances the capacity for temporal diversification of GrC activ-
ity. Empirical analysis of MFs validated features of the model and
suggest potential evolutionary pressures structuring afferent mixing
in the cerebellum.

Fundamental theoretical work on the GCL first proposed
that GrCs combine afferents to support pattern separation and
noise reduction by Purkinje neurons, under the guidance of
climbing-fiber-mediated teaching signals (Marr, 1969; Albus,
1971). Considerable empirical support for this view exists, and
similar circuits are seen in diverse brain areas and species, sug-
gesting common computational principles (Caron et al., 2013;
Kennedy et al., 2014). We investigated how seemingly nonran-
dom features (i.e., patchiness) of cerebellar anatomy impact GrC
combinatorial diversity. Although it is perhaps obvious that every
permutation of MFRs is not produced by the GCL, the specific

limitations of this recoding scheme have, to our knowledge, not
been described previously.

Dendrite length and afferent diversity influence
combinatorial load
We found that the short dendrites strongly limit GrC access to the
full diversity of inputs to a region. Regardless of the diversity of
inputs, individual GrCs access �10 different inputs (Fig. 2). The
consequences of this limitation are evident when comparing
the number of different MFR combinations produced by GrCs
to the total number of GrCs: the diversification is submaximal,
and the number of unique combinations of 4 inputs remains
below the number of GrCs in the population. This indicates that,
as MFs diversify within a region of cortex, GrCs share similar
inputs, producing redundancy and reducing the dimensionality
of information representation in the layer (Fig. 3) (Litwin-Kumar
et al., 2017).

Benefits conferred by anatomical organization
GrC redundancy is surprising given that the computational
power of combinatorial diversity is degraded with correlated and
overlapping inputs (Barak et al., 2013; Rigotti et al., 2013; Litwin-
Kumar et al., 2017). We speculated that over-representation of
particular combinations, produced both by GrC morphology
(Fig. 2) and MFR clustering (Fig. 5), may facilitate temporal ex-
pansion of GrC coding, a property hypothesized to occur in the
service of learned timing (Medina et al., 2000). If similar combina-
tions of inputs carrying specific information engage many GrCs,
then inhibitory feedback mechanisms could conceivably diversify
the temporal representation more effectively than if that representa-
tion is overly sparse. We tested this assumption by developing a
series of equations that weighted both diversification in identity and
redundancy (Fig. 3), penalizing over-representation and under-
representation of combinations. We found that the spatially orga-
nized model outperformed the random connectivity model when
output featured both high dimensional recombination of inputs and
temporal expandability (Fig. 3C).

These findings are interesting in light of recent studies show-
ing denser engagement of GrCs than predicted by statistical mod-
els of the GCL (Marr, 1969). In both mice and fish, between 20%
and 80% of monitored GrCs could be active within a short epoch,
far 
1% predicted (Giovannucci et al., 2017; Knogler et al., 2017;
Wagner et al., 2017). Our data suggest that this difference need
not preclude combinatorial diversity as a major feature of granule
layer coding but predict that this redundant code is temporally
diversified, although not yet visible with relatively slow Ca 2�

indicators used in these studies.

Anatomical diversity of MF afferents
Although specific estimates of MF diversity are lacking, recent
work using bulk viral label of diverse precerebellar structures indi-
cate extensive intermixing of two sources and convergence on indi-
vidual GrCs (Huang et al., 2013), consistent with inferences from
individual MF ramification patterns. Brainbow-labeled MFs in the
cerebellar flocculus indicate highly heterogeneous fibers in a small
volume (Livet et al., 2007), whereas rosette spacing measured in
individual fibers averaged 66 	 55 �m (Sultan, 2001). Individual
fiber data therefore suggest that an average of 8 MFR duplications
occur within 100 �m 3, with an ID density of �30, slightly higher
than the location of peaks describing the marginal increase in
GrC diversity produced by an addition MFR (between 10 and 20
IDs/247MFRs).
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MF distributions from bulk-labeled nuclei show much denser
innervation patterns (McCrea et al., 1977; Shinoda et al., 1992;
Akintunde and Eisenman, 1994; Brodal and Bjaalie, 1997; Quy et
al., 2011; Huang et al., 2013; Houck and Person, 2014, 2015).
Although these clusters represent ramification of different neu-
rons, physiological data suggest that there is likely some overlap
in information encoded from individual precerebellar nuclei
(Jörntell and Ekerot, 2006). We explored the effect of MFR clus-
tering on combinatorial diversity and found that redundancy is
enhanced more than diversity is reduced (Fig. 5). This trade-off
suggests that MF afferents may have evolved densities that exploit
both CE by the layer and redundancy of local representation.

The nucleocortical pathway has recently regained attention as
an intriguing feedback pathway within the cerebellum (Tolbert et
al., 1978; Houck and Person, 2014, 2015; Gao et al., 2016). This
pathway produces a fairly well-circumscribed input to the cere-
bellar cortex, which include sparse rosettes (Fig. 5) (Houck and
Person, 2015; Gao et al., 2016). We found that sparse fibers in-
crease GrC diversity, but at the cost of redundancy. However,
sparse rosettes preserved more redundancy than simply adding a
new MFR uniformly to the system (Fig. 5). This effect suggests
that sparse inputs are able to moderately diversify systems with-
out disrupting redundancy.

Finally, we explored the contribution of MFR filopodia to
combinatorial diversity. MFR filopodia have been noted for de-
cades (Palay and Chan-Palay, 1974; Mason and Gregory, 1984;
Kalinovsky et al., 2011) and are now appreciated to form synapses
on both Golgi cells (Ruediger et al., 2011) and GrCs (Gao et al.,
2016). In the model, we found that filopodia allow MFRs to sup-
port more CE without the spatial cost of producing a new rosette.
In diverse MFR systems, where individual IDs are sparser, filop-
odia enhanced GrC combinatorial diversity, which was in keep-
ing with the observation that sparser MFRs were more likely
to bear filopodia. Conversely, filopodia enhanced redun-
dancy, especially in triplet and doublet systems (Fig. 6G). Our
reconstructions, moreover, highlight the morphological diversity
of filopodia and suggest further experiments defining the relative
synaptic strength of these inputs relative to MFRs. Although it is
unlikely that all MFR filopodia contact GrCs, effects were graded
proportional to the number of synapses added.

Physiology of MFs and influences on combinatorial
representation
Physiological data on multimodal convergence are beginning to
emerge, and the details of findings in these studies highlight po-
tential nuances to the combinatorial hypothesis. Although GrCs
in both mammals and fish integrate diverse information (Arenz
et al., 2008; Sawtell, 2010; Ishikawa et al., 2015), the question
whether a complete quartet of MFs is typically required for GrCs
to reach threshold, or whether subsets of inputs are sufficient to
drive GrC activity (Chadderton et al., 2004; Jorntell and Ekerot,
2006; Rancz et al., 2007; Ishikawa et al., 2015). Recent evidence of
diversity of synaptic properties from different MF types could in
part explain these diverse outcomes, with some afferents having
powerful driver-like effects on GrCs whereas other afferents are
weaker but facilitate with use (Chabrol et al., 2015). This physio-
logical diversity suggests that the number of MFs required to
drive a GrC might be regulated by the specific identities of the
inputs that are active.

Additionally, MFRs show LTP with theta burst stimulation
(D’Angelo et al., 1999; Hansel et al., 2001), raising the question of
whether increasing synaptic strength allows subquartet MFR
combinations to drive GrCs to threshold. We found that, with

increasing MFR strength, GrCs with a fixed threshold can be
driven with a greater diversity of combined inputs, allowing the
GCL to represent information beyond the limit imposed on quar-
tets by the GCL population. We showed that the spatial extent of
GrCs that share 3 inputs is considerably larger than those that
share 4 (Fig. 4); therefore, MF-LTP could contribute both to
redundant representation of information and spatially broader
representations.

Golgi cells and temporal expansion
With MFR patchiness, GrC morphology, MF physiology, and
MFR filopodia all enhancing GrC redundancy, the Golgi cell
network becomes a critical player in regulating the size of the
coactive MFR combination transmitted to Purkinje neurons, via
parallel fiber activation of Golgi cells. Tonic inhibition via Golgi
cell inhibition dynamically sets the threshold for GrCs (Brickley
et al., 1996; Duguid et al., 2012; Duguid et al., 2015), and phasic
inhibition produces surround inhibition and temporal sharpen-
ing (Kanichay and Silver, 2008; D’Angelo et al., 2013; Nieus et al.,
2014). Because even at relatively high MFR diversity, neighboring
GrCs are likely to share a subset of inputs (Fig. 4), Golgi cell
inhibition is in a position to dynamically regulate the number of
shared inputs driving GrCs (D’Angelo, 2008; Solinas et al., 2010).

In conclusion, this study explored how a variety of features of
granule layer organization contribute to recombining MF inputs.
GCL morphology limits mixing locally, but patchy ramification
patterns contribute to redundant representation, which may be
important for temporal diversification or sufficient representa-
tion for motor learning. Along with our findings that diversity
reaches a saturation point due to anatomical constraints, our
study suggests that this failure to reach maximal diversity in GCL
afferents is not inherently detrimental. Finally, specializations,
such as sparse inputs and filopodial extensions, can mitigate lim-
itations on combinatorial diversity created by anatomical restric-
tions. Future studies examining the complete connectome of
patches of granule layer will indicate where within the space of
maximal diversity versus redundancy the cerebellar system
produces, and will further illuminate the computational strat-
egies of the cerebellum.

References
Akintunde A, Eisenman LM (1994) External cuneocerebellar projection

and Purkinje cell zebrin II bands: a direct comparison of parasagittal
banding in the mouse cerebellum. J Chem Neuroanat 7:75– 86. CrossRef
Medline

Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25– 61.
CrossRef

Arenz A, Silver RA, Schaefer AT, Margrie TW (2008) The contribution of
single synapses to sensory representation in vivo. Science 321:977–980.
CrossRef Medline

Barak O, Rigotti M, Fusi S (2013) The sparseness of mixed selectivity neu-
rons controls the generalization-discrimination trade-off. J Neurosci 33:
3844 –3856. CrossRef Medline
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inhibition enhances fidelity of sensory information transmission in the
cerebellar cortex. J Neurosci 32:11132–11143. CrossRef Medline

Duguid I, Branco T, Chadderton P, Arlt C, Powell K, Häusser M (2015)
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