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Network Configurations in the Human Brain Reflect Choice
Bias during Rapid Face Processing
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Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and
perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electro-
encephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain-network interactions combined with im-
proved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems
(MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject’s choice for a face versus
nonface categorization task. Qur simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early
perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions
between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice
and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the
difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of

saliency and expectations likely encoded in frontal “late” regions on perceptual processes occurring in “early” perceptual regions.
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ignificance Statement

Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious—
e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use
multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects
make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these
networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of
spatiotemporal networks yield insight into the mechanisms of how we form decisions.

~

J

Introduction

A glance at a random cloud in the sky or a blot of paint on the wall
sometimes leads us to the experience of pareidolia—i.e., seeing an
image in a stimulus when none is present. This “illusory” experi-
ence can be especially profound when we interpret the stimulus
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as a human face. From an ecological viewpoint, our ability to
rapidly detect and/or recognize a human face is obviously very
important and substantial research has focused on identifying
and characterizing regions in the brain representing faces (Kan-
wisher, et al., 1997; McCarthy et al., 1997; Haxby et al., 2000; Ishai
et al., 2005; Kanwisher and Yovel, 2006; Tsao et al., 2006; Tsao
and Livingstone, 2008; Grimaldi et al., 2016) and the timing of
when these representation are evoked (Allison et al., 1999; Liu et
al., 2002; Atkinson and Adolphs, 2011). Two questions that re-
main unanswered are how such a bias for faces emerges within
the context of the brain’s network structure and dynamics and, in
general, how bias (or prior information) is integrated with stim-
ulus evidence to form a decision.

We hypothesize that biased perception of faces is perpetuated
through spatiotemporal interactions between high-level and per-
ceptual brain networks. High-level networks may encode salient
potential environmental features, such as faces, that inform per-
ceptual networks, thereby biasing subsequent decision making.
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We sought to first define spatiotemporally distinct processing
networks involved in stimulus perception and decision making.
We then sought to demonstrate how these network interactions
relate to facial-perception bias. We hypothesized greater interac-
tion would be associated with greater bias as the interaction
demonstrates the relationship between prepotent environmental
models and perceptual input. Testing this hypothesis noninva-
sively in humans requires a method of measurement that lever-
ages observations made of the spatial representations from BOLD
fMRI and the timing of evoked responses via electroencepha-
lography (EEG) or magnetoencephalography (MEG). Here we
use an approach based on simultaneous EEG and fMRI (EEG—
fMRI) to provide a degree of spatiotemporal resolution for infer-
ring network interactions while maintaining the noninvasiveness
of the recordings.

Specifically, this study’s approach uses trial-to-trial variability
in discriminative EEG components to temporally “tag” spatially
localized BOLD activity that is simultaneously acquired with the
EEG. This approach reveals two neural subsystems, one activated
early in the trial and one late in the trial. We analyze these tem-
porally distinct neural subsystems in the space of the BOLD data,
specifically in terms of their network interactions as inferred via a
multivariate dynamical systems (MDS) model (Ryali et al., 2011,
2016a,b). We then analyzed the network interactions based on
the choices the subjects make. This analysis revealed that the
tendency of a subject to mistake a nonface for a face is manifested
in their specific network interactions, namely the degree of inter-
action between their early and late neural subsystems. This sug-
gests that these types of interactions may be the mechanism by
which prior information, in the form of bias, is integrated with
stimulus evidence to produce a percept and subsequent choice.

Materials and Methods

Subjects. Twenty-one subjects (12 males and 9 females; age range, 20-35
years) participated in the study. All subjects had normal or corrected-to-
normal vision and reported no history of neurological or psychiatric
problems. Informed consent was obtained from all subjects before the
start of each experiment and all experiments were performed in accor-
dance with the guidelines and protocol of the Columbia University In-
stitutional Review Board.

Stimuli. The stimuli consisted of a set of 30 face (Max Planck Institute
face database), 30 car, and 30 house (obtained from the web) images. All
images were gray scale (image size, 512 X 512 pixels; 8 bits/pixel) and
equated for spatial frequency, luminance, and contrast. The phase spec-
tra of the images were manipulated using a weighted mean phase algo-
rithm (Dakin et al., 2002) to generate two levels of phase coherence in the
stimuli. The phase coherence modulates the amount of sensory evidence
in the stimuli. The high-coherence (50%) stimuli have higher stimulus
evidence than the low-coherence (35%) stimuli and therefore are easier
to discriminate.

Experimental paradigm. Subjects performed an event-related three-
choice visual categorization task. On each trial, an image of a face, car,
or house was presented for 100 ms. Subjects reported their choice of the
image category by pressing one of the three buttons on an MR-com-
patible button response pad with three fingers on their right hand. The
stimuli display was controlled by E-Prime software (Psychology Software
Tools) using a VisuaStim Digital System (Resonance Technology) with a
600 X 800 pixel goggle display. Images subtended 11 X 8° of visual angle.
Each subject participated in four runs of the categorization task. In each
run, there were 180 trials (30 per condition; 6 conditions: face high, car high,
house high, face low, car low, and house low). The intertrial interval was
sampled uniformly between 2 and 4 s. The duration of each run was ~560 s.
Therefore, data from 720 trials (240 of each category and 360 of each coher-
ence) were acquired for each subject during the entire experiment.

Simultaneous EEG and fMRI data acquisition. EEG data were recorded
simultaneously with the fMRI data using a custom-built MR-compatible
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EEG system (Goldman et al., 2009; Sajda et al., 2010) with differential
amplifiers and bipolar EEG montage, using a 1 kHz sampling rate. The
caps were configured with 36 Ag/AgCl electrodes, including left and right
mastoids, arranged as 43 bipolar pairs. Further details of the recording
hardware are described by Sajda et al. (2010).

Functional echo-planar image data were collected using a 3T Philips
Achieva MRI scanner (Philips Medical Systems) with the following scan-
ning parameters: TR = 2000 ms; TE = 25 ms; flip angle, 90°; slice thick-
ness, 3 mm; interslice gap, 1 mm; in-plane resolution, 3 X 3 mm; 27 slices
of 64 X 64 voxels per volume; 280 total volumes. For all participants, a
high-resolution structural image was also acquired using spoiled gradi-
ent recalled echo sequence witha 1 X 1 X 1 mm resolution and 150 slices
of 256 X 256 voxels.

EEG data preprocessing. EEG data were preprocessed off-line using
Matlab (Mathworks). The simultaneous acquisition of EEG data inside
an MR scanner posed a great challenge for EEG denoising due to two
major artifacts: gradient artifacts and ballistocardiogram (BCG) artifacts,
arising from magnetic induction in the EEG leads. We first removed the
gradient artifacts by subtracting from each functional volume an average
artifact template obtained from across all functional volume acquisi-
tions. We then smoothed the data with a 10 ms median filter to attenuate
any residue spike artifacts. Subsequently, we performed the standard
EEG noise removal with a 0.5 Hz high-pass filter to remove direct current
drift, 60 and 120 Hz notch filters to remove electrical line noise, and a 100
Hz low-pass filter to remove high-frequency artifacts not associated with
neurophysiological processes. These filters were applied together in a
noncausal zero-phase form to avoid phase distortions.

BCG artifacts caused by the cardiac pulsation-related movement in the
EEG leads are more variable over time and have overlapping frequency
content with the EEG signals of interest. Therefore, they are more diffi-
cult to remove from the data. Here we adopted a conservative approach,
based on principal component analysis, that has been validated in the
previous studies (Goldman et al., 2009; Walz et al., 2014, 2015) to reduce
the risk of signal power loss. First, the continuous gradient-free data were
low-pass filtered at 4 Hz to exclude information outside the frequency
range where BCG artifacts are normally observed, and then two principal
components that captured BCG artifacts were selected for each subject.
The channel weightings corresponding to those components were projected
onto the broadband data and subtracted out to produce the BCG-free data.
These BCG-free data were then rereferenced from the 43 bipolar channels to
the 34-electrode space to calculate scalp topographies of EEG discriminating
components.

Stimulus-locked EEG epochs with a duration of 1500 ms (500 ms
prestimulus to 1000 ms poststimulus) were extracted from the BCG-free
data. The baseline was chosen from 200 ms prestimulus to stimulus onset
and the average voltage during the baseline period was subtracted from the
epoch. Noisy EEG epochs with large amplitude deflections (motion, eye
blinks) were then excluded in the further analysis based on visual inspection.

Single-trial EEG analysis. We performed a regularized logistic regres-
sion on the multidimensional EEG epochs to discriminate face trials
from nonface (car and house) trials. We did this separately for each of the
two phase-coherence levels. We used a sliding-window technique to train
multiple classifiers at different time windows across the entire epoch.
Specifically, we selected 41 time windows with a width of 50 ms, centered
attime 7, where 7= {0, 25, . . ., 1000 ms}, ranging from stimulus onset to
1000 ms poststimulus, in overlapping 25 ms increments. The optimal
spatial weighting, w(7), which maximizes the discrimination between
face and nonface trials, produces a one-dimensional projection, y, (), at
time window T for trial k, where k = {1, . . ., K} is given by the following:

=1

.
y(m) =52 T vw(Dx)
2

where x,(i) isa D X N EEG matrix (D sensors and N time points in time
window 7) for trial k. y,(7) is the single-valued classifier output for trial k
at time window 7 computed by averaging across the entire time window.
The interpretation of y, is the distance of trial k from the decision hyper-
plane, which represents the classifier’s confidence on trial k in the cate-
gorical discrimination. The trial-by-trial variations then reflect the
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fluctuations of how well each image was perceived in terms of its category
membership given the measured EEG. w() isa D X 1 spatial filter at time
window 7, which was estimated via a regularized logistic regression im-
plemented using FaSTGLZ (Conroy et al., 2013). We evaluated the per-
formance of the classifier at each time window by the area under the
receiver operating characteristic curve, denoted here as the area under
the curve (AUC), using a leave-one-out cross-validation procedure. The
statistical significance of the AUC value for each time window was as-
sessed using a permutation procedure. Specifically, for each subject, we
trained the classifier on trials whose labels were randomly permuted and
then calculated the corresponding leave-one-out (i.e., one trial was iter-
atively left out to estimate classifier performance) AUC value for each
time window. We repeated this procedure 500 times to obtain an
empirical null distribution of AUC values for each time window. The
significance threshold of AUC was then chosen at p < 0.05 with false
discovery rate correction across all time windows to account for mul-
tiple comparison.

EEG regressors. The temporal profile of the classifier performance re-
vealed two face-selective components in an early window (~100-225 ms)
and a late window (~325-575 ms), in accordance with previous EEG
studies (Philiastides and Sajda, 2006, 2007). Therefore, for each coher-
ence level, we constructed two EEG regressors from the early and late
windows as the BOLD predictors in the subsequent fMRI analysis. For
each trial, the onset time of the EEG regressors matched the time of each
image presentation. The height of the two regressors was modulated by
the classifier output, z;, derived from the early and late windows, respec-
tively. To determine the values z, for each of the early and late windows,
we computed a linear combination of the classifier outputs y, (1) across
all the time windows defined in the range of the early and late windows,
respectively. The optimal linear weighting was obtained by applying an-
other regularized logistic regression to discriminate between face and
nonface trials, whose inputs were a set of classifier outputs from selected
time windows acquired from the initial logistic regression. For trial k, the
classifier output z, for a set of time windows is given by the following:

TQ

=D m(n)y(7)

T=71

where m is the temporal weighting of time windows {7, 7,, .. ., 74}. For
all subjects, we chose the early and late windows to range from 100 to 225
ms and from 325 to 575 ms following the stimulus onset, respectively
(determined based on the temporal profile of the classifier performance
at the high-coherence level). This approach is referred to as hierarchical
discriminant component analysis (Sajda et al., 2010; Marathe et al.,
2014). It extracts additional information across multiple time windows
to produce a more robust estimate of the classifier output z; associated
with the early and late windows. Pooling-correlated information across
multiple time windows offers an advantage over using the peak y,(7)
value in the early and late windows, since the combination of two classi-
fiers generally gives better discriminating performance than a single clas-
sifier. Since we encoded faces as 1 and nonfaces as 0 in training the
classifier, we flipped the sign of z, values for nonface trials so that a
positive z; value indicated a strong confidence of the classifier for both
faces and nonfaces.

fMRI data preprocessing. tMRI data were preprocessed using FSL
(www.fmrib.ox.ac.uk/fsl/). The preprocessing steps include slice-timing
correction, motion correction, spatial smoothing (6 mm FWHM Gauss-
ian kernel), and high-pass filtering (>100's). Functional images were first
transformed into each subject’s high-resolution anatomical space using
boundary based registration (Greve and Fischl, 2009), and then spatially
normalized to the standard Montreal Neurological Institute brain tem-
plate using FAST [FMRIB’s (Oxford Centre for Functional MRIs’) Au-
tomated Segmentation Tool; Zhang et al., 2001].

EEG-informed fMRI analysis. In the general linear model for fMRI
analysis, we incorporated parametric EEG regressors derived from the
early and late discriminating components as BOLD predictors. The EEG
regressors at two coherence levels were modeled separately as follows:

Y ~ Phigh + Phigh + Pluw + Plow + N

early late early late
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where Y denotes the BOLD time series for a given voxel; Pf:;;q,’y’, pligh
Pé;’;“ly, Pl denotes four EEG regressors corresponding to the early and
late components for both coherence levels; N denotes the regressors of no
interest, including a boxcar function at the time of button response, a
boxcar function for rejected trials, and six motion parameters from the
motion-correction step to model the motor effects. All regressors except
for the six motion parameters were modeled with a duration of 100 ms
and convolved with the hemodynamic response function (HRF) with its
temporal derivatives as confounds of no interest. To dissociate the shared
variance between the early and late components, Gram—Schmidt or-
thogonalization was used to decorrelate P, and P;,,, at each coherence
level individually. Specifically, we orthogonalized P,,,, with respect to
Pa, in this design. To show that our results were not subjective to a
particular choice of the orthogonalization direction, we implemented the
design where P,,,,;, was orthogonalized with respect to P, and the design
without orthogonalization. The BOLD activations corresponding to
the early and late regressors remained consistent across all three de-
signs. Two contrasts of interest were constructed to extract brain
voxels whose BOLD activity was modulated by each of the early and
late components: Average Early (Early_High + Early_Low) and Av-
erage Late (Late_High + Late_Low).

In FSL (FMRIB Software Library), the group inference was performed
at multiple levels. Individual runs of each subject were modeled in the
first-level analysis, and then combined in the second-level analysis using
a fixed-effects model. For each contrast, the summary statistics from the
second-level analysis were then passed up to the third-level analysis using
a mixed-effects model [FLAME (FMRIB’s Local Analysis of Mixed Ef-
fects) 1 + 2] to compute the group activations across subjects. Statistical
significance of the activations was determined by the cluster correction
method implemented in FSL to account for multiple comparison across
the whole-brain volume (Nichols and Hayasaka, 2003). The clusters were
thresholded at z > 2.3 with a cluster-wise p < 0.05.

Region-of-interest selection and time series extraction. Regions-of-interest
(ROIs) were selected based on the local maxima of the cluster activations
corresponding to the Average Early and Average Late contrasts. Three
ROIs were derived from the early contrast that constituted an early sen-
sory subsystem: the precuneus (PC), the left intraparietal sulcus (IPS),
and the right superior parietal lobule (SPL). We sought to identify par-
allel bilateral regions corresponding to the unilateral clusters in the IPS
and SPL and so used a more lenient threshold to identify clusters in right
IPS and left SPL (z > 3.1, p < 0.001). In addition, we included the face
fusiform area (FFA) and parahippocampal place area (PPA; defined by
the functional localizer task, see below) as part of the early subsystem
since they were selectively involved in the early sensory processing of the
face and house stimuli (Epstein and Kanwisher, 1998; Epstein et al., 1999;
Grill-Spector et al., 2004). Five ROIs were extracted from the late contrast
and formed a late decision subsystem. These are the anterior cingulate
cortex (ACC), paracingulate gyrus (PCG), premotor cortex (PMC), bi-
lateral frontal eye field (FEF), and insular cortex (IC). We increased the
cluster threshold z (z> 3.1, p < 0.05, cluster corrected) to include regions
(insular) with relatively small cluster size but high magnitude. We sought to
incorporate the FEF as well due to extensive literature implicating this
region in decision making (Heekeren et al., 2004, 2008; Ferrera et al.,
2009) and so used a more lenient threshold (z > 3.1, p < 0.001, uncor-
rected) to include bilateral FEFs. All bilateral activations were treated as a
single ROL. As a result, we selected five ROIs for each of the early and late
subsystem system. Since the causal inference algorithm we used is a com-
pletely data-driven approach, it is capable of identifying and deempha-
sizing regions that did not contribute to the underlying brain dynamics.
We therefore sought to identify an expansive network of regions poten-
tially involved in both subsystems. To ensure that results were not biased
by regions identified using altered thresholds, we conducted control anal-
yses excluding all regions incorporated through lower thresholds. All results
remained unchanged when excluding these regions.

To extract the time series from selected ROIs, we created a 6-mm-
radius sphere mask centered on the local maxima for each ROI (except
for FFA and PPA; see below) in the standard space. Then we transformed
the ROI masks from the standard space to each subject’s functional space
and extracted the first principal component of the time series across all
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voxels contained in the subject-specific ROI masks. The spatial transfor-
mation and time series extraction were both performed using FSL.

Functional localizer. To localize the FFA and PPA ROIs for each sub-
ject, we performed separate functional localizer scans for both the FFA
and PPA. Subjects were presented with 12 alternating blocks of stimulus
images (face or house) and noise images. Each block had a duration of
20 s. Bilateral FFA and PPA ROIs were identified in each subject based on
the Face > House and House > Face contrasts at z > 2.3, p < 0.05 with
a minimum cluster size of 10 voxels. In subjects without bilateral activa-
tions, we first reduced the cluster threshold to z > 1.8, p < 0.05 to check
whether voxels on the other side became significant. If no additional
voxels were significant at this lower threshold, unilateral activation was
selected. Of the 21 subjects in our dataset, using the original thresh-
old, 12 subjects showed bilateral activations in the FFA and 17 sub-
jects showed bilateral activations in the PPA. After lowering the
threshold, we were able to find bilateral activations in the FFA for 16
subjects and bilateral activations in the PPA for 20 subjects. FFA and PPA
ROIs were selected for each subject in the standard space and then trans-
formed back into the subject’s own functional space. Time series at the
FFA and the PPA were extracted using the same procedure as described
for other ROIs.

Causal modeling using MDS. To investigate the causal interactions
between and within the early and late subsystems, we constructed a 10-
node network, consisting of the 10 selected ROIs, and applied the MDS
model to infer the network connections from their BOLD time series,
given some modulatory network inputs. The MDS model is a type of
dynamic causal model that is purely data driven, incorporating minimal
priors. The MDS model is a state-space model that consists of a state
equation and an observation equation. The state equation models the
causal dynamics of the latent quasineuronal activity in the presence of
modulatory inputs. The observation equation is a linear convolution
model that translates the latent quasineuronal activity into BOLD obser-
vations. Mathematically, the MDS model is expressed as follows:

J
s(t) = Zvj(t)st(t — 1)+ w(t)

x,,(0) = [5,(O) s,,(t — 1) ...s,(t — L+ 1)]"
Yu(t) = by ®x,, (1) +e, (1)

where s(t) is an M X 1 vector of latent quasineuronal activity at time  of
M regions, vj(t) is the jth modulatory input, and J is the number of
modulatory inputs. C;isa M X M modulatory connection matrix elicited
by the modulatory input v,(t). The nondiagonal elements of C; represent
the strength of causal interaction between brain regions. This causal
coupling (Cj) changes in different experimental contexts [vj(t)]. w(t) is
an M X 1 Gaussian distributed state noise vector. In the observation
equation, BOLD observation y,, () at region m is modeled as a linear
convolution of a set of canonical HRF basis ¢ with L past values of its
quasilatent neuronal activity [x,,()]. b,, is the coefficient associated with
each basis. e,,,(t) is uncorrelated Gaussian observation noise. More details
on the algorithm and its applications can be found elsewhere (Ryali et al.,
2011, 2016a, 2016b; Chen et al., 2015).

In this analysis, we constructed three modulatory inputs v, (), Vjyse(t)
and v, (#). vz, (1) represents a binary sequence of all face choices made by
the subject, pooling across the high-coherence and low-coherence levels.
Similarly, v,,,,.(t) and v, (t) represented all house choices and car
choices, respectively. Given the BOLD time series of each node, we esti-
mated the network connectivity pattern (Cj) modulated by each vj(t).
Before MDS estimation, the time series for each node and subject was
demeaned and normalized by its SD before MDS estimation. The statis-
tical significance of each network connection was determined using a
nonparametric permutation procedure. Specifically, for each subject, we
randomly scrambled the phase of the time series for all nodes and created
500 surrogate datasets. Then we inferred the network connections from
the surrogate data using MDS to generate an empirical null distribution
for each connection, from which the significance threshold was determined
at p < 0.001 with Bonferroni correction. To examine the network pattern at
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group level, we computed the group mean (across subjects) of each connec-
tion with the same procedure to assess the statistical significance.

In our analysis, we focused on the network dynamics elicited by the
face and house choices because we believed they would evoke disparate
network dynamics not only in the early sensory subsystem (FFA vs PPA),
but also the late decision subsystem (decision bias). This is in contrast to
car decisions, which are not attributable to activation of specific cortical
areas as are faces (FFA) and places (PPA). We excluded connections with
negative connection strength in all subsequent analyses, though the results
remained unchanged even when they were included. To characterize the
difference between the face network and house network, we first calculated
the difference in each causal connection between the face and house net-
works for each subject. We then averaged the difference connection matrix
across subjects to obtain the group-level difference network pattern.

Analysis of network interactions relative to choice. To establish the rela-
tionship between the network interactions and behavioral choice, we
defined the Early—Late interaction, a weighed sum of all the connections
between the early and late subsystems, as a measure of the degree to
which the early subsystem interacted with the late subsystem. The Early—
Late interactions consist of the bottom—up connections (a weighed sum
of all the connections coming from the early subsystem to the late sub-
system) and the top—down connections (a weighed sum of all the con-
nections coming from the late subsystem to the early subsystem). We
interpreted the early-to-late influences as bottom—up processes because
the early subsystem consists of the regions primarily attributed to sensory
processing (Summerfield et al., 2006b; Philiastides and Sajda, 2007).
Conversely, we interpreted the late-to-early interactions as top—down inter-
actions since regions in the late subsystem have been implicated as upstream
constituents of decision processing (Heekeren et al., 2004; Summerfield, et
al., 2006a; Philiastides and Sajda, 2007; Filimon et al., 2013).

We computed the choice precision based on the behavioral data for
face choices and house choices, respectively. The precision, also termed

P
the positive predictive value, is given bymwhere TPis the number

of true positives (e.g., faces choices that were faces) and FP is the number
of false positives (e.g., face choices that were not faces). We computed
this precision value for both faces and houses as the positive category,
yielding a value for face precision and house precision for each subject.
Together with an analysis of the sensitivity (see Fig. 5B) and specificity
(see Fig. 5C) for both faces and houses, we found that high precision
indicates a small number of false positives in the choices, i.e., subject is
less biased toward the “positive” category. Therefore, using the false-
positive rate (FPR; 1 — specificity) as a behavioral measure related to
bias, we performed an analysis across all subjects, correlating the differ-
ence in subjects’ network interactions between face and house networks
with their difference between face FPR and house FPR. As a control
analysis, we also performed the same correlation analysis across subjects
based on the network connectivity estimated using data only at the low-
coherence level.

Experimental design and statistical analysis. All statistical analyses of
behavioral measures, EEG, fMRI, and network causal inference were
performed on datasets from 21 subjects (12 males and 9 females). For the
behavioral analysis, paired ¢ tests were used to compare the mean accu-
racy and mean response time (RT) for face versus nonface (see Results
describing Fig. 1). For the single-trial EEG analysis, we used a permuta-
tion procedure to determine the time windows showing significant dis-
crimination (see Materials and Methods, Single-trial EEG analysis). For
the EEG-informed fMRI analysis, significant clusters were identified us-
ing a cluster-correction method implemented in FSL (see Materials and
Methods, EEG-informed fMRI analysis). For the network analysis, we
used a permutation procedure to determine the group-level significant
causal connections between ROIs in the network (see Materials and
Methods, Causal modeling using MDS; Results; see Figs. 4, 5).

Results

Behavioral results

The mean RT and accuracy (percentage of correct responses) for
the face and nonface stimuli, averaged across subjects, are shown
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Experimental paradigm and behavioral results. A, Event-related three-choice visual categorization task where subjects were instructed to select the category (face, car, or house) of the

image after each stimulus presentation. On each trial, the image was briefly presented for 100 ms, following by a 2—-2.5 s decision period. Subjects responded with different button presses toindicate
their choice. B, Example of images at two phase-coherence levels. Images were presented at high-coherence (50%) and low-coherence levels (35%), where high coherence indicates high stimulus
evidence, i.e., an easy decision. €, Mean RTs for face trials and nonface trials at the high-coherence and low-coherence levels. RTs were significantly modulated by the amount of stimulus evidence.
At the high-coherence level, mean RT for faces was significantly lower than that for nonfaces. D, Behavioral accuracy for face trials and nonface trials at two coherence levels. Low stimulus evidence
led to less accurate decisions. At the high-coherence level, accuracy for faces was significantly higher than for nonfaces. Though subjects responded significantly faster and more accurately to faces
than to nonfaces when stimuli were presented at high coherence, their behavioral performance was not significantly different between faces and nonfaces when stimuli were presented at the
low-coherence level. Error bars indicate the SEM. Asterisk (*) indicates significant difference at p << 0.05.

separately for the low-coherence and high-coherence levels in
Figure 1. At the high-coherence level, where the sensory evidence
is greatest, subjects responded faster (0.5978 vs 0.6658 s) and
more accurately (96.14 vs 93.14%) to faces than to nonfaces (two-
tailed paired ¢ test, face vs nonface: RT, t(,5, = —6.12, p = 5.61 X
10 7% accuracy, t,9) = 3.1626, p = 0.0049). However, at the
low-coherence level, the behavioral performance was not signif-
icantly different between faces and nonfaces (RT, 0.753 vs 0.778 s;
accuracy, 60.25 vs 57.19%, faces and nonfaces respectively). We
also observed a significant main effect of coherence level for both
RT and accuracy (repeated-measures ANOVA: RT, F, ;4 =
49.9244, p = 5.30 X 10 "% accuracy, F(; 7, = 149.636,p = 2 X
10 '), indicating that the level of stimulus evidence effectively
modulated the subjects’ performance in the face versus nonface
discrimination.

Early and late EEG components discriminating stimulus
category

We next estimated EEG components that were discriminative of
face versus nonface stimuli. We did this by separately analyzing
the trials from the high-coherence and low-coherence levels. The
EEG components were characterized by their group mean AUC
as a function of time (time window for which they were esti-

mated). As would be expected, the overall discrimination perfor-
mance of the EEG components at the low-coherence level was
significantly lower than that for the high-coherence level (Fig.
2A). At the high-coherence level, we see two discriminating com-
ponents, one at an early window after the stimulus onset and the
other at a late window before the earliest reaction time. Consis-
tent with interpretations in previous studies (VanRullen and
Thorpe, 2001; Philiastides and Sajda, 2006), the early component
(~200 ms) is likely linked primarily to the early bottom—up sen-
sory processing of the stimulus and therefore its discriminability
is strongly modulated by the level of stimulus evidence. This is
further supported by the poor discriminability of the early com-
ponent at the low-coherence level, where the stimulus evidence is
low. In contrast, the late component (~500) is thought to be
related to postsensory encoding decision processing (Philias-
tides and Sajda, 2007; Ratcliff et al., 2009). The late component
showed significant discriminability at both coherence levels,
though with obviously a significant decrease for low coherence.
Furthermore, the latency of the late component at low coherence
appeared to be later than that at high coherence (peak difference,
~50 ms), suggesting a delay in the processing of evidence due to
ambiguous stimuli, in line with previous findings by Philiastides
and Sajda (2006).
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Figure2.

Discriminatory EEG components and parametric EEG regressors. 4, The area under the receiver operating curve (AUC) plotted as a function of time window relative to stimulus onset, for

a linear classifier trained to discriminate between faces and nonfaces given the multichannel EEG. Shown are time courses of the AUC for the low-coherence and high-coherence stimulus levels,
respectively, averaged across subjects. The shaded areas around the time courses indicate the SEM, while the dotted line represents the significance threshold at p << 0.05 (false discovery rate
corrected) for the mean AUC, determined by a nonparametric permutation technique. The stars indicate significant time bins in the early and late windows. Also shown are the forward models for
the EEG components. B, lllustration of EEG-informed fMRI analysis. In the general linear model analysis applied to the fMRI, four EEG regressors were included as BOLD predictors. They were
constructed from the early and late components at the high-coherence and low-coherence levels, respectively. The onset time of the regressors matched the timing of each stimulus presentation.
The amplitude of the EEG regressors was modulated by the classifier output on both face and nonface trials (trial-to-trial variability).

Given these two EEG components, one set for high-coherence
trials and one for low-coherence trials, we used their trial-to-trial
variability to construct BOLD predictors for separating the fMRI
data into two neural subsystems specific to the early and late
processing. Since the onset of the early and late components
varied across all subjects, we did not construct the BOLD predic-
tors from the peak discriminating components in the early and
late time interval. Instead, we built the EEG classifier in a hierar-
chical fashion where the classifier at the second level integrated
over the classifier outputs from the first level at multiple time
windows spanning either the early or the late time intervals. This
approach took advantage of the variations across multiple time
windows in each time interval, which could potentially improve
the discrimination performance by including more temporal in-
formation (Marathe et al., 2014). This resulted in two trial-to-
trial EEG variability regressors, one associated with the early time
interval and another with the late time interval.

Early and late neural subsystems

We used an EEG-informed fMRI analysis to tease apart two dis-
tinct neural subsystems for our perceptual decision-making task
(Fig. 3). Since the EEG components were generated on the basis
of face versus nonface discrimination, the identified brain regions
represented the neural substrates implicating categorical selec-
tiveness. For the early component, we observed negative correla-
tions with the EEG variability in regions that appear to participate
in the early sensory processing. Specifically, significant activa-
tions (Fig. 3A) were found in the PC, right SPL, and left IPS.

According to a number of studies, all these regions play a role in
the integration of sensory evidence (Rizzolatti et al., 1997; Cul-
ham and Kanwisher, 2001; Shadlen and Newsome, 2001; Ca-
vanna and Trimble, 2006; Philiastides and Sajda, 2007; Tosoni et
al., 2008; Kayser et al., 2010). For the late component, significant
negative correlations with the EEG regressors (Fig. 3B) were ob-
served in frontal regions, such as the ACC, the PCG, and the
PMC. The central role of the ACC in decision making has been
implicated by numerous studies (Carter et al., 1998; Rushworth
et al., 2004; Kennerley et al., 2006; Kahnt et al., 2011). The adja-
cent PCG has been observed to be activated during decision mak-
ing, especially when the decision process involves mentalizing
and social cognition (Gallagher and Frith, 2003; Turk et al., 2004;
Walz et al., 2014). The activation of the PMC in decision making
that often leads to an action selection has also been shown by a
wide range of neuroimaging studies (Andersen and Cui, 2009;
Donner et al., 2009; Li et al., 2009). For both subsystems, we only
observed negative correlations between the BOLD signals and the
EEG regressors. Note that the magnitude of the EEG regressor is
the classifier output on each trial and can be interpreted as a
measure of the “confidence” of the classifier for discriminating
face or nonface, given the EEG at that time window and for that
specific trial. Negative correlation therefore implies that on trials
where the classifier was highly confident, the brain activity in
both subsystems decreased. Similarly, for trials where the classi-
fier had low confidence (e.g., ambiguous stimuli or low coher-
ence/high noise) the brain activity in both subsystems increased.
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Spatial dissociation of the (temporally) early and late subsystems for face versus nonface discrimination. A, BOLD activations for the early subsystem. Red clusters were regions

correlated negatively with the early EEG component (cluster corrected, z > 2.3, p << 0.05, across both high-coherence and low-coherence levels). The early subsystem consisted of occipitoparietal
regions including the PC, the right SPL, and the left IPS. B, BOLD activations for the late subsystem. Green clusters represented regions showing significant negative correlation with the late EEG
component (cluster corrected, z > 2.3, p < 0.05, across both high-coherence and low-coherence levels). The late subsystem comprised frontal regions, such as the ACC, the PCG, and the PMC.

A choice-modulated network

Given the early and late subsystems, we next investigated how the
two subsystems interact with one another in a specific cognitive
context. In particular, we hypothesized that we would observe an
effect in network dynamics, specifically an interaction between
the early and late subsystems as a function of the choice behavior
of the subjects. To address this hypothesis, we used a state-space
modeling-based method (MDS) to infer the network dynamics,
i.e., the connectivity between the nodes in the network. We cal-
culated separate networks induced by the face and house choices
and then assessed early—late connectivity within and between
each of these networks (Fig. 4B). We included the FFA and PPA as
part of the early subsystem, since they are known to differentially
activate during early perception of faces and houses. Moreover,
we added the left SPL, right IPS, bilateral FEFs, and IC as addi-
tional nodes in the decision network. A variety of neuroimaging
studies have already demonstrated their roles in decision making
(Heekeren et al., 2004, 2008; Philiastides and Sajda, 2007; Ruff et
al., 2010; de Lafuente et al., 2015; Lamichhane et al., 2016). This
resulted in a total of 10 ROIs for the network causality analysis,
shown in Figure 4A. Five of the ROIs (FFA, PPA, PC, IPS, SPL)
belonged to the early subsystem and the other five (IC, ACC,
PCG, PMC, FEF) belonged to the late subsystem. To demonstrate
how choice behavior, specifically choices between faces and
houses, affects early—late network connectivity, we compared the
pairwise difference in early—late network connection strength be-
tween the face and house networks.

As the crucial early processing regions for faces and houses,
the FFA and PPA were engaged in both the face and house net-
works. Specifically, the outflow connection from the FFA to SPL
was significantly increased for the face network (permutation
test, p = 0.0002, Bonferroni corrected), whereas an enhanced
causal connection from the PPA to the SPL was observed for the
house network (permutation test, p = 0.0002, Bonferroni cor-
rected). Since the SPL has been associated with working memory
and directed attention in a range of studies (Culham and Kan-
wisher, 2001; Koenigs et al., 2009; Chiu et al., 2011), it is likely

that the SPLis a hub in the early subsystem that integrates sensory
evidence sent downstream from the FFA and PPA. Overall, com-
pared with the house network, the face network exhibited more
late-to-early influences (top—down influences), i.e., weighted sum of
all connections coming from any region in the late subsystem to
any region in the early subsystem, averaged across subjects (per-
mutation test, p = 0.0276). These findings indicate that choices of
face or house modulate the network connectivity differentially
not only within each subsystem but also between the early and
late subsystems.

False-positive face choices as a function of face bias

Next, we hypothesized that the interaction between the early and
late subsystems might underlie a facial processing bias, as impli-
cated by the predictive coding theory. We used false-positive face
choices as a proxy for face processing bias. False-positive face
choices occur when subjects selected face in response to a house.
This represents a misperception that can be driven by a tendency
to perceive faces.

To validate our use of false-positive face choices as a type of
bias, we investigated the relationship between decision precision
for face and house choices and their false positives. We observed
a significantly higher mean decision precision for face choices
than for house choices. The increase in face precision could be
attributable primarily to either an increase in the number of true
positives (high sensitivity, more faces were correctly perceived)
or a decrease in the number of false positives (high specificity,
fewer nonfaces were mistaken for faces, i.e., less biased toward
faces). To determine which of these drives decision precision, we
divided all subjects into two groups (High Face vs Low Face)
according to the difference between their face precision and
house precision. We then compared the mean sensitivity and
specificity of faces between the High Face and Low Face groups.
There was lower sensitivity (74.38 vs 90.56%, t test, t,o) = —3.08,
p = 0.0061) but higher specificity of faces (93.60 vs 82.64%, t test,
ta9y = 3.29, p = 0.0039) for the High Face than for the Low Face
group (Fig. 5B). This supports the choice of our proxy, namely
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Causal modeling on choice-modulated networks. 4, lllustration of 10 ROIs selected for the causal modeling. Red circles represent nodes in the early subsystem. Green circles represent

nodes in the late subsystem. Blue and purple circles represent the PPA and FFA of a representative subject, included as part of the early subsystem. B, Scheme of the causal modeling using the MDS
model for choice-modulated network analysis. MDS estimates the connectivity between nodes in the networks elicited by face choices and house choices, respectively. The connectivity pattern
reflects the modulatory effect of a specific experimental condition on the network. ¢, Mean difference in causal connections between face network and house network (FaceHouse), averaged
across subjects. D, Mean difference in causal connections between face network and house network (Face<<House). The significance threshold for each connection at p << 0.001 was determined by
a nonparametric permutation test with FDR correction for multiple comparisons. All network connections shown in Cand D passed the significant test and their line width indicates the magnitude

of the connection strength.

that the difference in processing faces and houses is largely driven
by false-positive face choices. Subjects with higher face precision
evidenced less bias and did not misperceive nonfaces as faces.
However, subjects with less precision had greater bias and there-
fore made more false-positive face choices. As a result, not only
would their face precision be reduced, but their house precision
would potentially increase due to a very small number of false
positives out of all house choices (fewer nonhouses were misper-
ceived as houses). Indeed, the higher specificity of houses (90.88
vs 82.59%, ttest, t19) = 2.38, p = 0.0277) for the Low Face group
than for the High Face group (Fig. 5C), together with the indis-
tinguishable sensitivity of houses (74.84 vs 78.47%, t test, t(,9) =
—0.74, p = 0.46) between the two groups, provided evidence that
subjects in the Low Face group were more biased toward faces
and thus were less inclined to mistake houses, which led to a lower
face precision but a higher house precision. Together, these findings
indicate that the difference between face and house processing was
driven by the degree that individual subjects misperceived nonfaces
as faces (i.e., demonstrated a face-processing bias).

We next tested how subject-level differences in the degree of
early-late connectivity for faces versus houses related to our proxy
for choice bias. The degree of early-late subsystem interaction for
faces compared with houses correlated positively with the face-

processing bias (Fig. 5G; r = 0.84, p = 1.61 X 10~ °). Subjects
with more bias toward faces had more of a difference in early-late
connectivity to faces compared with houses (i.e., those who had a
greater tendency to see houses as faces differentially evoked more
early—late connectivity during face choices). The correlation re-
mains significant (r = 0.70, p = 0.0006) after we excluded the
rightmost data point, which appears to substantially deviate from
the other data points.

To further substantiate our finding that enhanced early-late
network interactions lead to larger face-perceptual bias, we per-
formed additional analysis where the same network connectivity
was estimated using only low-coherence trials for each subject
since the perception bias/error should be highest when sensory
evidence is ambiguous. A significant correlation (r = 0.67, p =
0.0009) across all subjects was revealed by this analysis showing
more early-late network connectivity is associated with more
false-positive faces.

The above analyses were focused on the face—house contrast.
To show that our specific findings, namely that network interac-
tions correlate with face bias, were not restricted to a face—house
contrast, we repeated the same set of analyses from Figure 5A—
C,G with the face—car contrast. Specifically, we first computed
the early—late interactions for face choices and for car choices and
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Figure5.  Networkinteractions between the early and late subsystems predict the decision bias toward face choices relative to house or car choices. A, Mean RT and precision for face and house
choices, respectively. Precision is defined as the proportion of correct choices among all choices of a particular type. On average, face choices had faster RT (p = 0.0072, paired ¢ test) and higher
precision (p = 0.00074, paired ¢ test) than house choices. Error bar represents the SEM across subjects. B, Performance measures of face choices for the face— house contrast. Subjects were divided
into the High Face group (face precision > house precision) and the Low Face group (face precision << house precision). Compared with the Low Face group, the High Face group had lower
sensitivity (p << 0.01) and higher specificity (p << 0.01), suggesting fewer false positives in their face choice, and therefore they were less biased toward faces. €, Performance measures of house
choices for the face— house contrast. For subjectsin the Low Face group, their house precision was relatively higher than the subjects in the High Face group not because they were better at detecting
houses (indistinguishable sensitivity for houses); rather, it was because they were more biased toward faces and less likely to mistake a nonhouse for a house. The smaller number of false positives
inhouses for the Low Face group (higher specificity, p < 0.05) increased their house precision. D, Mean RT and precision for face and car choices, respectively. E, Performance measures of face choices
for the face— car contrast, similar to B, subjects were divided into the High Face group (face precision > car precision) and the Low Face group (face precision << car precision). F, Performance
measures of car choices for the face— car contrast, similar to C. G, Difference in early—late interaction is predictive of the difference in FPR (1 — specificity). Higher face FPR relatively to house is
correlated with more network interactions (r = 0.84, p = 1.61 X 10 ~°). High face FPR indicated more bias toward faces. The bias toward faces was characterized by more interactions between
the two subsystems. H, The same correlation between the network interactions and face bias holds for the face— car contrast.

then we computed the correlation between the difference in their ~ (Fig. 5H). Moreover, in a separate analysis where we combined

early—late interactions and the difference in their FPRs. Consis-  the houses and cars together as nonfaces, the above network anal-
tent with results in Figure 5G, we found a positive correlation  ysis for the face-nonface contrast showed a consistent positive
(r = 0.90, p = 3.27 X 10 %) between the increase in the face-  correlation between the network interactions and the face bias

network interactions relative to cars and the increase in face bias  (r = 0.72, p = 0.0002). Since this comparison was between two
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stimulus types (faces vs nonfaces), it was straightforward to use the
decision criterion ¢ [ —0.5(hit rate + FPR), choosing face as the “pos-
itive” category] from the signal detection theory model (Nevin,
1969), as a measure of the face bias, in which case, higher ¢ value
indicates a lower face bias. The correlation analysis between net-
work interactions and criterion ¢ variable across subjects re-
vealed a negative linear relationship (r = —0.76, p = 6.86 X
10 ~), suggesting that more network interactions were associated
with smaller criterion ¢ and thus higher face bias, consistent with
results using the false-positive faces as a measure for the face bias.
Together, our results suggest that the network interactions driv-
ing a face bias generalize across at least the two alternative object
categories used in this experiment, namely houses and cars.

Additionally, we did a control analysis where we excluded all
additional regions (right IPS, left SPL, FEF, IC) in the network
identified with adjusted thresholds. Significant correlation re-
sults between the network interactions and the face bias still hold
for both the face—house (r = 0.49, p = 0.02) and face—car (r =
0.78,p = 2.80 X 10 ~3) contrasts. This confirmed the robustness
of the causal inference by MDS and showed that the inclusion of
additional regions with lower threshold did not change our main
finding.

Discussion

In this study, we integrated single-trial variability of EEG with
fMRI to identify early and late neural systems involved in rapid
discrimination of face versus nonface visual stimuli. The early
system comprised largely perceptual and associative cortices
while the late system comprised frontal and decision-making re-
lated regions. Using multivariate dynamical systems modeling,
we found different patterns of network connectivity when sub-
jects made face choices versus house choices. Greater causal con-
nectivity between early and late subsystems was associated with a
greater bias toward faces. These findings suggest a role for causal
communication between these networks in face perception.

Different roles of early and late subsystems

Consistent with previous studies, we identified two EEG discrimi-
nating components that differentiate between faces and nonfaces at
different times within a trial. Previous work has associated the early
component (peaking at ~200 ms) with early sensory processing of
the stimulus while the late component (peaking at ~500 ms) being
more related to late decision processes (Philiastides and Sajda, 2006,
2007). Our results further support this association, especially given
that we have shown that the discriminating power of the early com-
ponent diminished when the classifier was trained on trials with low
sensory evidence. Moreover, the strength of the late component was
reduced when the decision became more difficult.

The trial-to-trial variability of each of these components re-
flects the classifier’s confidence in the stimulus category, given
the EEG data. The variability of each component is likely to reflect
variability in different cognitive processes, such as stimulus en-
coding, attention, arousal, working-memory load, and complex-
ity in action planning. We capitalized on the explanatory power
in these components to account for the variance in BOLD obser-
vations at each voxel in the brain. In our findings, for both early
and late components, we only found significant negative correla-
tions between the BOLD response and the EEG predictors. The
cortical regions correlating with the early component included
the PC, SPL, and IPS. These regions potentially constitute an occip-
itoparietal subsystem that is key to the encoding and integration
of stimulus evidence during the sensory period of perceptual
decision-making. For instance, the PC has been shown to activate
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during visual perception (Ganis et al., 2004) and its activity has
also been shown to be modulated by the level of sensory evidence
(Cohen et al., 1997; Philiastides and Sajda, 2007; Tosoni et al.,
2008; Filimon et al., 2013). The SPL and IPS are part of the dorsal
posterior parietal cortex, and their role of integrating sensory
evidence and relaying sensory information to motor areas for
action planning during perceptual decision-making has been ex-
tensively implicated in both human and animal studies (Rizzolatti et
al., 1997; Platt and Glimcher, 1999; Shadlen and Newsome, 2001;
Heekeren et al., 2004; Grefkes and Fink, 2005; Churchland et al.,
2008; Tosoni et al., 2008; Andersen and Cui, 2009). During the late
decision period, where the decision variable is formed and the
accompanying action is planned, the bottom—up sensory infor-
mation is directed to the upstream frontal subsystem (ACC, PCG,
and PMC) whose BOLD response is correlated with the late EEG
component. Our findings combining EEG and fMRI show con-
verging evidence, as has been suggested by previous EEG-only
studies, that the perceptual decision-making network comprised
an early sensory subsystem and a late decision subsystem. The
different temporal orders at which each of the two subsystems is
activated further implicates their distinct functional roles during
decision making.

Bayesian interpretation of the face-perceptual bias

A number of studies have proposed a Bayesian probabilistic in-
terpretation on how the brain implements sensory processing
and decision making under uncertainty (Mumford, 1992; Fris-
ton, 2003, 2010; Lee and Mumford, 2003; Knill and Pouget, 2004;
Pouget etal., 2013; Bitzer et al., 2014). The framework of Bayesian
inference encompasses three elements: the posterior, the likelihood,
and the prior. One theory on how this framework is applied during
perceptual decision-making is that the brain operates as an optimal
Bayesian observer by choosing the decision alternative with
the largest posterior probability. In the context of perceptual
decision-making, the posterior of one alternative is the probability
distribution given the sensory input. For each decision alterna-
tive, the likelihood models a generative process of the sensory
input given that decision alternative and serves as an internal
representation or template of that alternative. The prior repre-
sents the weight on each of the choice alternatives. If no percep-
tual bias presents among choice alternatives, the prior is assigned
to be equal across all decision alternatives. According to the Bayes
rule, the posterior is proportionally related to the product of the
prior and the likelihood. Therefore, the Bayesian interpretation
suggests that the choice made by the subject relies not only on the
likelihood but also on the prior. In particular, when the sensory
signal is ambiguous, the likelihood becomes less informative, the
prior dominates the posterior, and the choice is strongly influ-
enced by prior experience or expectation.

Resting on the framework of Bayesian probabilistic inference,
the theory of predictive coding has been proposed to account
for a wide range of cognitive phenomena, such as misperception
(Summerfield et al., 2006a), illusion (Weiss et al., 2002), and
reward learning (Tobler et al., 2005). The predictive coding the-
ory suggests a top—down perceptual process in which frontal
inputs maintain representations of expected stimuli and inform
activity in perceptual regions (Dayan etal., 1995; Rao and Ballard,
1999; Friston, 2003, 2008). The sensory input is compared against
an internal template generated by regions higher in the hier-
archy. The template at higher-level regions represents a predic-
tion of the ongoing representation of the expected percepts at
lower-level regions and is transmitted in a feedback chain to succes-
sive downstream regions. The error between the prediction and the
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true representation at each level is transmitted in a feedforward di-
rection up in the hierarchy to refine the prediction in higher-level
regions (Shipp, 2016). Therefore, the top—down prediction signal
would bias the perception under the circumstances where bottom—up
sensory evidence is weak. Often, the brain sees what it expects under
ambiguity. Sensory regularities (faces) arising from expectation or prior
experience exist to facilitate perception processing.

Following the predictive coding theory, our findings suggest
that a face perceptual bias is manifested by an increased network
interaction between the early (sensory) and the late (high-level)
subsystems. Subjects with greater early—late connectivity made
more false-positive errors mistaking houses or cars for faces.
Moreover, consistent with evidence from several studies that face
perception involves top—down modulation (Summerfield et al.,
2006a,b), our data show that the top—down influence is signifi-
cantly higher for face choices than for house choices, suggesting
that during face choices there was more top—down modulation
from the late network to the early network. This increased top—
down influence also positively correlated with more false-positive
face choices (r = 0.65, p = 0.0014), with further implications that a
perceptual bias toward faces may rest on the predictive signal gener-
ated in the frontal regions.

One limitation of our study is that the choice effect that we
were primarily interested in cannot be entirely dissociated from
the stimulus effect. This issue is more prominent for high-coherence
stimuli than for low-coherence stimuli since subject accuracy is
~95% at high coherence but only 60% at low coherence—i.e.,
stimulus and choice are more dissociated at low coherence. To
unequivocally separate the stimulus effect from the choice effect,
one could analyze only error trials. However, this substantially
decreases the number of trials used in estimating our MDS
model, rendering our causal estimation unreliable. Therefore, to
best address this problem, we performed a control analysis where
we only used trials at the low-coherence level and repeated the
same network analysis. Consistent with our main finding com-
bining trials at both coherence levels, this analysis also showed
that more early-late network connectivity is associated with
more false-positive faces (r = 0.67, p = 0.0009).

In conclusion, using simultaneous EEG and fMRI, we identi-
fied network interactions that were highly correlated with choice
bias for faces, particularly when stimulus evidence was low. The
spatiotemporal brain dynamics underlying this process were in-
ferred from the distributed brain network using state-space mod-
eling and linked to subject’s choice behavior. We showed that
bidirectional causal connectivity between these networks appears
to play arole in the biased processing and perception of faces. Our
findings offer new insights in the functional organization of brain
networks during perceptual decision-making. Importantly, we
identified the neural correlates of the face perceptual bias at the
network level. The correlation between the face perceptual bias
and network interactions was interpreted by the predictive cod-
ing theory as a top—down influence driving the perception to
resolve ambiguity. Future studies are needed to investigate the
source of the predictive codes and how the predictive signals
propagate across the network.
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